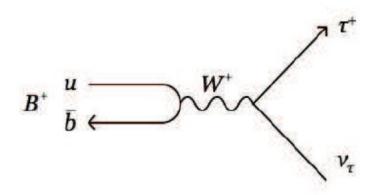
Lattice Inputs to Flavor Physics

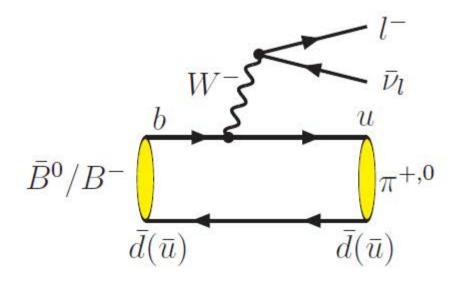
Michele Della Morte CP³-Origins, Denmark and IFIC/CSIC/UV, Spain


> Rencontres de Moriond March 14th - 21st, 2015

- Flavour Lattice Averaging Group (FLAG)
 Scope and review as of end of 2013
- $\mathcal{R}(D^{(*)})$ status and perspective for lattice
- QED corrections to hadronic processes Spectrum [BMW, 1406.4088] Leptonic decays [Carrasco et al., 1502.00257]
- $K \rightarrow \pi\pi$ and perspective for hadronic decays on the lattice [RBC-UKQCD, 1502.00263] and [Hansen and Sharpe, Briceno and Davoudi, 2012]

Several hadronic processes depend on hadronic contributions. E.g.

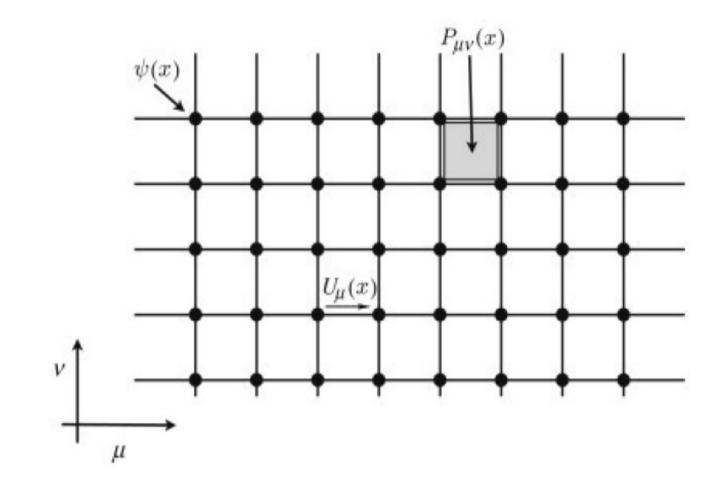
(Charged) Decay constants


 $\langle 0|\overline{u}_f \gamma_\mu \gamma_5 d_{f'}|P(p)\rangle = F_P p_\mu$ are the hadronic parameters entering leptonic decays of pseudoscalar mesons

$$\Gamma(B \to \ell \overline{\nu}_{\ell}) = \frac{G_F^2}{8\pi} |V_{ub}|^2 F_B^2 \left(\frac{m_\ell}{m_B}\right)^2 m_B^3 \left(1 - \frac{m_\ell^2}{m_B^2}\right)$$

Form factors

Parameterizing semileptonic decay. Simplest: $B \rightarrow \pi \ell \nu$

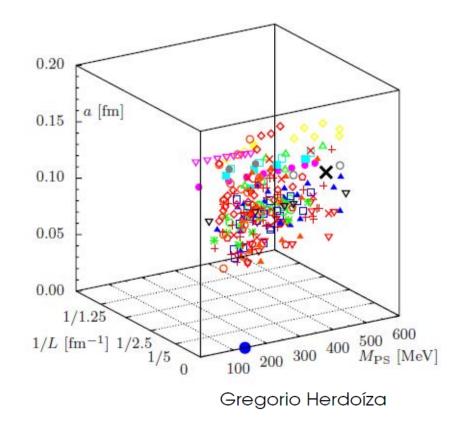


Ignoring the lepton mass:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} p_\pi^3 |V_{ub}|^2 |f_+(q^2)|^2$$

The hadronic matrix element is from a quark bilinear

$$\langle \pi(p_{\pi})|V^{\mu}|B(p_{B})
angle = f_{+}(q^{2})(p_{\pi}+p_{B}-q\Delta_{m^{2}})^{\mu}+f_{0}(q^{2})q^{\mu}$$
 with $\Delta_{m^{2}}=(m_{B}^{2}-m_{\pi}^{2})/q^{2}$



$$S_{\rm W}^{\rm QCD} = \overline{\psi}_x D_{xy}^{\rm W}(U) \psi_y + \beta \sum_{\Box} \left(1 - \frac{1}{N} {\rm Re \ Tr \ } U_{\mu\nu}(x) \right)$$

Lattice can provide first principle – systematically improvable determinations of such parameters. However they are not free from approximations / systematics

- Number of dynamical flavours
- Unphysical quark masses (and no isospin breaking)
- Finite lattice spacing
 - Finite volume
- Renormalization

FLAG's goal is to walk users of lattice results through systematics and the way they have been addressed

Review

Review of lattice results concerning low-energy particle physics

FLAG Working Group

S. Aoki¹, Y. Aoki^{2,3}, C. Bernard⁴, T. Blum^{3,5}, G. Colangelo^{6,a}, M. Della Morte^{7,8}, S. Dürr^{9,10}, A. X. El-Khadra¹¹, H. Fukaya¹², R. Horsley¹³, A. Jüttner¹⁴, T. Kaneko¹⁵, J. Laiho^{16,28}, L. Lellouch^{17,18}, H. Leutwyler⁶, V. Lubicz^{19,20}, E. Lunghi²¹, S. Necco⁶, T. Onogi¹², C. Pena²², C. T. Sachrajda¹⁴, S. R. Sharpe²³, S. Simula²⁰, R. Sommer²⁴, R. S. Van de Water²⁵, A. Vladikas²⁶, U. Wenger⁶, H. Wittig²⁷

¹ Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

² Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602, Japan

³ RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

⁴ Department of Physics, Washington University, Saint Louis, MO 63130, USA

⁵ Physics Department, University of Connecticut, Storrs, CT 06269-3046, USA

⁶ Albert Einstein Center for Fundamental Physics, Institut für theoretische Physik, Universität Bern, Sidlerstr. 5, 3012 Bern, Switzerland

⁷ CP3-Origins & Danish IAS, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

⁸ IFIC (CSIC), c/ Catedrático José Beltrán, 2, 46980 Paterna, Spain

⁹ Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany

¹⁰ Jülich Supercomputing Center, Forschungszentrum Jülich, 52425 Jülich, Germany

¹¹ Department of Physics, University of Illinois, Urbana, IL 61801, USA

¹² Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

¹³ School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, UK

¹⁴ School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

¹⁵ High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan

¹⁶ SUPA, Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK

¹⁷ Aix-Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France

¹⁸ Université de Toulon, CNRS, CPT, UMR 7332, 83957 La Garde, France

¹⁹ Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy

²⁰ INFN, Sezione di Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy

²¹ Physics Department, Indiana University, Bloomington, IN 47405, USA

²² Instituto de Física Teórica UAM/CSIC and Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

²³ Physics Department, University of Washington, Seattle, WA 98195-1560, USA

²⁴ NIC @ DESY, Platanenallee 6, 15738 Zeuthen, Germany

²⁵ Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

²⁶ INFN, Sezione di Tor Vergata, c/o Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy

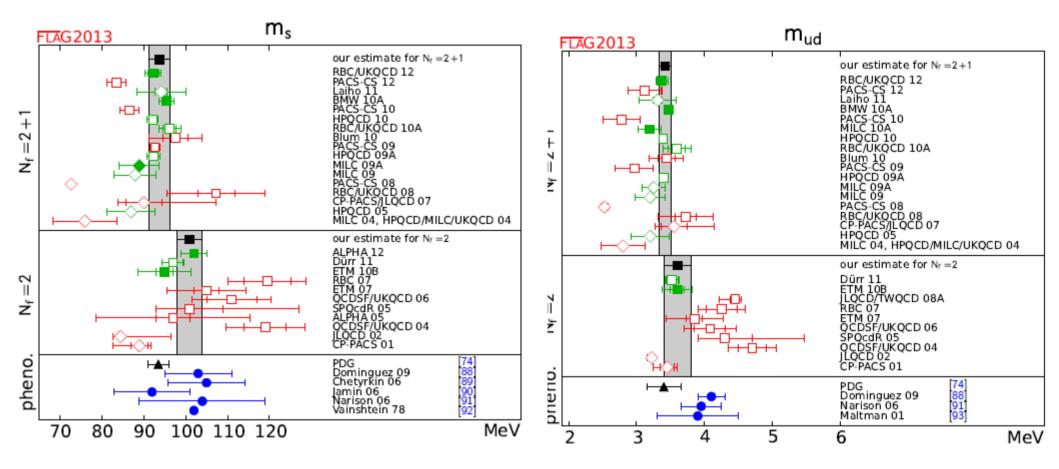
²⁷ PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institute Mainz, University of Mainz, 55099 Mainz, Germany

²⁸ Present address: Department of Physics, Syracuse University, Syracuse, New York, USA

Criteria, as of now

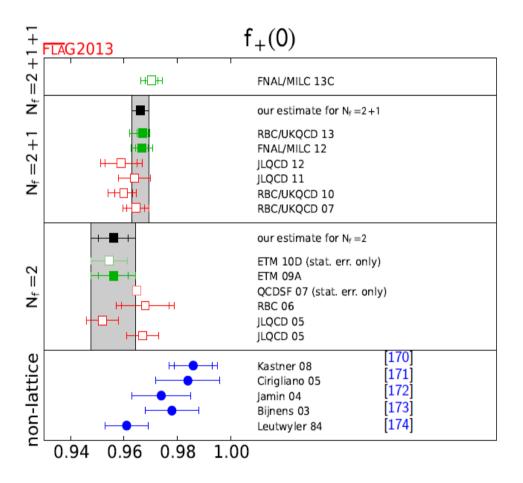
- Chiral extrapolation:
 - ★ $M_{\pi,\min} < 200 \text{ MeV}$
 - \circ 200 MeV $\leq M_{\pi,\min} \leq 400$ MeV
 - 400 MeV < $M_{\pi,\min}$
- Continuum extrapolation:
 - \star 3 or more lattice spacings, at least 2 points below 0.1 fm
 - $\circ~~2$ or more lattice spacings, at least 1 point below 0.1 fm
 - otherwise
- Finite-volume effects:
 - ★ $M_{\pi,\min}L > 4$ or at least 3 volumes
 - $M_{\pi,\min}L > 3$ and at least 2 volumes
 - otherwise
- Renormalization (where applicable):
 - \star non-perturbative
 - 1-loop perturbation theory or higher with a reasonable estimate of truncation errors
 - otherwise

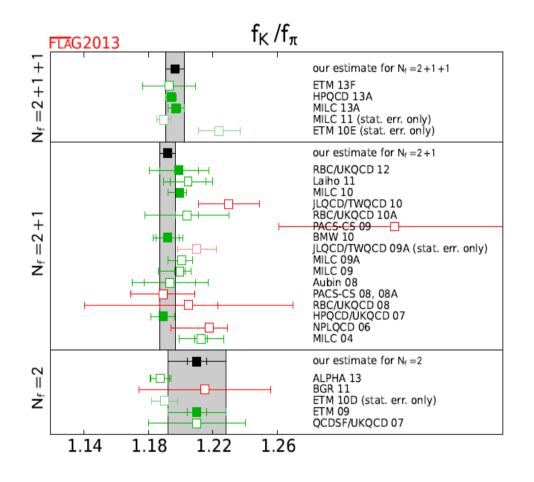
For heavy-light quantities, in order to deal with the different approaches, we used data-driven criteria. We introduced

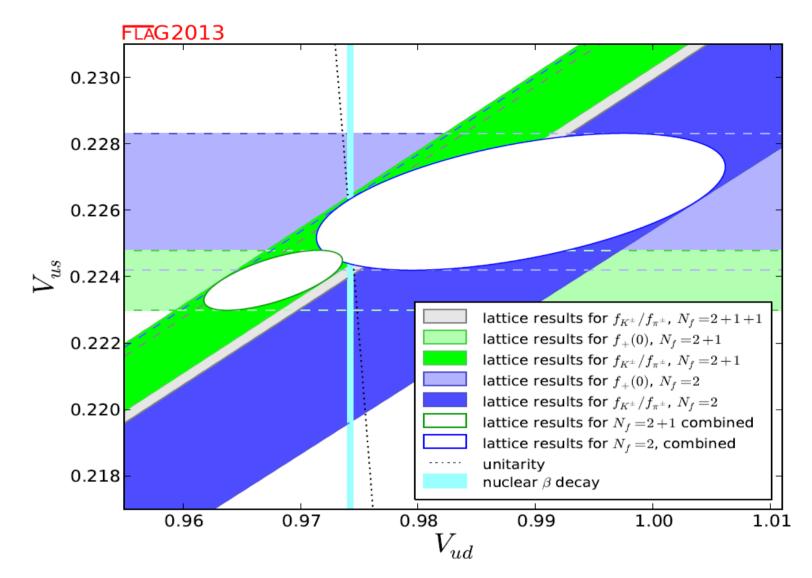

$$D(a) = \frac{Q(a) - Q(0)}{Q(a)}$$
for $a = a_{min}$
$$\delta(a) = \frac{Q(a) - Q(0)}{\sigma_Q}$$

and then used

★ (i) Three or more lattice spacings, and
(ii) a²_{max}/a²_{min} ≥ 2, and
(iii) D(a_{min}) ≤ 2%, and
(iv) δ(a_{min}) ≤ 1
• (i) Two or more lattice spacings, and
(ii) a²_{max}/a²_{min} ≥ 1.4, and
(iii) D(a_{min}) ≤ 10%, and
(iv) δ(a_{min}) ≤ 2
• otherwise

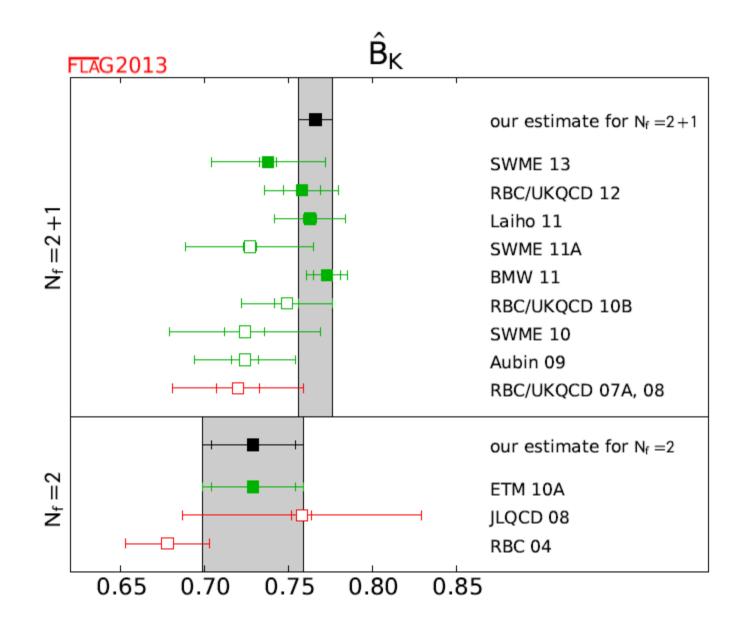

Only results with no red symbols enter the final estimates

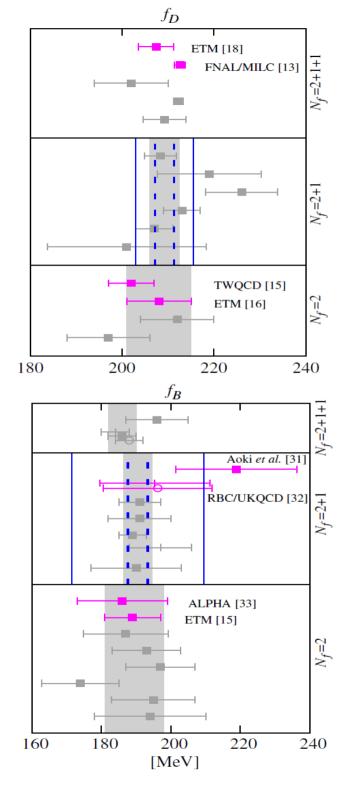

Light quark masses

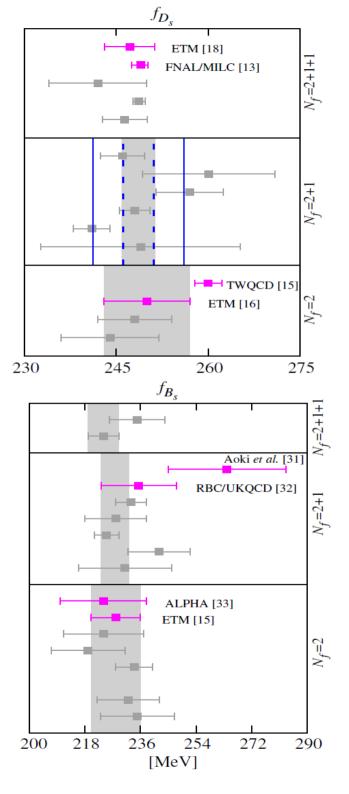


 'Estimates' differ from 'averages'. For N_f=2+1 an error coming from quenching of the charm has been included

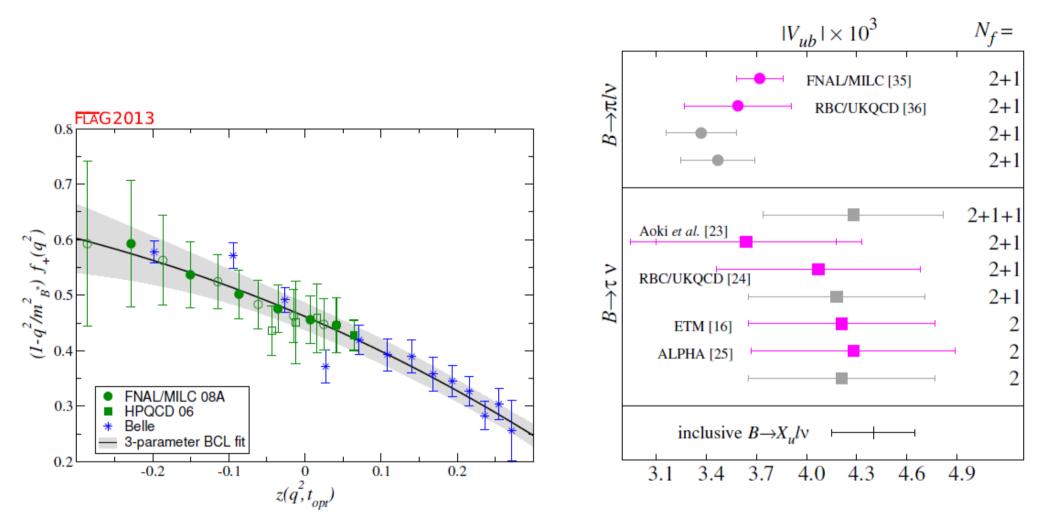
Leptonic and semileptonic Kaon and pion decays



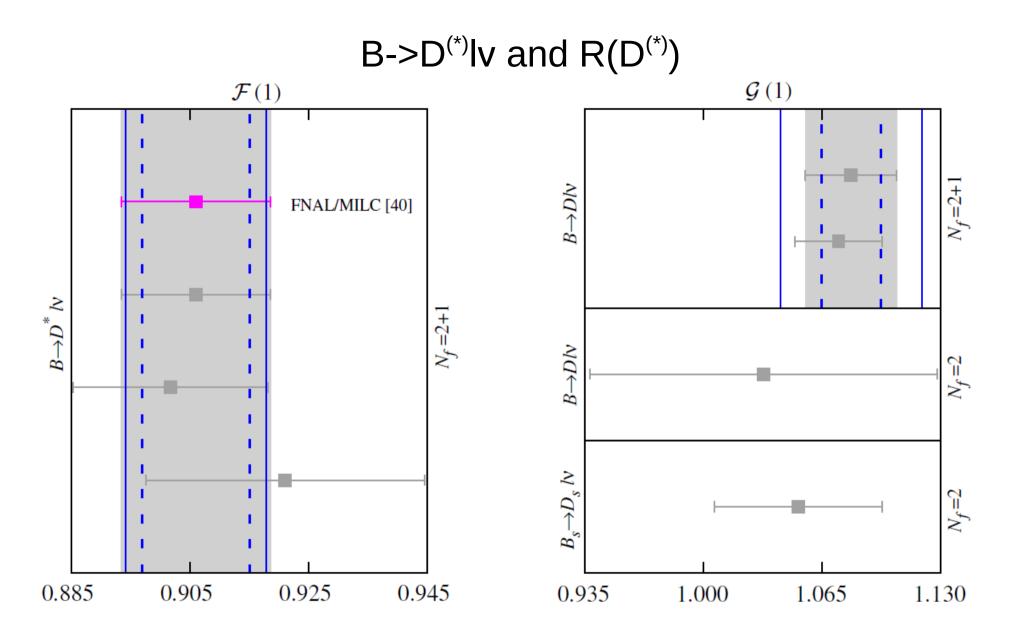


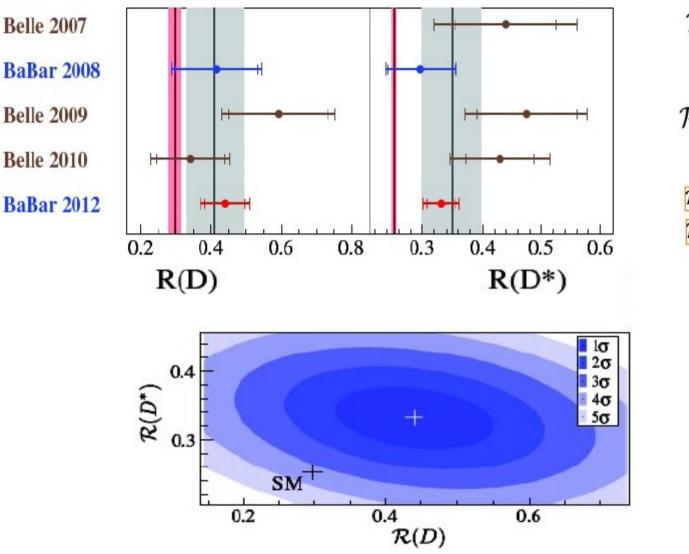

 $|V_u|^2=0.987(10)$. The consistency with leptonic and semi-leptonic determinations of $|V_{us}|$ is a check of the equality of the Fermi constant describing interactions among leptons and the one describing interactions among leptons and quarks (may not be in BSM).

The hadronic parameter in $\boldsymbol{\epsilon}_{_{\! K}}$ at LO in the EWH



- For light flavors, lattice computations are quite precise, mature and advanced, to the point that isospin breaking and QED effects have to be included soon (see later).
- "Heavy quantities" included in FLAG-II are less advanced. Fewer computations (sometimes one only) passing the criteria.
- Results have been updated in [C. Bouchard, LAT14, arXiv:1501.03204], where errors are compared to the expected experimental improvements from Belle II, BES III and LHCb (e.g. 50 ab⁻¹ by Belle II by 2020). The comparison shows once again that what is easy for lattice is difficult for experiment and vice-versa.

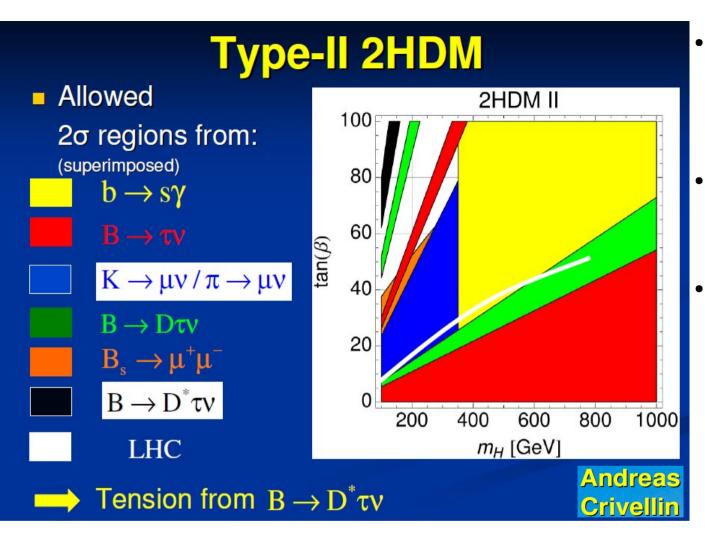



B-> π Iv form factors

- Few lattice results, in the region complementary to experiments
- CKM matrix element fitted to normalize exp data

• PS -> V form factors are usually computed at zero recoil. In that limit only one form factor is relevant (others are helicity suppressed).

$$\mathcal{R}(D) \equiv \frac{\mathcal{B}(B \to D\tau^- \bar{\nu}_\tau)}{\mathcal{B}(B \to Dl^- \bar{\nu}_l)}$$


$$\mathcal{R}(D^*) \equiv \frac{\mathcal{B}(B \to D^* \tau^- \bar{\nu}_\tau)}{\mathcal{B}(B \to D^* l^- \bar{\nu}_l)}$$

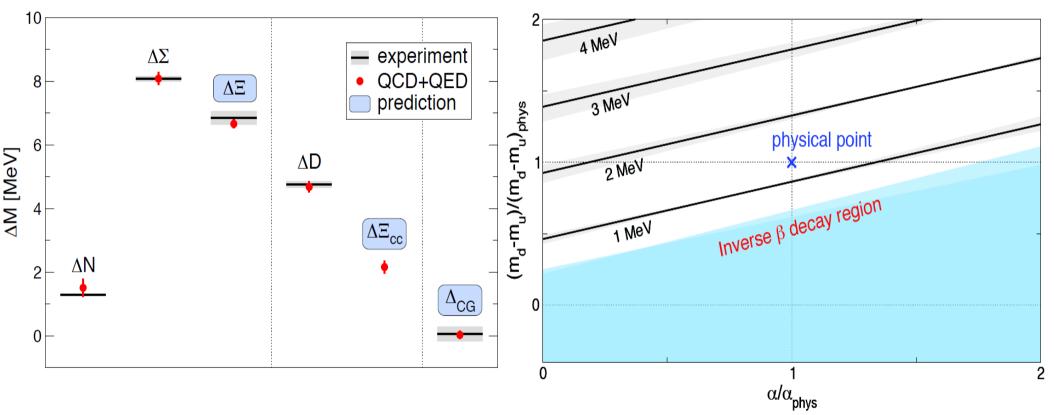
$$\mathcal{R}(D^0) = \mathcal{R}(D^+) = \mathcal{R}(D)$$

 $\mathcal{R}(D^{*0}) = \mathcal{R}(D^{*+}) = \mathcal{R}(D^*)$

• $\mathcal{R}^{0}(D)_{SM} = 0.324(22)$, $\mathcal{R}^{0}(D^{*})_{SM} = 0.250(3)$ from combination of phenomenological inputs, HQET and sum-rules [Biancofiore, Colangelo and De Fazio, 2013].

• Only one result, $\mathcal{R}(D)_{SM} = 0.316(12)(7)$ from lattice [FNAL/MILC, Bailey et al., 2012].

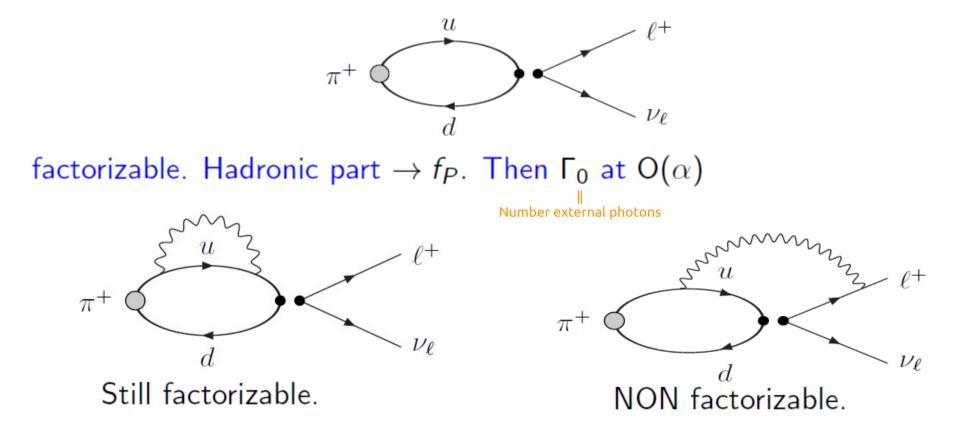
Values of form factors at zero recoil cancel out in the ratios.

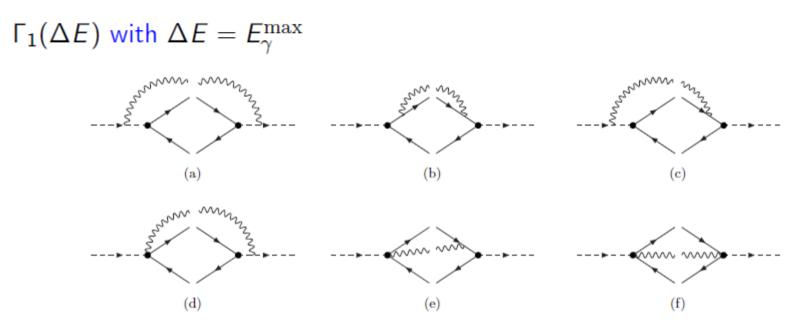

- Natural idea would be new contributions from charged scalar exchanges.
- However, those would enhance the leptonic channel as well.
- It is difficult to accommodate the discrepancy in 2HDM without FCNC at tree level [Celis, Crivellin]. Otherwise, some leptoquark models can explain it [Tanaka, Watanabe, 2013].

In general, in BSM theories other form factors (S, PS, T) may appear [Nierste, Trine, Westhoff '08, Kamenik, Mescia '08, Kamenik, Fajfer, Nisandzic '12, Biancofiore ...].

<u>Clear opportunities for lattice</u>

QED effects are becoming relevant for *light* quantities.


QCD + QED direct simulations [Borsanyi et al., BMW group, 2014]


- Large volume 1+1+1+1 simulations of QCD + QED (at unphysical e due to noise to signal problem). 300 times more expensive than $N_f=2$ QCD. Pilot and benchmark computation concerning the setup.
- Separation of effects using $\Delta M_{r}^{QED} = 0$

QED corrections to hadronic processes

Let's consider the leptonic decay at $O(\alpha)$ in the WEH [N. Carrasco et al., 1502.00257] Pure QCD

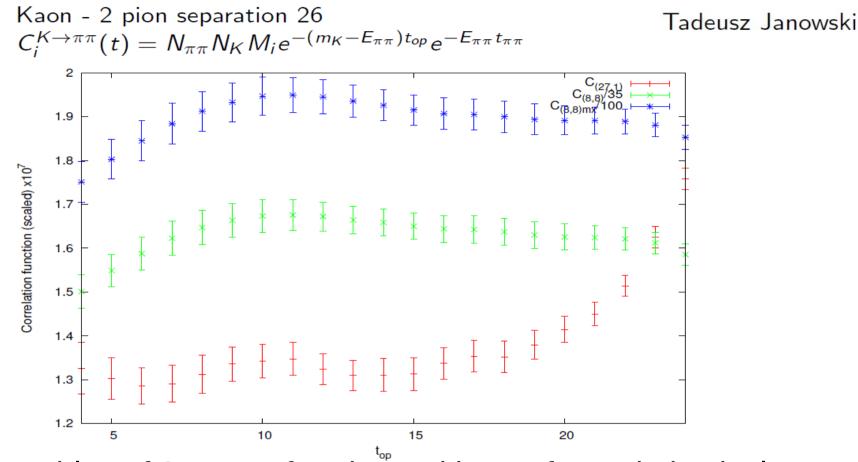
Also, Γ_0 is infrared divergent, one needs to consider (one) real photon emission as well. No such problems for spectrum. \Rightarrow Not much sense of QED corrections to a decay constant ...

The combination $\Gamma_0 + \Gamma_1(\Delta E)$ is free from IR divergencies at $O(\alpha)$. One can split it as

$$\Gamma(\Delta) = \left\{ \Gamma_0 - \Gamma_0^{pt} \right\} + \left\{ \Gamma_0^{pt} + \Gamma_1(\Delta) \right\} = \underbrace{\lim_{L \to \infty} \left\{ \Gamma_0(L) - \Gamma_0^{pt}(L) \right\}}_{L \to \infty} + \underbrace{\left\{ \Gamma_0^{pt} + \Gamma_1(\Delta) \right\}}_{\left\{ \Gamma_0^{pt} + \Gamma_1(\Delta) \right\}}$$

- *pt*=pointlike approximation (perturbative). OK for soft photons, they can't resolve the hadron structure. For K and π, ΔE ≃ 20 MeV. Currently main limitation of the approach.
- Both terms are IR-safe and have a $L \to \infty$ limit.
- Γ₀(L) is computed on the lattice. It requires rather involved Euclidean correlators, with lepton propagators in the numerical computation of the non-factorizable contributions.

Hadronic decays. A_2 amplitude of $K \rightarrow \pi\pi$ [many years of work by RBC/UKQCD, arXiv:1502.00263]


$$\begin{array}{ll} K \to (\pi\pi)_{I=2} & \qquad \qquad \frac{\operatorname{Re}(A_0)}{\operatorname{Re}(A_2)} \approx 22.5 \\ K \to (\pi\pi)_{I=0} & \qquad \qquad \frac{\operatorname{Re}(A_0)}{\operatorname{Re}(A_2)} \approx 22.5 \end{array}$$

This $\Delta I = 1/2$ rule is unexplained and must be of non-perturbative nature.

$$A_{2/0} = F\langle (\pi\pi)_{I=2/0} \mid H_W \mid K \rangle$$

- 3 (four-fermion) operators in the Weak Eff. Hamiltonian contribute.
- F is a factor relating the finite volume matrix elements to the infinite volume ones. It depends on the $\pi\pi$ phase shift [Lellouch and Lüscher, '01]
- Kinematics should be matched, i.e. $E_{\pi\pi} = m_K$. That is achieved using antiperiodic boundary conditions for the d, s.t. $p = \pm \pi/L$

$64^3 \text{ K} \rightarrow \pi\pi$ 3-point correlation functions

• 2 ensembles of 2+1 DW fermions with L~5 fm and physical m.

• NP renormalization in RI-SMOM scheme. Matching to $\overline{\text{MS}}$ at 1-loop. Currently dominating error budget.

 $Re(A_2) = 1.50(4)_{stat}(14)_{syst} \times 10^{-8} \text{ GeV}; \quad Im(A_2) = -6.99(20)_{stat}(84)_{syst} \times 10^{-13} \text{ GeV}$ experimental value $1.570(53) \times 10^{-8} \text{ GeV}$ from neutral kaon decays ²⁴

Hadronic decays. Multiple-channel generalization of the LL approach [Sharpe and Hansen, 2012, Briceno and Davoudi, 2012]

- The LL method, derived in Minkowski pace, first relates the finite volume dependence of the energy levels of two-particle states (accessible in Euclidean) to the (∞-L) S-matrix and phase shifts (not accessible, due to Maiani-Testa no-go theorem, '90).
- In a second step a new state (e.g. K) is introduced with a perturbative interaction term H_W with ππ. Matching the kinematic and considering degenerate PT, the finite L correction to the energy levels is related to the ∞-L scattering amplitude (i.e. the finite and ∞ L, matrix elements of ⟨K|H_W|ππ⟩ are related).
- The explicit generalization includes several two-particle states $(\pi \pi \text{ and } \bar{K}K)$.
- Now the S-matrix does not only include phase shifts and different kinematics are needed to determine the parameters. Also, one gets a system of equations relating finite and infinite volumes matrix elements.
- This is a first step towards hadronic decays of e.g. D-mesons.

Conclusions

- •I have given an incomplete review of flavor physics on the lattice.
- -I did not cover tensions as those still present in $V_{_{ub}}$ and $V_{_{cb}}$ (excl. vs incl.).
- •If the keywords are precise and rare, we are getting there. Approaches to include sub-leading systematics being developed (QED, multi-hadron channels).
- •Belle II, LHCb (run II) and BES-III put pressure on us.