

<u>Three-Loop Neutrino Mass Models</u> <u>and Phenomenology</u>

Amine AHRICHE

Department of Physics, University of Jijel, Algeria

Moriond 50's, March 15th 2015, LaThuile, Italy

Outlines

- The Models: Neutrino Mass vs Exp. Constraints
- Dark Matter, EW Phase Transition & $h \rightarrow \gamma \gamma (\gamma Z)$ decay channels
- Collider Signatures
- Conclusion

based on A.A. & S. Nasri, JCAP 07 (2013) 035 A.A., S. Nasri & R. Soualah, Phys. Rev. D 89, 095010 (2014) A.A., C.-S. Chen, K.L. McDonald & S. Nasri, Phys.Rev. D90, 015024 (2014) A.A., K.L. McDonald & S. Nasri, JHEP 10, 167 (2014) A.A., et al in preparation

The Models: Neutrino Mass vs Exp.

The SM is very succesful, but ... v 'masses, gauge unification, hierarchy pb, BAU, DM, DE ..

Many extensions: gauge symmetry, particle content, space-time or introducing exotic ideas (SUSY, LH, UnParticle..)

A small v 'masses: **Seesaw mechanism** ... or **Radiatively** ... Zee, Babu-Zee ... etc

- Our class of models is a simple (& economical) SM extension: SM + a charged singlet scalar + a scalar N-plet + 3 generations of fermion N-plets with a global Z_2 symmetry. This leads to:
- 1. neutrino mass and mixing values given by the Exp;
- 2. DM candidate: relic density & direct detection Exp;
- 3. Higgs mass at 125 GeV & possible enhancement in $h \rightarrow \gamma \gamma$;
- 4. Strong first order phase transition;
- 5. Interesting signals at the colliders.

Lagrangian & Neutrino mass

$$\mathcal{L} \supset \mathcal{L}_{\rm SM} + \{f_{\alpha\beta} \overline{L_{\alpha}^{c}} L_{\beta} S^{+} + g_{i\alpha} \overline{E_{i}} T e_{\alpha R} + \text{H.c}\} - \frac{1}{2} \overline{E_{i}^{c}} \mathcal{M}_{ij} E_{j} - V$$
Charged singlet scalar
$$N\text{-plet fermions} \qquad N\text{-plet scalar}$$

$$S^{+} \sim (1, 1, 2) \qquad T \sim (1, 2n + 1, 2) \qquad E_{i} \sim (1, 2n + 1, 0)$$

$$Z_{2} : \qquad \{T, E_{i}\} \rightarrow \{-T, -E_{i}\}$$

$$(\mathcal{M}_{\nu})_{\alpha\beta} = \underbrace{(2n+1)\lambda_{s}}_{(4\pi^{2})^{3}} \frac{m_{\gamma}m_{\delta}}{M_{T}} f_{\alpha\gamma} f_{\beta\delta} g_{\gamma i}^{*} g_{\delta i}^{*} \times F\left(\frac{M_{i}^{2}}{M_{T}^{2}}, \frac{M_{s}^{2}}{M_{T}^{2}}\right),$$

$$F(\alpha, \beta) = \frac{\sqrt{\alpha}}{8\beta^{2}} \int_{0}^{\infty} dy \frac{y}{y+\alpha} \left(\int_{0}^{1} dx \ln \frac{x(1-x)y+(1-x)\beta+x}{x(1-x)y+x}\right)^{2}.$$

These estimated neutrino mass matrix elements have to be matched observed values

$$(M_{\nu})_{\alpha\beta} = [U \cdot diag(m_1, m_2, m_3) \cdot U^T]_{\alpha\beta},$$

 $s_{ij} \equiv \sin(\theta_{ij}) \text{ and } c_{ij} \equiv \cos(\theta_{ij}) \ s_{12}^2 = 0.320^{+0.016}_{-0.017}, \ s_{23}^2 = 0.43^{+0.03}_{-0.03}, \ s_{13}^2 = 0.025^{+0.003}_{-0.003},$
 $|\Delta m^2_{31}| = 2.55^{+0.06}_{-0.09} \times 10^{-3} \text{ eV}^2 \ \Delta m^2_{21} = 7.62^{+0.19}_{-0.19} \times 10^{-5} \text{eV}^2$

We do not know the neutrinomass hierarchy: normal or inverted? and the absolute neutrino mass $(m_1 \text{ ot } m_3)$?

Muon anomalous magnetic moment

$$\delta a_{\mu} = \frac{m_{\mu}^2}{16\pi^2} \left\{ \sum_{\alpha \neq \mu} \frac{|f_{\mu\alpha}|^2}{6M_{\rm s}^2} + \frac{n}{M_T^2} \sum_i |g_{i\mu}|^2 F_2(M_i^2/M_T^2) \right\}$$

A. Ahriche, U. Jijel

EW Moriond 50's, La Thuile, March 15th 2015

The observed relic density (Planck) $\Omega_{DM}h^2 = 0.1187 \pm 0.0017$ In our setup, the lightest \mathcal{F}_1^0 is the DM candidate, which has the self-annihilation (T and/or W-mediated) t-chennel processes; as $\mathcal{F}_1^0\mathcal{F}_1^0 \rightarrow \ell_{\alpha}^-\ell_{\beta}^+$ $\mathcal{F}_1^0\mathcal{F}_1^0 \rightarrow W^-W^+$ $(n \neq 0)$ However, one to consider the co-annihilation processes (for n>0): $\mathcal{F}_1^0\mathcal{F}_1^+(\mathcal{F}_1^-\mathcal{F}_1^{-+}) \rightarrow W_3^0W^+, \ \mathcal{F}_1^-\mathcal{F}_1^+(\mathcal{F}_1^{--}\mathcal{F}_1^{++}) \rightarrow W^-W^+$

We have also direct detection constraints, where the detection cross section for n>0 can be estimated from :

When considering LUX (together with previous constraints), this implies M_{DM} >> TeV for n>0, while M_{DM} <225 GeV for n=0.

٢

EW Phase Transition & decay channels $h \rightarrow \gamma \gamma$ and $h \rightarrow \gamma Z$

Numerical scan:

n=0

n=1

n=2

A. Ahriche, U. Jijel

EW Moriond 50's, La Thuile, March 15th 2015

8

For the n=0 (KNT), we consider the process at the ILC:

$$e^{-}e^{+} \rightarrow e^{-}\mu^{+} + E_{miss}$$
KNT: 40 diagrams
 $\nu_{\mu}\bar{\nu}_{e}$, $\nu_{e}\bar{\nu}_{\tau}$, $\nu_{\tau}\bar{\nu}_{e}$, $\nu_{\mu}\bar{\nu}_{\mu}$, $\nu_{\tau}\bar{\nu}_{\mu}$, $\nu_{\tau}\bar{\nu}_{\tau}$, \mathcal{F}_{i}^{0} , \mathcal{F}_{k}^{0} , RH neutrinos
with the background: $e^{-}e^{+} \rightarrow e^{-}\mu^{+} + \nu_{\mu}\bar{\nu}_{e}$ they are not similar!!
SM: 18 diagrams
At the ILC:
 $\sqrt{s} = 350 \ GeV$, $\mathcal{L} \sim 250 \ fb^{-1}$,
 $\sqrt{s} = 350 \ GeV$, $\mathcal{L} \sim 350 \ fb^{-1}$,
 $\sqrt{s} = 500 \ GeV$, $\mathcal{L} \sim 1 \ ab^{-1}$

In order to identify the signal, the significance $S = N_S / \sqrt{N_S + N_B}$, should e be larger than 5, with $N_S = N_{EX} - N_B = L \times (\sigma^{EX} - \sigma^{BG})$,

After implementing the model in LanHEP/CalcHEP, we generate different distributions and consider the selection cuts:

E_{CM}	Selection cuts
250	70 < $E_{\ell} < 110$, 70 < $M_{e,\mu} < 220$, $M_{miss} < 120,$
	$0.4621 < \cos \theta_e < 0.9640, -0.9640 < \cos \theta_\mu < -0.4621,$
350	90 $< E_{\ell} < 165$, 100 $< M_{e,\mu} < 280$, $M_{miss} < 200$,
	$0.4621 < \cos \theta_e < 0.9951, \ -0.9866 < \cos \theta_\mu < 0,$
500	120 < $E_{\ell} < 240$, 300 < $M_{e,\mu} < 480$, $M_{miss} < 300$,
500	$0.4621 < \cos \theta_e < 0.9951, -0.9951 < \cos \theta_\mu < 0,$
1000	$E_{\ell} < 70 , M_{e,\mu} < 140 , M_{miss} > 750 ,$
	$0.0997 < \cos \theta_e < 0.6640, -0.6640 < \cos \theta_\mu < -0.0997.$

We obtain the cross section and significance values:

E_{CM}	σ^{BG}	σ^{EX}	$\left(\sigma^{EX} - \sigma^{BG}\right) / \sigma^{BG}$	\mathcal{S}_{100}	\mathcal{S}_{500}
250	6.5919×10^{-2}	6.7402×10^{-2}	2.2497×10^{-2}	1.8064	4.0391
350	5.8882×10^{-2}	6.0158×10^{-2}	2.2723×10^{-2}	1.6451	3.6787
500	5.6560×10^{-2}	5.7630×10^{-2}	1.8918×10^{-2}	1.4095	3.1517
1000	1.9217×10^{-5}	4.6976×10^{-4}	23.445	6.5735	14.699

In order to identify the source of missing energy source at 1 TeV, we vary the charged scalar T⁺ mass (the scalar that couples to $F_i^0 = N_i$). We find

EW Moriond 50's, La Thuile, March 15th 2015

Therefore, the missing energy at CM energies 250, 350 and 500 GeV is mainly LH neutrinos, while at 1 TeV, it RH Majoarana neutrinos.

Another option to enhance the significane in leptnic colliders is using polarized beams. The polarization is characterized by:

 $P(f) = (N_{f_R} - N_{f_L}) / (N_{f_R} + N_{f_L})$

At the ILC, we have:

$$|P(e^{-})| \le 0.8; |P(e^{+})| \le 0.3,$$

We get the cross section and significance values:

E_{CM}	$\mathbf{P}(e^-,e^+)$	σ^{BG}	σ^{EX}	$\left(\sigma^{EX}-\sigma^{BG}\right)/\sigma^{BG}$	\mathcal{S}_{100}	\mathcal{S}_{500}
250	-0.8, +0.3	0.15399	0.15910	3.3184×10^{-2}	4.0512	9.0588
350	-0.8, +0.3	0.13640	0.13997	2.6173×10^{-2}	3.0175	6.7474
500	-0.8, +0.3	0.13100	0.13450	2.6718×10^{-2}	3.0179	6.7483
1000	+0.8, -0.3	2.0708×10^{-6}	7.2710×10^{-4}	350.12	8.5027	19.013

To summarize the results, we give the expected events numbers:

E_{CM} (GeV)	$L \ (fb^{-1})$	$P(e^-,e^+)$	N_B	N_{EX}	N_S
250	250	0,0	16480	16851	371
		-0.8, +03	38498	39775	1277
350	350	0,0	20609	21055	446
		-0.8, +03	47740	48990	1250
500	500	0,0	28280	28815	535
		-0.8, +03	65500	67250	1750
1000	1000	0,0	19.217	469.76	450.54
		+0.8, -03	2.07	727.10	725.03

And when varying the luminosity, we get:

At the LHC, we consider the S-mediated process: $pp \rightarrow \ell_{\alpha}^{-} \ell_{\beta}^{+} + E_{miss}$

EW Moriond 50's, La Thuile, March 15th 2015

@ 8 TeV & L=20.3 fb⁻¹

Process	σ^{EX} (fb)	σ^B (fb)	(σ^{EX} - σ^{B})/ σ^{B}	S_{20}
$pp \rightarrow e^-\mu^+ + E_{miss}$	13.03	11.98	0.0876	1.301
$pp \rightarrow e^-e^+ + E_{miss}$	62.74	59.72	0.0506	1.7051
$pp \rightarrow \mu^- \mu^+ + E_{miss}$	81.691	77.49	0.0542	2.0786

@ 14 TeV & L=100 fb⁻¹

Process	σ^{EX} (fb)	σ^B (fb)	(σ^{EX} - σ^{B})/ σ^{B}	S_{100}
$pp \rightarrow e^-\mu^+ + E_{miss}$	1.253	0.459	1.7	7.093
$pp \rightarrow e^-e^+ + E_{miss}$	44.45	38.65	0.150	8.699
$pp \to \mu^- \mu^+ + E_{miss}$	65.27	56.86	0.148	10.409

From 8 TeV run, one puts the lower bound M_{S} > 780 GeV.

Conclusion

This calss of models gives

• The neutrino mass and mixing data for normal and inverted hierarhy without beeing in conflict with Exp. constraints such as LFV processess.

• Right amount of the relic density without being in conflcit with detection experiemetns.

• The Higgs mass at 125 GeV while a strong first order phase transition is easily obtained.

• a possible enhancement on the Higgs decay channel $h \rightarrow \gamma \gamma$ while $h \rightarrow \gamma Z$ remains almost unchanged.

• Possibly tested signals at both the ILC & LHC.

Thank you for your attention