Study of the decay $B^{\scriptscriptstyle +} \to K^{\scriptscriptstyle +} \pi^0\, \text{at LHCb}$

[CERN-LHCb-CONF-2015-001]

50th Rencontres de Moriond – EW 20th March 2015, La Thuile, Italy

Jason Andrews On behalf of the LHCb collaboration

Motivation

Analysis of $B^0 \rightarrow K^*\pi^-$ established direct CP violation in B mesons B $\rightarrow K\pi$ system is a cornerstone of B meson CP violation studies

Table 1: \mathcal{A}^{CP} measurements for the $B \to K\pi$ decay modes.

	BaBar	Belle
$B^0 \rightarrow K^0 \pi^0$	$+0.13 \pm 0.13 \pm 0.03 \ [1]$	$+0.14 \pm 0.13 \pm 0.06 \ [2]$
$B^+ \! \rightarrow K^0 \pi^+$	$-0.029 \pm 0.039 \pm 0.010$ [3]	$-0.011 \pm 0.021 \pm 0.006$ [4]
$B^0 \rightarrow K^+ \pi^-$	$-0.107 \pm 0.016^{+0.006}_{-0.004}$ [5]	$-0.069 \pm 0.014 \pm 0.007$ [4]
$B^+ \rightarrow K^+ \pi^0$	$+0.030 \pm 0.039 \pm 0.010$ [6]	$+0.043 \pm 0.024 \pm 0.002$ [4]

PRD D79 (2009) 052003
 PRD D81 (2010) 011101
 PRL 97 (2006) 171805
 PRD D87 (2013) 031103

[5] PRD D87 (2013) 052009
[6] PRD D79 (2007) 091102
[7] PRL 108 (2012) 201601

Measurements of the entire system have revealed significant deviations from the expected patterns of CP violation

Table 2: \mathcal{A}^{CP} measurement and world averages for the $B \to K^+ \pi$ decay modes.

	$B^0 \rightarrow K^+ \pi^-$	$B^+ \rightarrow K^+ \pi^0$
LHCb [7]	$-0.088 \pm 0.011 \pm 0.008$	n/a
World average	-0.082 ± 0.006	0.040 ± 0.021

- Direct CP violation in $B^+ \to K^+\pi^0$ not established, but is naively expected to be the same as in $B^0 \to K^+\pi^-$
- This is the $K\pi$ puzzle, discovered at the B factories

•
$$\Delta A_{CP}(K\pi) \equiv A_{CP}(B^+ \to K^+\pi^0) - A_{CP}(B^0 \to K^+\pi^-) \neq 0$$

- Evidence for $A_{_{CP}}(K^*\pi^0)$ is ambiguous (consistent with zero at 2σ)

$B^{\scriptscriptstyle +} \to K^{\scriptscriptstyle +} \pi^0$ at LHCb

At LHCb, this study also serves as a prototype for analyses with similar topologies, such as $B^0 \rightarrow K^0 \pi^0$, $\Lambda_{\rm b} \rightarrow \Lambda \gamma$, and $B^0 \rightarrow K^0 \pi^0 \gamma$

Important modes to study, yet very challenging at LHCb

• No secondary vertex, photons in final state

Analysis of $B^+ \rightarrow K^+\pi^0$ is a critical first step, and a proof-of-concept

Challenges

$B^{\scriptscriptstyle +} \to K^{\scriptscriptstyle +} \pi^0$ at LHCb

Strategy

- Reconstruct high- $E_{T} \pi^{0}$'s
- Apply track isolation and vertex isolation/rejection
- Find a way to exploit the significant displacement of the $B^{\scriptscriptstyle +}$ from the PV

Reject a huge amount of background as efficiently as possible using a multivariate classifier

• Possible partially reconstructed backgrounds: $B \rightarrow K^*\pi^0$, $B \rightarrow K^+\rho$, etc.

This analysis studies the full 3.0 fb⁻¹ data set collected in Run I

Isolation

Track isolation

A number of variables are calculated from non-signal tracks within a "cone" of η and ϕ about the signal candidate. We use:

- 1 Multiplicity of tracks in the cone
- 2 PT asymmetry of tracks in the cone:

$$A_{PT} \equiv \frac{PT^B - PT^{cone}}{PT^B + PT^{cone}}$$

Vertex rejection

Count the multiplicity of other tracks in the event which make a good vertex with the K⁺

• "Good" means χ^2 of a vertex is < 9

MT-DOCA

A new variable invented for this analysis

Mother-Trajectory Distance-of-Closest-Approach

- 1) Make a trajectory in the direction of the B^+ momentum from the PV of the K^+
- 2) Calculate the DOCA that the track makes with this trajectory

Results

 72 ± 26 signal events at 3.7σ significance: the first observation of this mode at a hadron collider

Plans for Run II

Encouraged by the outcome of this analysis, a dedicated software trigger is being developed for use in Run II

Conservatively, we expect 700 - 1100 events per fb⁻¹ in Run II, with an error of about 100 events, based on a factor of 3-5 times improvement in trigger efficiency

> Cf. BaBar: 1364 ± 57; Belle: 3731 ± 92 PRD D79 (2007) 091102

From 383 X 10⁶ BB events From 772 X 10⁶ BB events PRD D87 (2013) 031103

Conclusion

An analysis of $B^+ \rightarrow K^+\pi^0$ is performed using the Run I LHCb data set

This is the first observation of this mode at a hadron collider, demonstrating the potential of LHCb to make measurements of modes with this kind of topology

We expect to contribute competitive measurements

Momentum resolution: $\Delta p / p = 0.5$ % at low momentum to 1.0 % at 200 GeV/c

Impact parameter resolution: $(15+29/p_T) \mu m$

ECAL energy resolution: $1 \% + 10 \% / \sqrt{(E[GeV])}$

MVA classifier

- BDT found to perform the best
- Variables used:
 - Isolation, MT-DOCA, kinematics, $K^{\scriptscriptstyle +}$ impact parameter with PV

- Using optimal point of $S/\sqrt{S+B}$ figure-of-merit
- Low signal efficiency enormous background to reject