Shedding light on Dark Energy : the integrated Sachs-Wolfe effect

Stéphane ILIĆ (IRAP)

with M. Langer & M. Douspis (IAS)

Journées PNCG 2014 25th November 2014

Stéphane Luć (IRAP)

Shedding light on Dark Energy

The Dark Energy mystery

- Standard model : $\Lambda \rightarrow \text{most "economical"}$
- Alternatives :
 - scalar fields
 - modified gravities
 - inhomogeneous models...

The iSW effect in one equation (and two images)

$$\delta T_{\rm iSW} = \frac{2}{c^2} \int_{t_{\rm far}}^{t_{\rm now}} dt \frac{\partial \Phi}{\partial t}$$

Stéphane Luć (IRAP)

Shedding light on Dark Energy

Journées PNCG 2014 3 / 22

Characteristics of the iSW effect

$$\delta T_{\rm iSW} = \frac{2}{c^2} \int_{t_{\rm far}}^{t_{\rm now}} dt \frac{\partial \Phi}{\partial t}$$

Features

- Cumulated effect
- Achromatic
- Impact on CMB anisotropies power spectrum

How to detect it ?

- Need for external data
- Tracers of the gravitational potentials

Which tracers ? How do we proceed ?

Introduction

Cross-correlation with large scale structures

- Impact of individual structures on the CME
 CMB stacking
 Description the iCW impact of a structure
 - Predicting the iSW impact of a structure
- 4 Working with the latest Planck CMB data

Classical approach : CMB-galaxy χ -correlation

Contradictory results

Shortcomings

- Small sky coverage (f_{sky})
- Low redshift depth (z̄)

Ideal survey

- $f_{\text{sky}} > 0.35 \& \bar{z} > 0.8$ for $\geq 4 \sigma$ detection
- Next generation surveys : LSST, Euclid $\rightarrow \sim 5 \sigma$

(Douspis et al., 2008)

A new tracer : the Cosmic Infrared Background (CIB)

$f_{\rm sky} > 0.35$ & $\bar{z} > 0.8$: already at hand !

- Unresolved, dusty, star-forming galaxies
- Available : IRAS, Planck, ...
- Anisotropies
 - \rightarrow structures
 - \rightarrow gravitational potentials
 - \Rightarrow iSW

Realistic modelisation and scenarii

Sources of noise and S/N degradation

- Partial sky coverage
- $CIB \rightarrow CIB + CMB$ resid. + foregrounds resid. + instr. noise
- Two scenarii : optimistic & pessimistic

Realistic S/N (for Planck)

Frequency (GHz)	857	545	353	217
Wavelength (µm)	350	550	850	1380
Ideal case S/N	6.26	6.83	6.98	6.95
Joint S/N	7.12			
Real case 1 (optimistic) (f _{sky} = 0.75)	5.36	5.73	5.39	3.56
Joint S/N	5.88			
Real case 2 (pessimistic) (f _{sky} = 0.15)	2.40	2.56	2.41	1.59
Joint S/N	2.63			

Full results in ILIĆ ET AL., 2011, MNRAS

Challenges of the CIB-CMB cross-correlation

CIB extraction requires :

- Cleaning of dust and cirrus
- Accurate tracers of dust (HI,...)
- Efficient component separation (CMB removal)

Current status

217 GHz

 $\sim 10\%$ recovered to this date (cf. Planck 2013 results. XXX)

Introduction

Cross-correlation with large scale structures

Impact of individual strucutres on the CMB CMB stacking

Predicting the iSW impact of a structure

CMB stacking at superstructure locations

Interrogations

- Such a high signal for such a few number of objects ?
- Is it robust ? Unique to their data ?
- Enough to "bring ΛCDM down" ?

Going further with CMB stacking

In-depth analysis of Granett et al. objects (ILIĆ ET AL., 2013, A&A)

- Full temperature and photometric profiles
 ⇒ Peculiar features
- Large frequency coverage of Planck
 ⇒ Achromatic nature confirmed
- Rescaling analysis
 - \Rightarrow Some discrepancies in the signal scales

But still a strongly significant signal

Going further with CMB stacking

• Pan et al. (2012), *z* < 0.1

 \Rightarrow No signal, expected from its shallowness

- Sutter et al. (2012)
 - \Rightarrow Hints of signal
 - \Rightarrow Compatible with expectations
 - \Rightarrow Lower significance (~ 2.5 σ)

Despite more stat, signal not as significant

Is ΛCDM in danger ? \rightarrow We can't say

No conclusions possible without an exact prediction of the iSW effect from these structures

Stéphane Luć (IRAP)

Shedding light on Dark Energy

Journées PNCG 2014 13 / 22

Introduction

Cross-correlation with large scale structures

Impact of individual strucutres on the CMB CMB stacking

Predicting the iSW impact of a structure

Roadmap

Objectives ?

- Model a single structure and its evolution
- Compute its iSW impact on CMB

Tools ?

- Gravity & photons → General Relativity
- Spherical structure → Lemaître-Tolman-Bondi (LTB) metric

Working hypothesis : compensated structures

Evolution of a LTB void (ILIĆ ET AL., TBS)

Photons crossing a LTB void (ILIĆ ET AL., TBS)

Solving geodesic equations

Photons crossing a LTB void (ILIĆ ET AL., TBS)

Solving geodesic equations

Assessing the CMB contamination (ILIĆ ET AL., TBS)

- Map of the simulated iSW signal
- 10,000 primordial CMB realisations as noise
- Comparison with the data :
 - ~ 1.7 σ from predicted photometry at 4°
 - $\chi^2_{\rm red}$ of whole signal ~ 1

\Rightarrow Compatible with Λ CDM

Introduction

2) Cross-correlation with large scale structures

Impact of individual strucutres on the CME
 CMB stacking

Predicting the iSW impact of a structure

Working with the latest Planck CMB data

Planck iSW Working Group

In Planck Collaboration (INCL. ILIĆ) 2013 RESULTS XIX.

- Combined cross-correlations of galaxy surveys
- Lensing potential map (+ bispectrum)
- CMB stacking

In the 2014/2015 release

- Implementing the latest datasets
- Cosmological constraints
- Use of the CMB polarisation data

CMB polarisation in iSW studies

Why use polarisation $? \rightarrow$ as a **discriminant**

- Primordial CMB T → contaminant
- Primordial CMB T correlated to CMB polarisation ($C_{\ell}^{TE} \neq 0$)
- ISW T signal not correlated to CMB polarisation

Where to use it ?

- Noise reduction in galaxy cross-correlation
- Stacking : help identifying "false iSW signals"

Thank you for your attention !

More on profiles

Stéphane Iuć (IRAP)

Specifying LTB models

- a density profile $\rho_i(r)$ is given at time t_i
- a velocity profile $(R_{,t})_i(r)$ is given at time t_i ,
- the bang time is simultaneous,
- the crunch time is simultaneous,
- the time of maximum expansion is simultaneous,
- the model becomes homogeneous at late times,
- only growing modes are present,
- only decaying modes are present,
- a velocity profile $(R_{,t})(r)$ is given at late times,
- a time-scaled density profile $t^3 \rho(M)$ is given at late times.

iSW approximation

$$(\frac{\delta T}{T})_{\rm iSW} = 2 \int \mathrm{d}t \frac{\dot{\Phi}}{c^2}$$

•
$$\Phi \sim 4\pi G \bar{\rho}_m L^2 \delta$$

• $\dot{\Phi} \sim \Phi/\tau, \Lambda$ -dom $\Rightarrow \tau \sim H^{-1}$
• $\int dt \sim L/c$
 $(\frac{\delta T}{T})_{iSW} \sim 8\pi G L^3 c^{-3} H \bar{\rho}_m \delta$

•
$$\bar{\rho}_m = \Omega_m \rho_c = \Omega_m (3H_0^2/8\pi G)$$

• $H = H_0 \sqrt{\Omega_{\text{Tot}}}$
• $R_H = c/H_0$
 $(\frac{\delta T}{T})_{\text{iSW}} \sim 3\left(\frac{L}{R_H}\right)^3 \Omega_m \sqrt{\Omega_{\text{Tot}}} \delta \sim 10^{-6} h^3 \left(\frac{L}{10 \text{Mpc}}\right)^3 \frac{\delta}{10} \Omega_m \sqrt{\Omega_{\text{Tot}}}$

Stéphane Iuć (IRAP)

Compensation test

Photons crossing a void

Large scale structures

Linear perturbation theory :

- Describes time-evolution of $\delta = \rho / \langle \rho \rangle 1$ (for $\delta \ll 1$)
- $\delta(t) \propto D(t) \rightarrow \text{growth function}$
- Poisson : $\Delta \Phi = 4\pi \langle \rho \rangle Ga^2 \delta \Longrightarrow \Phi \propto D(t)/a(t)$

Consequences

- In flat matter-dominated Universe : $D(t) \propto a(t) \Rightarrow \Phi$ is **constant**
- In any other case : $d\Phi/dt \neq 0$
- In ΛCDM : Φ decays with time

LTB theory

$$ds^{2} = -dt^{2} + \frac{R_{rr}^{2}}{1 + 2E(r)}dr^{2} + R^{2}(r,t)d\Omega^{2}.$$
(1)

$$R_{rt}^{2} = 2E(r) + \frac{2GM(r)}{R} - \frac{1}{3}\Lambda R^{2}$$
(2)

$$4\pi\rho(r) = \frac{M_{rr}(r)}{R^{2}R_{rr}}.$$
(3)

Photon in LTB theory

$$\frac{dr}{dt} = \pm \frac{\sqrt{1+2E}}{R_{rr}}.$$
(4)
$$\frac{d\epsilon}{dt} = -\frac{R_{rrt}}{R_{rr}}\epsilon$$
(5)

$$\frac{dr}{dt} = \frac{k^r}{k^t} \tag{6}$$

$$\frac{dO}{dt} = \frac{\kappa}{k^t} \tag{7}$$

$$\frac{dk^t}{dt} = -\frac{1}{k^t} \left(\frac{R_{,rt} R_{,r}}{1 + 2E} (k^r)^2 + R_{,t} R(k^\theta)^2 \right)$$
(8)

$$\frac{dk^r}{dt} = \frac{1}{k^t} \left[\left(\frac{E_{,r}}{1+2E} - \frac{R_{,rr}}{R_{,r}} \right) (k^r)^2 + \frac{(1+2E)R}{R_{,r}} (k^\theta)^2 \right] - \frac{2R_{,rt}}{R_{,r}} k^r$$
(9)

$$\frac{dk^{\theta}}{dt} = -\frac{2k^{\theta}}{R} \left(R_{,t} + \frac{R_{,r}k^{r}}{k^{t}} \right)$$
(10)

with
$$k^{\chi} = d\chi/d\lambda$$
 ($\chi = t, r, \theta$)

Stéphane Luć (IRAP)