# Predicting Large-Scale Lyman- $\alpha$ Forest Statistics from the Dark Matter Density Field



Lyman- $\alpha$  Mass Association Scheme

Peirani, Weinberg, Colombi, Blaizot, Dubois & Pichon - ApJ 2014, 427, 2625





- 1. Introduction
- 2. LyMAS scheme
- 3. Application to large N-body simulations
- 4. Ongoing works
- 5. Next

# Ly $\alpha$ -forest clustering



Light from distant quasars is partially absorbed as it passes through clouds of hydrogen gas







# Construction of Mock Ly- $\alpha$ spectra for large surveys



Mock Ly-α : log-normal density field + FGPA Log-normal density field DM density field from N-body simulation



# Construction of Mock Ly- $\alpha$ spectra for large surveys

Mock Ly- $\alpha$  : log-normal density field + FGPA

Log-normal density field DM density field from N-body simulation



#### **Problems of this approach:**

- Model Gpc<sup>3</sup> volume while retaining good resolution on the gas Jeans scale
- The choice of the smoothing scale for DM produces ambiguity in the predictions
- The FGPA assumes a deterministic relation between  $\rho$  and  $\textit{F}=\textit{e}^{\text{-}\tau}$

 $F = e^{-A\left(\frac{\rho}{\overline{\rho}}\right)^{2-0.6(\gamma-1)}}$ 

 $\gamma$ -1 : index of the gas temperature-density relation

A : normalization constant



1. Introduction



- 2. LyMAS scheme
- 3. Application to large N-body simulations
- 4. Ongoing works
- 5. Next

#### LyMAS: Ly $\alpha$ Mass Association Scheme



#### MareNostrum (2006)

#### Horizon-MareNsotrum simulation

(PI J. Devriendt, R. Teyssier, G. Yepes)

- L<sub>box</sub>=50 Mpc/h
- 1024<sup>3</sup> DM particles M<sub>DM,res</sub>=8x10<sup>6</sup> M<sub>sun</sub>
- Finest cell resolution dx=1 kpc (-1 level of refin.)
- Gas cooling & UV background heating
- Low efficiency star formation
- Stellar winds + SNII + SNIa
- O, Fe, C, N, Si, Mg, H metals wl solar composition
- AGN feedback radio/quasar

#### Outputs

- Simulation outputs
- Lightcones (1°x1°) performed on-the-fly
  - Dark Matter (position, velocity)
  - Gas (position, density, velocity, pressure, chemistry)
  - Stars (position, mass, velocity, age, chemistry)
  - Black holes (position, mass, velocity, accretion rate)
- z=1.5 using 1.3 Mhours using 2048 cores

![](_page_7_Picture_19.jpeg)

# Horizon-AGN – Horizon-noAGN (2014)

#### Horizon-AGN (Dubois)

![](_page_8_Picture_2.jpeg)

#### Horizon-noAGN (Peirani)

![](_page_8_Picture_4.jpeg)

# Gas density Gas temperature

**Gas metallicity** 

- L<sub>box</sub>=100 Mpc/h
- 1024<sup>3</sup> DM particles M<sub>DM,res</sub>=8x10<sup>7</sup> M<sub>sun</sub>
- Finest cell resolution dx=1 kpc (-1 level of refin.)
- Gas cooling & UV background heating

- Low efficiency star formation
- Stellar winds + SNII + SNIa
- O, Fe, C, N, Si, Mg, H
- AGN feedback radio/quasar

# Extracting Ly $\alpha$ spectra

For a given los, the opacity at observer-frame frequency  $v_{obs}$ :

$$\tau(v_{obs}) = \sum_{cells} n_{HI} \sigma(v_{obs}) dl$$

 $n_{HI}$  : numerical density of neutral H atoms in each cell dl : physical cell size

 $\sigma(v_{obs})$  : the cross section of Hydrogen to Lya photons  $\sigma(v_{obs}) = f_{12} \frac{\pi e^2}{m_e c} \times \frac{H(a, x)}{\sqrt{\pi} \Delta v_D}$ 

$$\Delta v_D = (2k_B T / m_H)^{1/2} \times v_\alpha / c$$

$$a = \Delta v_L / (2\Delta v_D) \qquad \Delta v_L \approx 9.910^7 s^{-1}$$

$$H(a, x) = \frac{a}{\pi} \int_{-1}^{1} \frac{e^{-y^2}}{a^2 + (x - y)^2} dy \quad : \text{ the Hjerting function}$$

![](_page_9_Picture_6.jpeg)

Grid of density transmitted Flux (1024<sup>3</sup> pixels)

![](_page_9_Figure_8.jpeg)

### Extracting Ly $\alpha$ spectra

![](_page_10_Figure_1.jpeg)

1-d smoothed at the BOSS resolution

![](_page_10_Figure_2.jpeg)

### **Extracting Dark matter skewers**

**1.** Adaptive interpolation of the DM particle distribution on a high resolution grid.

- 2. Smoothing with a Gaussian window in Fourier space
- 3. Extraction of the skewers from a grid of lines of sight aligned along the z axis

![](_page_11_Picture_4.jpeg)

Grid of density fied  $1+\delta$  (1024<sup>3</sup> pixels)

![](_page_11_Figure_6.jpeg)

![](_page_11_Figure_7.jpeg)

#### **Extracting Dark matter skewers**

PDF

 $\Delta_s = log(1 + \delta_s)$ 

Redshift space

 $\sigma$ =0.3 h<sup>-1</sup> Mpc

 $\sigma$ =0.5 h<sup>-1</sup> Mpc

 $\sigma$ ~0.7 h<sup>-1</sup> Mpc

 $\sigma$ =1.0 h<sup>-1</sup> Mpc

![](_page_12_Figure_1.jpeg)

3-d smoothed at different scales

# **Predicting conditional Flux distributions**

![](_page_13_Figure_1.jpeg)

### **Predicting conditional Flux distributions**

Optical d  

$$P(F_{s}|1+\delta_{s})$$
Ex:  
 $\delta_{s}=-0.5$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.5$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.5$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 
 $0.0$ 

ptical depth: 
$$au_s = -\ln F_s$$
  
 $P( au_s | 1 + \delta_s)$ 

![](_page_14_Figure_3.jpeg)

# **Probabilistic mapping**

![](_page_15_Figure_1.jpeg)

# **Probabilistic mapping**

![](_page_16_Figure_1.jpeg)

# **Probabilistic mapping**

![](_page_17_Figure_1.jpeg)

**1. Construction of "percentile spectra":**  $Per(F_s, \delta_s) = \int_0^{F_s} P(F_s' | \delta_s) dF_s'$ 

![](_page_18_Figure_2.jpeg)

2. Construction of "Gaussianized" percentile spectra:

![](_page_19_Figure_2.jpeg)

Cumulative PDF of Gaussian function

![](_page_19_Figure_4.jpeg)

3. Derive the 1d power spectrum of the "Gaussianized percentile spectra":

![](_page_20_Figure_2.jpeg)

- 1. For each DM skewer, create a realization of G.Per(x) of the 1-d gaussian field
- 2. Get a realization of Per(F) by "degaussianization"

3. Get the flux field by drawing the flux at each pixel from the location of in  $P(F_s|1+\delta_s)$  implied by the value of Per(F)

![](_page_21_Figure_4.jpeg)

- 4. One iteration:
  - Pk rescaling: multiply each Fourier components by the ratio  $[P_F(k)/P_{PS}(k)]^2$
  - Flux rescaling

4. Iteration on F<sub>s</sub>:

![](_page_22_Figure_2.jpeg)

# Mapping

![](_page_23_Figure_1.jpeg)

**Deterministic** mapping

![](_page_23_Figure_3.jpeg)

LyMAS probabilistics

![](_page_23_Picture_5.jpeg)

LyMAS coherent

 $1d P_k$ PDF(F<sub>s</sub>) ξ**(x)** 

### **Correlation function**

![](_page_24_Figure_1.jpeg)

![](_page_25_Picture_0.jpeg)

- 1. Introduction
- 2. LyMAS scheme

![](_page_25_Picture_3.jpeg)

- 3. Application to large N-body simulations
- 4. Ongoing works
- 5. Next

#### Gadget2 (Springel 2005)

#### 2013:

300 Mpc/h - 1024<sup>3</sup> particles WMAP1 -  $\sigma_{DM}$ =0.3 Mpc/h 1.0 Gpc/h - 1024<sup>3</sup> particles WMAP1 -  $\sigma_{DM}$ =1.0 Mpc/h (z=2.5)

#### 2014:

300 Mpc/h - 1024<sup>3</sup> - 2048<sup>3</sup> parts. WMAP7 -  $\sigma_{DM}$ =0.3 Mpc/h 1.0 Gpc/h - 1024<sup>3</sup> - 2048<sup>3</sup> parts. WMAP7 -  $\sigma_{DM}$ =0.5 ou 1.0 Mpc/h

(z=3.0, 2.5, 2.1)

![](_page_26_Picture_7.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_28_Figure_1.jpeg)

#### **Correlation function:**

![](_page_29_Figure_2.jpeg)

![](_page_30_Figure_1.jpeg)

![](_page_31_Picture_0.jpeg)

- 1. Introduction
- 2. LyMAS scheme
- 3. Application to large N-body simulations

![](_page_31_Picture_4.jpeg)

- 4. Ongoing works
- 5. Next

### Cross correlation quasar Ly $\alpha$ in BOSS survey

![](_page_32_Figure_1.jpeg)

"Modelling the Lya forest cross correlation with LyMAS" Lochhass, Weinberg, Peirani et al., to be submitted

![](_page_33_Picture_0.jpeg)

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_33_Figure_3.jpeg)

"The effect of AGN feedback on the Lya forest clustering" Peirani et al., in prep

# MAMMOTH + LyMAS

![](_page_34_Figure_1.jpeg)

200

Cai, Fan, Bian, Peirani, Frye, McGreer, White & Ho, to be submitted

![](_page_35_Picture_0.jpeg)

- 1. Introduction
- 2. LyMAS scheme
- 3. Application to large N-body simulations
- 4. Ongoing works

![](_page_35_Picture_5.jpeg)

5. Next

# **Numerical modeling improvements**

- 1. Algorithms
  - QSO continuum
  - Redshift evolution
  - noises
  - Non constant spectral resolution
  - Etc...
- 2. Simulations and more realistic catalogs of spectra
  - N-body simulations : ≥ 2 Gpc/h (BAO study)
  - Light cones
  - Hydro simulations (planck, WDM...)
  - Etc...

# Web : www2.iap.fr/users/lymas/lymas.htm

![](_page_37_Picture_1.jpeg)

![](_page_38_Figure_0.jpeg)