Radiative neutrino masses and dark matter

Michael Klasen, David R. Lamprea* and Carlos E. Yaguna

Institut für Theoretische Physik, Universität Münster, Germany.

Moriond (YSF), La Thuile, March 2015
The need for BSM

- Gravitation
- Dark energy
- Dark matter
- Neutrino masses
- ...
The need for BSM

- Gravitation
- Dark energy
- Dark matter
- Neutrino masses
- ...
The least-dimensional term that can generate Majorana neutrino masses after EWSB is the unique $d = 5$ Weinberg operator

$$\delta \mathcal{L} = \frac{1}{2} \frac{K_{\alpha \beta}}{\Lambda} (\bar{\mathcal{L}}_\alpha \tilde{\mathcal{H}}^*) (\tilde{\mathcal{H}}^\dagger L_\beta)$$
Neutrino masses

The least-dimensional term that can generate Majorana neutrino masses after EWSB is the unique $d = 5$ Weinberg operator

$$\delta \mathcal{L} = \frac{1}{2} \frac{K_{\alpha \beta}}{\Lambda} (\bar{L}_\alpha \tilde{H}^*)(\tilde{H}^\dagger L_\beta)$$

- Tree-level realizations \rightarrow seesaw models

▶ Tree-level realizations \rightarrow seesaw models
Neutrino masses

The least-dimensional term that can generate Majorana neutrino masses after EWSB is the unique $d = 5$ Weinberg operator

$$\delta\mathcal{L} = \frac{1}{2} \frac{K_{\alpha\beta}}{\Lambda} (\bar{L}_\alpha \tilde{H}^*)(\tilde{H}^\dagger L_\beta)$$

- Tree-level realizations \rightarrow seesaw models

- Loop realizations \rightarrow radiative seesaw models
The least-dimensional term that can generate Majorana neutrino masses after EWSB is the unique $d = 5$ Weinberg operator

$$\delta \mathcal{L} = \frac{1}{2} \frac{K_{\alpha \beta}}{\Lambda} (\bar{L}_\alpha \tilde{H}^*)(\tilde{H}^\dagger L_\beta)$$

- **Tree-level realizations** → seesaw models

- **Loop realizations** → radiative seesaw models
 - 1-loop realizations

1Classified by Bonnet et al., JHEP **1207**, 153 (2012).
The model

Particle content

\[D = \begin{pmatrix} \psi \\ E \end{pmatrix} \sim (2, -\frac{1}{2}, -), \quad S \sim (1, 0, -), \quad \phi \sim (1, 0, -). \]
The model

Particle content

\[D = \begin{pmatrix} \psi \\ E \end{pmatrix} \sim (2, -\frac{1}{2}, -), \quad S \sim (1, 0, -), \quad \phi \sim (1, 0, -). \]

Lagrangian

\[\mathcal{L} \supset \alpha \bar{\mathcal{D}} L \phi + \beta \bar{\mathcal{D}}^c \tilde{H} S - m_D \bar{D}D - \frac{1}{2} m_S \bar{S}^c S + \ldots \]
The model

Particle content

\[D = \left(\begin{array}{c} \psi \\ E \end{array} \right) \sim (2, -\frac{1}{2}, -), \quad S \sim (1, 0, -), \quad \phi \sim (1, 0, -). \]

Lagrangian

\[\mathcal{L} \supset \alpha \bar{D}L\phi + \beta \bar{D}^c \bar{H}S - m_D \bar{D}D - \frac{1}{2} m_S \bar{S}^c S + \ldots \]

After mixing

- Three Majorana fermions \(\chi_i \) from \(\psi, S \)
- One charged fermion \(E^{\pm} \)
Neutrino mass generation

\[\mathcal{L} \supset \alpha \bar{\psi} \nu \phi + \beta \bar{\psi}^c h S + \frac{1}{2} m_S \bar{S}^c S \]
Dark matter
Dark matter and LFV
Dark matter and LFV
Conclusions

- Minimal viable models for neutrino masses and dark matter are an interesting phenomenological possibility...

- ...because of strong phenomenological constraints:
 - Neutrino masses and mixing angles
 - Dark matter constraints
 - Lepton flavor violation processes
 - Collider constraints
Thank you for your attention.