Gas Kinematics of Intermediate - Redshift Galaxies

B. Epinat LAM

Open issues on galaxy evolution

Processes of galaxy mass assembly

 Mergers vs. Smooth gas accretion?

- Construction of Hubble Sequence
- Impact of environment

Mass Assembly Survey with Sinfoni In VVDS

Contini et al. 2012

Selection Criteria:

83 star-forming galaxies

- *z* < 1.46: [OII]3727 strength
- *z* > 1.46: UV slope + abs. lines
- SNR>5 in VIMOS spectra
- Ha free of bright OH lines

• Bright star close enough for **AO/LGS** observations

Spatially resolved data

I-band CFHT imaging :

- 0.65" seeing
- Morphology analysis using GALFIT
- Position angle, center, inclination, size

<u>SINFONI data cubes :</u>

- 0.6" 1" seeing + some AO (~0.25")
- R~2000 in J or H bands
- ~12' FoV
- Ha moment maps :

Close environment classification

Interacting systems

- Companion detected both
 - in the Ha map and
 - in the continuum I-band image

Gravitationaly bounded

- with d < 50 kpc
- and $\Delta V < 1000 \text{ km/s}$
- 21/74 interacting systems found

Epinat et al. 2012

The major merger rate @ 0.9<z<1.7 from close pairs

Lopez-Sanjuan et al. 2012

<u>Close pairs in projection:</u> $0 < r_p < 20 h^{-1} kpc$ $\Delta v < 500 km/s$ N_P major close pairs : $L_2/L_1 > 1/4$ minor close pairs : $L_2/L_1 < 1/4$

 $f_{Major Merger} = N_P/N + corrections for completeness$

Example of a major merger

The merger fraction f_{MM} @ z>1 is higher by an order of magnitude than in the local universe

The major merger rate $R_{MM} \; \alpha \; f_{MM} \; / T_{MM}$

T_{MM} : Merger time scale from the Millennium simulation

$$\begin{split} T_{MM} &= 1.80 \text{ Gyr} (0.94 < z < 1.06) \\ T_{MM} &= 1.37 \text{ Gyr} (1.20 < z < 1.50) \\ T_{MM} &= 2.54 \text{ Gyr} (1.50 < z < 1.80) \end{split}$$

Lopez-Sanjuan et al. 2012

$$N_{\rm MM}(z_1, z_2) = \int_{z_1}^{z_2} \frac{R_{\rm MM} \, \mathrm{d}z}{(1+z)H_0 E(z)}$$

The average number of major gasrich mergers per star-forming galaxy between z2 and z1

M*=10¹⁰-10¹¹ Mo star forming galaxies underwent ~0.4 major mergers since z~1.5

Lopez-Sanjuan et al. 2012

Classification

Based on agreement between morphology and kinematics

Rotators vs slow rotators

Blue circles : fast rotators Red squares : slow rotators *Epinat et al. 2012* From 1st epoch sample

Rotators vs slow rotators

- 29/68 rotating
- 39/68 non-rotating
- 15/83 non classified (9 undetected + low SNR<3)
- Rotators on average are larger and have better SNR
 - Impact of noise?
 - Impact of size vs resolution: clumps impact? Bars?
- Slow rotators: face-on? Megers? In which stage?

		G1	G2	G3
	Virial quantities			
1	$log(M_{\star})$	10.60	10.20	9.80
2	$R_{200} \ [kpc]$	99.8	73.4	54.0
3	$M_{200} \ [10^{10} M_{\odot}]$	102.4	40.8	16.2
4	$V_{200} \ [km.s^{-1}]$	210.1	154.6	113.7
	Scalelength			
5	$r_{\star} \ [kpc]$	2.28	1.62	1.15
6	$r_{gas} \ [kpc]$	3.71	2.64	1.88
7	$h_{\star} \ [kpc]$	0.46	0.32	0.23
8	$h_{gas} [kpc]$	0.19	0.13	0.09
9	$r_{metal} \ [kpc]$	3.71	2.64	1.88
10	С		5	
10	c Mass fractions		5	
10 11	$\frac{c}{Mass \text{ fractions}} \\ f_g$		5 0.65	
10 11 12	$\begin{array}{c} c\\ \text{Mass fractions}\\ f_g\\ f_b \end{array}$		5 0.65 0.10	
10 11 12 13	$\begin{array}{c} c\\ \text{Mass fractions}\\ f_g\\ f_b\\ m_d \end{array}$		5 0.65 0.10 0.10	
10 11 12 13	$\begin{array}{c} c\\ \text{Mass fractions}\\ f_g\\ f_b\\ m_d\\ \text{Collisionless particles} \end{array}$		5 0.65 0.10 0.10	
10 11 12 13 14	c Mass fractions f_{g} f_{b} m_{d} Collisionless particles $N_{disk} [10^{6}]$	2.00	5 0.65 0.10 0.10 0.80	0.32
10 11 12 13 14 15	$\begin{array}{c} c\\ Mass \ fractions\\ f_g\\ f_b\\ m_d\\ \hline Collisionless \ particles\\ N_{disk} \ [10^6]\\ N_{halo} \ [10^6] \end{array}$	2.00 2.00	5 0.65 0.10 0.10 0.80 0.80	0.32 0.32
10 11 12 13 14 15 16	$\begin{array}{c} c\\ Mass \ fractions\\ f_g\\ f_b\\ m_d\\ \hline Collisionless \ particles\\ N_{disk} \ [10^6]\\ N_{halo} \ [10^6]\\ N_{bulge} \ [10^6] \end{array}$	2.00 2.00 0.22	5 0.65 0.10 0.10 0.80 0.80 0.80 0.09	0.32 0.32 0.04
10 11 12 13 14 15 16	$\begin{array}{c} c \\ Mass \mbox{fractions} \\ f_g \\ f_b \\ m_d \\ \hline Collisionless \mbox{ particles} \\ N_{disk} \ [10^6] \\ N_{halo} \ [10^6] \\ N_{bulge} \ [10^6] \\ \hline Various \mbox{ quantites} \end{array}$	2.00 2.00 0.22	5 0.65 0.10 0.10 0.80 0.80 0.80 0.09	0.32 0.32 0.04
10 11 12 13 14 15 16 17	$\begin{array}{c} c\\ Mass \mbox{fractions}\\ f_g\\ f_b\\ m_d\\ \hline Collisionless \mbox{ particles}\\ N_{disk} \ [10^6]\\ N_{halo} \ [10^6]\\ N_{bulge} \ [10^6]\\ \hline Various \mbox{ quantites}\\ Q_{min} \end{array}$	2.00 2.00 0.22	5 0.65 0.10 0.10 0.80 0.80 0.09 1.5	0.32 0.32 0.04

- Match MASSIV mass and size ranges
- High initial gas fraction
- Idealized initial conditions mimicking z~2 galaxies
- RAMSES code (Teyssier 2001)

• 3 disk models

 5 mass configurations for the merger simulations

• 4 initial disk conditions

3 disk models

• 5 mass configurations the merger simulations

• 4 initial disk conditions

The MIRAGE sample (Perret et al. 2014) From simulations to observations

- 23 simulations
- 11 lines of sight
- 1 snapshot every 40 Myr from 200 Myr to 800 Myr

=> 4048 mock datacubes

The MIRAGE sample (Perret et al. 2014) From simulations to observations

- Line flux computed for each hydrodynamical cell
- Line spectrum inserted in mock datacube

The MIRAGE sample (Perret et al. 2014) From simulations to observations

- Line flux computed for each hydrodynamical cell
- Line spectrum
 inserted in mock
 datacube

Kinemetry analysis

• Harmonic expansion $V_{kin}(r,\phi) = A_0(r) + \sum \left[A_n(r) \sin(n\phi) + B_n(r) \cos(n\phi)\right]$

Asymmetry parameters

$$k_n = \sqrt{A_n^2 + B_n^2} \qquad v_{asym} = \left(\frac{k_{avg,v}}{B_{1,v}}\right)_r \qquad \sigma_{asym} = \left(\frac{k_{avg,\sigma}}{B_{1,v}}\right)_r$$

11

۱

Kinemetry analysis

 Not frequent to see no rotation signature in mergers

One MUSE project

- **MUSE perfectly suited** for 0.2 < z < 1.3 emission-line galaxies
- Study a sample of ~ 200 'field' galaxies with good data
- Study a sample of ~50 galaxy in groups
- Understand role of environment at z~1

HDF-South Observed during Comm2B

- Exposure ~ 30h
- Median seeing ~0.7"

Identification of **spatially-resolved** Emission-line galaxies

HDF-South Observed during Comm2B

- Exposure ~ 30h
- Median seeing ~0.7"

Identification of **spatially-resolved** Emission-line galaxies

HST WFPC2-F606

Comparison with previous data

• FLAMES/GIRAFFE data (IMAGES survey)

Puech et al. (2006)

• MUSE data (HDFS)

Flores et al. (2006)

Comparison with previous data

• FLAMES/GIRAFFE data (IMAGES survey)

Conclusions

- Ability to track evolution with redshift
- Evolution with small scale and large scale environment
- Comparison with numerical simulations
- Combined analysis morpho/kinematics
- Scaling relations evolution (e.g. Tully-Fisher)
- Search for non circular motions (e.g. bars, outflow/inflow)

Asymmetric galaxies with bright HII regions

Disturbed/peculiar velocity fields

Beam smearing and kinematics

At z~1, seeing is almost as large as Ha extent (1">8 kpc)

Rotating disk simulation with

- Seeing increases from 0.125" to 0.5"
- No local velocity dispersion

Effect of beam smearing :

- Inner velocity gradients decrease
- Central velocity dispersion peak

Conclusion

Epinat et al. 2010

• Need to take beam smearing into account to recover the true galaxy parameters (PA, inclination, maximum velocity, velocity dispersion)

Sample properties

Rotators vs slow rotators

Perret (2014) Full sample

Observational approach

- Integral field spectroscopy
- Spatially resolved properties
 - Kinematics
 - Abundances
- 'Representative' samples at various redshifts
- Comparison with numerical simulations

2D model (Epinat et al. 2008)

Map modeling

Inputs:

- velocity field
- flux map
- PSF
- Parameters:
 - Turn-over radius
 - Vmax
 - Center
 - Inclination
 - Position angle
 - Systemic velocity
- $ightarrow \chi_2$ minimisation

Unknown high resolution flux map => observed line flux map