

ATLAS + CMS: Boosted Topologies

John Stupak III On behalf of the ATLAS and CMS collaborations

Introduction

- What is meant by boosted? p_T ≥ 2m
 - Collimated decay products: $\Delta R \approx 2m/p_T$
 - Non-isolated leptons + challenging/rich hadronic topologies*

Heavy

*This talk focuses on hadronic decays of boosted particles

Use "fat jet" to capture all daughters

- Why the boosted regime?
 - No sign yet of BSM physics at the LHC \rightarrow probe higher mass scales
- Hadronic decays often have large BRs.
 Introduction
 - Recover significant signal cross section
 - Reject QCD background w/ jet substructure

BR(H \rightarrow hadrons) \approx 84%
BR(Z \rightarrow hadrons) \approx 70%
BR(W \rightarrow hadrons) $\approx 68\%$

Outline

- Jet substructure techniques
 - Grooming
 - Additional substructure
 - Subjet b-tagging
 - V/top/Higgs tagging
- Boosted analyses
 - Fermion+fermion resonances
 - Fermion+boson resonances
 - Diboson resonances
 - SUSY
 - SM measurements
- Run II considerations

Boosted Techniques

Jet Mass / Grooming

Jet mass

- Powerful tool to identify merged jets from heavy particle decays
- Generated perturbatively for jets from light quarks/gluons ("QCD jets")
- Highly sensitive to UE and PU
- Grooming
 - Remove soft / wide angle radiation
 - Examples: pruning, trimming, filtering, ...

NB: jet mass resolution insufficient to separate W jets from Z jets

Grooming improves background rejection, energy/mass resolution, and PU stability

John Stupak III - Purdue University Calumet

Additional Observables

k_T-splitting scale

 $\sqrt{d_{12}} = \min(p_{T_1}, p_{T_2})\Delta R_{12}$

Exploit symmetric nature of heavy particle decays

• Mass drop $\mu_{1,2} = \frac{\max(m_1, m_2)}{m_{12}}$

Characterize "clumpyness"

• N-subjettiness $au_N = \frac{1}{d_0} \sum_k p_{T_k} \times \min(\Delta R_{1k}, \Delta R_{2k}, ..., \Delta R_{Nk})$

3/17/15

Additional Observables

Jet charge $q = \sum_{i} q_i \left(\frac{p_{T,i}}{p_{T,iet}}\right)^n$ k_T-splitting scale Exploit symmetric nature $\sqrt{d_{12}} = \min(p_{T_1}, p_{T_2})\Delta R_{12}$ of heavy particle decays Pull angle $\vec{t} = \sum_{i} \frac{p_{T,i}|r_i|}{p_{T,iet}} \vec{r_i}$ Mass drop $\mu_{1,2} = \frac{\max(m_1, m_2)}{m_{12}}$ Characterize "clumpyness" • N-subjettiness $au_N = \frac{1}{d_0} \sum_k p_{T_k} \times \min(\Delta R_{1k}, \Delta R_{2k}, ..., \Delta R_{Nk})$ Q-jets volatility $\nu_{\rm Q-jets} = \frac{\sqrt{\langle m^2 \rangle - \langle m \rangle^2}}{\langle m \rangle}$ Energy correlation functions Planar flow $P = 4 \times \det(I) / \operatorname{Tr}(I)^2$ Quark/gluon likelihood Too many to discuss here Jet width $w = \frac{\sum_{i} \Delta R_{i,jet} p_{T_i}}{\sum_{i} p_{T_i}}$

Boosted B-tagging

- Many variables from the previous slide are correlated
 - B-tagging of subjets is largely orthogonal
- Difficult in boosted regime due to density of environment
 - Strong efforts ongoing within both collaborations to further improve performance

V/top/Higgs Tagging

See talk by Chris Malena Delitzsch for

- Putting all available information together
 - Typically groomed mass window + substructure (+ b tagging)
 - Alternatively, groomed mass window can be replaced with a more sophisticated tagging algorithm
 - CMS/HEP Top Tagger, BDRS, ...

--- subjet b-tag ---- N-subjettiness ratio τ_3/τ_2 - CMS + τ_2/τ_2 + subjet b-tag HEP Top Tagger - HEP + τ_3/τ_2 + subjet b-tag CMS WP0 ↔ HEP WP0 CMS Comb. WP1 ○ HEP Comb. WP1 CMS Comb. WP2 □ HEP Comb. WP2 CMS Comb. WP3 CMS Comb. WP4 \triangle HEP Comb. WP3 [CMS PAS JME-13-007]

- CMS Top Tagger

CMS/HEP Top Tagger

- Groom to find subjets
- Require:
 - $N_{subjets} \ge 3$
 - $m_{jet} \approx m_{top}$
 - $min(m_{ij}) \approx m_W (CMS)$
 - $m_{ii} \approx m_W (HEP)$

See talks by Mario Pelliccioni and Eduardo Navarro De Martino

- High mass searches
 - $H \rightarrow WW \rightarrow \ell \nu qq [CMS PAS HIG-14-008]$ Brand New!
 - H→ZZ→ℓℓqq [CMS PAS HIG-14-007] Brand New!

Fermion+Fermion Resonances

Brand New!

- Z'→tt [CMS PAS B2G-13-008] Brand New!
- Z'→tt [ATLAS CONF-2015-009]
 - Additional searches in the backup
 - W'→tb [ATLAS arXiv:1408.0886]
 - W'→tb [CMS PAS HIG-14-007]

(Extended gauge sectors, colorons, axigluons, pseudoscalar Higgs, extra dimensions)

- Combination of searches for tt resonance in 0,1,2 lepton events
 - Hadronic channel
 - Dijet topology w/ 2 top tags
 - Separate high and low mass optimizations
 - QCD mistag rate measured in data

	Top Tagger	b-tagging	N-subjettiness
Low Mass	HEP (R = 1.5)	and int	
High Mass	CMS (R = 0.8)	sub-jet	$ au_{32} = au_{3}/ au_{2}$

[CMS PAS B2G-13-008]

(Extended gauge sectors, colorons, axigluons, pseudoscalar Higgs, extra dimensions)

- Lepton + jets (resolved and merged analyses)
 - Merged channel
 - Event selection
 - 1 ℓ (mini-isolation) + ≥1 b jet + ≥1 top jet + MET + m_T
 - Trimmed R=1.0 jet with m > 100
 GeV + k_T-splitting scale
 - Categorize events based on ΔRmatching of b-jets to top candidates
 - W+jets normalization and heavy flavor corrections taken from data

[ATLAS CONF-2015-009]

3/17/15

John Stupak III - Purdue University Calumet

Fermion+Boson Resonances

T'→t(bjj)H(bb) [CMS arXiv:1503.01952]

Brand New!

- Additional searches in the backup
 - $\ell^* \rightarrow \ell\gamma/\ell Z [CMS PAS EXO-14-015]$ Brand New!
 - B'→bH(bb) [CMS PAS B2G-14-001]

(Little Higgs, extra dimensions, composite Higgs)

T′→t(bjj)H(bb)

Events

10⁴

 10^{3}

10²

10

10⁻¹

2

1.5

Data / BG

CMS

[CMS arXiv:1503.01952]

Data

tŦ

Multiple H tag category

QCD (from data)

TT→tHtH (700 GeV/c²)

19.7 fb⁻¹ (8 TeV)

• Search for pair production of tH resonances

- First vector-like quark search in an all hadronic final state
- First use of Higgs tagger exploiting substructure + subjet b-tagging
- Require ≥ 1 top jet and ≥ 1 Higgs jet

Brand New!

- Top tag HEP Top Tagger + subjet b-tag
- Higgs tag Filtered R=1.5 jet with m > 60 GeV + double subjet b-tag
 - Efficiencies validated in boosted semileptonic tt data

Diboson Resonances

- V(qq)H(bb/WW) [CMS PAS EXO-14-009]
- Z(qq)H(ττ) [CMS arXiv:1502.04994]
- Additional searches in the backup
 - V(qq)W(ℓν) [ATLAS arXiv:1503.04677]
- Brand New!

Brand New!

Brand New!

See talk by Katharine Leney

- V(qq)Z(ll) [ATLAS EPJC 75:69 (2015)]
- V(qq)V(qq) [CMS JHEP 08 (2014) 173]
- V(qq)V(ℓν/ℓℓ)[CMS JHEP 08 (2014) 174]

3/17/15

John Stupak III - Purdue University Calumet

(Little Higgs, composite Higgs, 2HDM)

[CMS PAS EXO-14-009]

Brand New! VH Resonance

- First search for VH resonance in all hadronic final state
 - With $H \rightarrow bb/H \rightarrow WW^* \rightarrow 4q$ and $V \rightarrow qq$
- First attempt to reconstruct boosted $H \rightarrow 4q$ decays
- Pruned R=0.8 jets used for H→bb/4q and V→qq tagging
 - + N-subjettiness (H \rightarrow 4q: τ_{42} , V \rightarrow qq: τ_{21})
 - + Sub-jet/fatjet b-tagging (H→bb)
- Categorize events based on H decay mode and H/V purity
- Background model:

$$P(m_{jj}) = \frac{p_0(1 - m_{jj}/\sqrt{s})^{p_2}}{(m_{jj}/\sqrt{s})^{p_2}}$$

(Little Higgs, composite Higgs, 2HDM)

[CMS arXiv:1502.04994]

 $\underline{\max(m_1, m_2)}$

 m_{12}

mass drop: $\mu_{1,2} =$

Brand New! ZH Resonance

- Search for boosted $Z \rightarrow qq$ recoiling against $H \rightarrow \tau \tau$
 - Consider all possible τ decays: $\tau_e \tau_e$, $\tau_e \tau_\mu$, $\tau_\mu \tau_\mu$, $\tau_h \tau_e$, $\tau_h \tau_\mu$, $\tau_h \tau_h$
- Z tagging Pruned R=0.8 jet with 70 < m < 110 GeV + N-subjettiness
- $\tau_{\rm h}\tau_{\rm h}$: Novel reconstruction of boosted H $\rightarrow \tau\tau$
 - Pruned (R=0.8) subjets with large mass drop serve as seeds to the "hadron-plus-strips" algorithm
 - Likelihood fit to reconstruct $H \rightarrow \tau \tau$ from MET and visible daughters (SVfit)

- RPV [ATLAS arXiv:1502.05686] Brand New!
- Additional searches in the backup
 - Stop (all hadronic) [ATLAS JHEP 09 (2014) 015]
 - Stop (single lepton) [ATLAS JHEP 11 (2014) 118]

[ATLAS arXiv:1502.05686]

 $m_{\rm jet}$

 $W_{\mathcal{R}_p} = \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \kappa_i L_i H_2$

Primary observable: $M_I^{\Sigma} =$

RPV SUSY

- Jet multiplicity and total-jet-mass based searches
 - Jet counting analysis
 - ≥6/7 jets ⊗ ≥0/1/2 b tags (R=0.4)
 - Total jet mass analysis
 - Relies on "accidental substructure"
 - Trimmed R=1.0 jets formed from unrelated hadronic activity
 - Large masses generated "accidentally"
 - Signal region 4 fat jets with small $|\Delta \eta_{12}|$

[ATLAS arXiv:1502.05686]

 $W_{\mathcal{R}_p} = \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \kappa_i L_i H_2$

Primary observable: $M_{J}^{\Sigma} =$

RPV SUSY

- Jet multiplicity and total-jet-mass based searches
 - Jet counting analysis
 - ≥6/7 jets ⊗ ≥0/1/2 b tags (R=0.4)
 - Total jet mass analysis
 - Relies on "accidental substructure"
 - Trimmed R=1.0 jets formed from unrelated hadronic activity
 - Large masses generated "accidentally"
 - Signal region 4 fat jets with small $|\Delta \eta_{12}|$

 $m_{\rm jet}$

SM Measurements

- tt differential cross section [ATLAS-CONF-2014-057]
- V + jets cross section [ATLAS 2014 NJP 16 113013]

Differential tt Cross Section

- Extension of leptonic results with p_T(t) < 800 GeV
- Lepton + jets channel
 - Trimmed R=1.0 jets with m > 100 GeV + k_T splitting scale
 - $p_T > 300 \text{ GeV}$ and $|\eta| < 2.0$
- MC predictions overestimate the data, especially at high p_T(t)
- Dominated by JES (particle level) and signal modeling (parton level) uncertainties

	e+jets	μ +jets	
$t\bar{t} \ell$ +jets	4020 ± 460	3500 ± 400	
<i>tī</i> dilepton	227 ± 36	210 ± 26	
W+jets	263 ± 50	252 ± 48	
single top	136 ± 27	134 ± 25	
Multijet	91 ± 17	3 ± 1	
Z+jets	34 ± 18	14 ± 8	
Dibosons	22 ± 11	18 ± 9	
Prediction	4790 ± 540	4130 ± 470	
Data	4148	3604	

^{~85%} purity

John Stupak III - Purdue University Calumet

V + Jets Cross Section

- Challenging measurement extending leptonic result with $p_T(V) < 300 \text{ GeV}$
 - Based on L = 4.6 fb⁻¹ at $s^{1/2} = 7$ TeV
- R = 0.6 jets with pT > 320 GeV and $|\eta| < 1.9$
 - 50 < m < 140 GeV
 - Likelihood constructed from jet shape variables in the jet rest frame
- Extract V + jets cross section with binned maximum fit to m_{iet}

~20% precision

V + Jets Cross Section

- Challenging measurement extending leptonic result with $p_T(V) < 300 \text{ GeV}$
 - Based on L = 4.6 fb⁻¹ at $s^{1/2} = 7$ TeV
- R = 0.6 jets with pT > 320 GeV and $|\eta| < 1.9$
 - 50 < m < 140 GeV
 - Likelihood constructed from jet shape variables in the jet rest frame
- Extract W/Z + jets cross section with binned maximum fit to m_{iet}

Run II Considerations

Run II Potential

- With increase to 13 TeV, large increase in cross section for heavy particle production
 - Boosted techniques essential
- New challenges as well
 - Triggering in hadronic final states
 - Pileup mitigation

Trigger

- Triggering will be a serious challenge in Run II, especially for all hadronic analyses
 - Substructure based triggers being deployed which incorporate grooming + mass cut
 - Maybe even something more sophisticated - top tagging?

Pileup Mitigation

- More extreme pileup expected during Run II (w/ 25ns bunch spacing)
- New techniques being developed to cope
 - Cleansing
 - Constituent subtraction
 - Shape subtraction
 - Soft Killer
 - PileUp Per Particle Identification (PUPPI)
 - Correct for pileup at the particle level
 - Jet vertex tagger / pileup jet ID
 - Likelihoods constructed from tracking information and jet shape variables
 - See <u>https://indico.cern.ch/event/306155</u> for details on these and other methods

John Stupak III - Purdue University Calumet

[CMS PAS JME-14-001] CMS Simulation Preliminary

Conclusion

- The boosted regime and jet substructure significantly enhanced the sensitivity to new physics during Run I
 - Many strong analyses published, in addition to those presented here
 - Virtually all physics groups within ATLAS and CMS exploited boosted topologies
- With the increased energy in Run II, the boosted regime will be vital
 - Also many new challenges
 - The community is working hard to mitigate pileup effects and improve existing algorithms to maximize performance

John Stupak III - Purdue University Calumet

Jet Reconstruction

- Jet constituents
 - CMS particle flow + charged hadron subtraction
 - Reconstruct and identify all particles with an optimized combination of all sub-detectors (e, μ , γ , π_{\pm} , π_{0})
 - ATLAS topological clusters
 - 3D clustering with built-in noise and pileup suppression
- Sequential, Iterative clustering algorithms
 - Calculate the "distance" between all constituents

$$d_{ij} = \min(p_{T_i}^{2n}, p_{T_j}^{2n}) \Delta R_{ij}^2 / R^2$$

$$d_{iB} = p_{T_i}^{2n}$$

- Merge nearest constituents
- If for a given constituent i all d_{ij} > d_{iB}, classify i as a jet
- Repeat until all constituents are clustered

3/17/15

John Stupak III - Purdue University Calumet

$\frac{[\text{CMS PAS JME-13-006]} [\text{CMS PAS JME-14-002]} [\text{ATLAS PHYS-PUB-14-004]}}{V tagging}$

- The combination of grooming and substructure variables to identify hadronic W/Z
- Studied by both ATLAS and CMS
 - Many combinations of jet algo, groomer, and substructure techniques

John Stupak III - Purdue University Calumet

Jet Core Tracking Improvements

- Additional iterative tracking step targeting the core of jets
 - Pattern recognition is performed testing in parallel a large number of possibilities
- Merged pixel cluster splitter
 - Exploit the information of the jet direction to predict the expected cluster shape and charge

https://twiki.cern.ch/twiki/bin/view/CMSPublic/HighPtTrackingDP

John Stupak III - Purdue University Calumet

[CMS PAS JME-13-007]

CMS Top Tagger

- Optimized for jets with p_T ≥ 350 GeV
- CA R=0.8 jets
- Reverse clustering sequence
 - Find ≤4 well-separated, high p_T subjets
- Require:

- $\Delta R_{ij} > 0.4 0.0004 \times p_T$ $p_T^{cluster} > 0.05 \times p_T^{jet}$
- $N_{subjets} \ge 3$
- $m_{jet} \approx m_{top}$
- $\min(m_{ij}) \approx m_W$

[CMS PAS JME-13-007] [ATLAS CONF-2013-084] HEP Top Tagger

- Optimized for jets with p_T ≥ 200 GeV Require:
- $N_{subjets} \ge 3$ CA R=1.5 jets $\max(m_i, m_j) < 0.8m_j$ $m_{jet} \approx m_{top}$ Mass drop decomposition + filter $m_{ii} \approx m_W$ Step 4: Step 1: Filtering: keep only the 5 leading Mass drop •••••••••••• decomposition subjets CMS Simulation $\sqrt{s} = 8 \text{ TeV}$ ²³/ш¹²³ 1.2 2.4 **HEP** Top Tagger CA R=1.5 ml<2.4 2.2 Step 5: p_>300 GeV/c 2 Step 2: tt simulated with MADGRAPH Repeat reclustering and filtering procedure for all combinations of 3 1.8 mass drop subjets Loop over all combinations of 1.6 3 mass drop 0.8 subjets 1.4 1.2 0.6 0.8 0.4 Step 6: Step 3: 0.6 Pick the combination with filtered mass Recluster with 0.2 0.4 _{filt}=min(0.3,ΔR_{min}/2 closest to the top mass. Recluster to force 3 0.2 subiets 0∟ 0 $\mathbf{0}$ 0.2 1.2 1.4 0.4 0.6 0.8 atan(m₁₃/m₁₂) 3/17/15 37

(Extended gauge sectors, colorons, axigluons, pseudoscalar Higgs, extra dimensions)

🔶 Data

others

- Semi-leptonic channel (boosted analysis)
 - CMS Top Tagger + N-subjettiness + subjet btagging
 - Categorize events based on CMS top-tag and b-jet multiplicity

Data / Bkg

1.5

0.5 0

500

1000 1500

John Stupak III - Purdue University Calumet

 χ^2 based event reconstruction

[CMS PAS B2G-13-008]

3/17/15

[CMS PAS B2G-12-009] [ATLAS arXiv:1408.0886]

GeV

10⁵

10'

10

10²

10

10

Events / 100

ATLAS

√s = 8 TeV

L dt = 20.3 fb⁻²

 χ^2 /#bins = 21.5/29

two b-tag category

data

- 1.5 TeV W'_I

2.0 TeV W'

2.5 TeV W',

3.0 TeV W'

background-only fit

$W' \rightarrow tb$

- Search for high mass tb resonance
- Top tagging
 - CMS CMS top tagger + N-subjettiness + subjet b-tag $\sqrt{d_{12}} = \min(p_{T_1}, p_{T_2})\Delta R_{12}$
 - ATLAS Trimming + k_T scale + N-subjettiness

m > 846 GeV for

$B' \rightarrow bH(bb)$

- Search for pair production of bH resonance
- Higgs tagging Pruned R=0.8 jet with 90 < m < 140 GeV + N-subjettiness + double subjet b-tag
- Categorize events based on the number of additional b jets
 - Test for presence of signal with H_T

• Search for excited leptons through contact interactions

[CMS PAS EXO-14-015]

[CMS PAS EXO-14-015]

- Search for excited leptons through contact interactions
- 2l+J search
 - Pair Z with remaining leptons to form 2 l* candidates
 - Apply mass-dependent L-shaped cut

	$M_{\ell}^* = \Lambda$, values in TeV		
Search channel	f = f' = 1	f = -f' = 1	
$ee^* ightarrow ee\gamma$	2.45 (2.45)	-	
$ee^* \rightarrow eeZ \rightarrow 2e2j$	2.10 (2.10)	2.35 (2.35)	
$ee^* \rightarrow eeZ \rightarrow 4e$	1.55 (1.55)	1.80 (1.80)	
$ee^* \rightarrow eeZ \rightarrow 2e2\mu$	1.60 (1.60)	1.85 (1.85)	
$ee^* \rightarrow eeZ \rightarrow 2e2\ell$	1.70 (1.70)	1.95 (1.95)	
$\mu\mu^* ightarrow \mu\mu\gamma$	2.48 (2.40)	-	
$\mu\mu^* \rightarrow \mu\mu Z \rightarrow 2\mu 2j$	2.10 (2.05)	2.38 (2.30)	
$\mu\mu^* ightarrow \mu\mu Z ightarrow 4\mu$	1.65 (1.65)	1.90 (1.90)	
$\mu\mu^* \rightarrow \mu\mu Z \rightarrow 2\mu 2e$	1.60 (1.60)	1.85 (1.85)	
$\mu\mu^* \to \mu\mu Z \to 2\mu 2\ell$	1.75 (1.75)	2.00 (2.00)	

Brand New!

RPV SUSY

- Total jet mass analysis
 - Background modeling "template method"
 - p_T and η -dependent m_j probability density functions derived in 3-jet CR

[ATLAS arXiv:1502.05686]

- Convolve PDFs with data in the SR $\rightarrow m_J^{\Sigma}$ background prediction
- Validate in 4-jet CR with large $|\Delta \eta_{12}|$

[ATLAS JHEP 09 (2014) 015] [ATLAS JHEP 11 (2014) 118] Stop

- Searches in fully hadronic and single lepton final states
 - Each contains 1 SR targeting boosted regime

Š

6–

- Fully hadronic
 - ≥5/6 R=0.4 jets
 - ≥2 b-tagged
 - MET > 150 GeV

Events / 50 G	4	∫L dt = 20.1 fb ⁻¹ , ເຮັ SRB	5 = 8 TeV	SM Total Single Top ti Single Top ti+V W Z Diboson c(57)=6000 1) G	- - - -
ed	2			(_{11/24})=(0000,1) C	
ieV	0	400	600	800 E ^{miss}	[GeV]

Data 2012

	SRB1	SRB2
anti- $k_t R = 0.4$ jets	4 or 5, $p_{\rm T} > 80, 80, 35, 35, (35)$ GeV	$5, p_{\rm T} > 100, 100, 35, 35, 35 \text{ GeV}$
\mathcal{A}_{m_t}	< 0.5	> 0.5
$p_{\rm T, jet, R=1.2}^{0}$	_	$> 350 { m ~GeV}$
$m_{\text{jet, }R=1.2}^{0}$	> 80 GeV	[140, 500] GeV
$m_{\text{jet, }R=1.2}^1$	[60, 200] GeV	-
$m_{\text{jet, }R=0.8}^{0}$	> 50 GeV	[70, 300] GeV
$m_{ m T}^{ m min}$	> 175 GeV	> 125 GeV
$m_{ m T}~({ m jet}^3,{f p}_{ m T}^{ m miss})$	> 280 GeV for 4-jet case	-
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$	_	$> 17\sqrt{\text{GeV}}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 325 GeV	> 400 GeV

 t_1

John Stupak III - Purdue University Calumet

h

Q

 \overline{q}'

t

[ATLAS JHEP 09 (2014) 015] [ATLAS JHEP 11 (2014) 118] Stop

- Searches in fully hadronic and single lepton final states
 - Each contains 1 SR targeting boosted regime
- Single lepton
 - ≥4 R=0.4 jets
 - ≥1 b-tagged
 - MET > 350 GeV

tN boost	е	μ
	ε	ε
No requirements	100.00%	100.00%
Trigger	95.31%	95.31%
Event DQ	94.07%	94.07%
Lepton (exactly 1 baseline)	33.75%	33.75%
Lepton (exactly 1 signal)	11.41%	11.41%
≥ 4 jets (75, 65, 40, 25) GeV	7.74%	7.74%
$\Delta\phi({\rm jet}_{1,2},\vec{p}_{\rm T}^{\rm miss})>\!0.5,0.3$	7.36%	7.36%
≥ 1 b-tag in 4 leading jets	5.81%	5.81%
$E_{\rm T}^{\rm miss} > 315~{\rm GeV}$	2.92%	2.92%
$m_{\rm T} > 175~{\rm GeV}$	2.65%	2.65%
≥ 1 large-R jet, $p_{\rm T} > 270$ GeV		
and jet mass $> 75 \text{ GeV}$	2.20%	2.20%
$\Delta \phi \left(2 \mathrm{nd} \; \mathrm{large} - R \; \mathrm{jet}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}} \right) > 0.85$	2.15%	2.15%
τ veto*	2.02%	2.02%
$\min\left(\Delta R(\text{signal lepton}, b-\text{jet})\right) \! < \! 2.6$	5 2.02%	2.02%
topness > 7	1.79%	1.79%
$am_{T2} > 145 \text{ GeV}$	1.73%	1.73%
$H_{\rm T,sig}^{\rm miss} > 10$	1.72%	1.72%

John Stupak III - Purdue University Calumet

[ATLAS JHEP 09 (2014) 015] [ATLAS JHEP 11 (2014) 118] Stop

 t_1

- Searches in fully hadronic and single lepton final states
 - Each contains 1 SR targeting boosted regime

John Stupak III - Purdue University Calumet

 \mathcal{Q}

 \overline{q}'

(Little Higgs, composite Higgs, 2HDM)

[CMS PAS EXO-14-009]

Brand New! VH Resonance

- First search for VH resonance in all hadronic final state
 - With $H \rightarrow bb/H \rightarrow WW^* \rightarrow 4q$ and $V \rightarrow qq$
- First attempt to reconstruct boosted H→4q decays
- H_T and dijet mass triggers
- Pruned R=0.8 jets used for H→bb/4q and V→qq tagging
 - + N-subjettiness (H \rightarrow 4q: τ_{42} , V \rightarrow qq: τ_{21})
 - + Sub-jet/fatjet b-tagging (H→bb)
- Categorize events based on H decay mode and V purity
 High purity selection

John Stupak III - Purdue University Calumet

[ATLAS arXiv:1503.05677]

48

Brand New! VW Resonance

- Search in lvqq final state
 - Low p_T resolved, high p_T resolved, and merged analyses
- Merged channel $\sqrt{y_f} = \min(p_T^{j1}, p_T^{j2}) \Delta R_{12} / m_{12} > 0.45$
 - Momentum balance filtered R=1.2 jets with 65 < m < 105 GeV
 - Neutrino p_z determined from W mass constraint

John Stupak III - Purdue University Calumet

[CMS JHEP 08 (2014) 173] [CMS JHEP 08 (2014) 174] [ATLAS EPJC 75:69 (2015)] VV Resonance

Search for VV resonance

- JJ, $\ell \nu$ J, and $\ell \ell$ J final states
- Pruned R=0.8 jets with 70 ≤ m ≤ 105 GeV
 + N-subjettiness
- Categorize events based on au_{21} and single/double tag (JJ)
- Semileptonic analyses: take normalization and shape of V+jets background from m_{J/jj} sideband (with shape corrections from MC)
- Fully-hadronic: Model multijet background as smoothly falling distribution
- Bump hunt in m_{JJ}/m_{ℓvJ}/m_{ℓℓJ}/m_{ℓℓjj}

John Stupak III - Purdue University Calumet

BRDS-A R=1.2 jets with 70 < m < 110 GeV

[CMS JHEP 08 (2014) 173] [CMS JHEP 08 (2014) 174] [ATLAS EPJC 75:69 (2015)] VV Resonance

ABCD Method in $T' \rightarrow tH$

• QCD normalization: N_C

$$N_D = N_B \frac{N_C}{N_A}$$

- QCD shape:
 - Taken from region B
- Validated with QCD MC and data

Top Tagging Performance

- Optimal performance
 - Obtained by combining tagger with additional jet substructure info
 - Analysis dependent

John Stupak III - Purdue University Calumet

CMS Top Tagger

CMS Top Tagger decomposition Input cluster Define $D_{cut} = 0.4 - 0.004 \times p_T^{input}$ Define Redefine temp = inputtemp = ADecluster temp into A and B $(p_T^A > p_T^B)$ false Decomposition $\Delta R(A,B) > D_{cut}$ fails true $p_{T}^{A} < 0.05 \times p_{T}^{jet}$ true Decomposition and fails $p_{T}^{B} < 0.05 \times p_{T}^{jet}$ false $p_{T}^{A} > 0.05 \times p_{T}^{jet}$ Decomposition true and succeeds $p_{T^B} > 0.05 \times p_{T^{jet}}$ false Remove B. Try to decluster A.

B` and B`` are too close

Example: CMS Top Tagger decomposition

John Stupak III - Purdue University Calumet

HEP Top Tagger

HEP lop lagger

Top Tagging Performance

John Stupak III - Purdue University Calumet