Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

A. PETROVICI

Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania

Outline

- complex EXCITED VAMPIR beyond-mean-field model
- neutron-rich A~100 nuclei
 - triple shape coexistence and shape evolution in the N=58 Sr and Zr isotopes
 - shape evolution in even-even Zr nuclei
 - Gamow-Teller β -decay relevant for :
 - *r*-process (^{104,106}Zr)
 - reactor decay heat (^{102,104}Tc)

Characteristic features of neutron-rich A~100 nuclei

- shape transition, shape coexistence, shape mixing
- drastic changes in structure with particle number, spin, excitation energy

Open problems for theoretical models

- realistic effective Hamiltonians and adequate large model spaces
- beyond-mean-field models

Goals

- unitary description of evolution in structure at low and high spins
- unitary treatment of structure and β -decay properties

complex VAMPIR model family

- the model space is defined by a finite dimensional set of spherical single particle states
- the effective many-body Hamiltonian is represented as a sum of one- and two-body terms
- the basic building blocks are Hartree-Fock-Bogoliubov (HFB) vacua
- the HFB transformations are essentially *complex* and allow for proton-neutron, parity and angular momentum mixing being restricted by time-reversal and axial symmetry
- the broken symmetries (s=N, Z, I, p) are restored by projection before variation

* The models allow to use rather large model spaces and realistic effective interactions

Beyond-mean-field variational procedure: complex EXCITED VAMPIR model *Vampir*

 Θ^{s}_{00} - symmetry projector

 $|F_{s_1} > - HFB$ vacuum

$$E^{s}[F_{1}^{s}] = \frac{\langle F_{1}^{s} | H \Theta_{00}^{s} | F_{1}^{s} \rangle}{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}$$
$$|\psi(F_{1}^{s}); sM \rangle = \frac{\Theta_{M0}^{s} | F_{1}^{s} \rangle}{\sqrt{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}}$$

Excited Vampir

 $|\psi(F_i^s); sM\rangle = \sum_{i=1}^i |\phi(F_i^s)\rangle \alpha_i^i$ for i = 1, ..., n-1 $|\phi(F_i^s); sM\rangle = \Theta_{M0}^s |F_i^s\rangle$ $|\psi(F_n^s); sM\rangle = \sum_{i=1}^{n-1} |\phi(F_i^s)\rangle \alpha_i^n + |\phi(F_n^s)\rangle \alpha_n^n$ $(H - E^{(n)}N)f^n = 0$ $(f^{(n)})^+ N f^{(n)} = 1$ $|\Psi_{\alpha}^{(n)}; sM > = \sum_{i=1}^{n} |\psi_i; sM > f_{i\alpha}^{(n)}, \qquad \alpha = 1, ..., n$

A~100 mass region

⁴⁰*Ca* - *core*

model space for both protons and neutrons :

renormalized G-matrix (OBEP, Bonn A)

• *pairing properties enhanced by short range Gaussians for:* T = 1 pp, np, nn channels T = 0, S = 0 and S = 1 channels

• onset of deformation influenced by monopole shifts: <0g_{9/2} 0f; T=0 |G| 0g_{9/2} 0f;T=0>

• Coulomb interaction between valence protons added

Triple shape coexistence and shape evolution in the N=58 Sr and Zr isotopes

A. Petrovici, Phys. Rev. C85 (2012) 034337

Neutron-rich Sr and Zr isotopes: - rapid transition from spherical to deformed shapes - sudden onset of quadrupole deformation for N > 58

Positive parity states up to spin 20⁺ in ⁹⁶Sr and ⁹⁸Zr (12-dimensional *EXVAM many-nucleon bases*)

The amount of mixing for the lowest 0 ⁺ states of ⁹⁶ Sr.				
$I[\hbar]$	spherical	herical prolate obla	oblate	
01+	36%	20%	44%	
0^{+}_{2}	57%	18%	25%	
0_{3}^{+}		69%	31%	
04	4%	6%	90%	

Particular case for 0⁺ states

- \cdot the lowest 0⁺ VAMPIR configuration is spherical
- the 3-lowest 0⁺ orthogonal EXVAM configurations (*s*, *o*, *p*) are situated in an energy interval of 375 keV

The mixing for the 2^+ and 4^+ states.

$I[\hbar]$	prolate	oblate
2_{1}^{+}	34(2)%	58(5)%
2^{+}_{2}	65%	33(2)%
4_{1}^{+}	56(1)%	36(6)%
4_{2}^{+}	43%	52(5)%

 \cdot maximum oblate-prolate mixing for 2^+ and 4^+ states

$$\Delta E (2^{+}_{oblate} - 2^{+}_{prolate}) = 24 \text{ keV}$$
$$\Delta E (4^{+}_{prolate} - 4^{+}_{oblate}) = 154 \text{ keV}$$

spherical EXVAM configurations for spins 2⁺ and
 4⁺ not found up to 4 MeV excitation energy

po(p)-band - strong prolate-oblate mixing at low spins - variable prolate mixing at higher spins

almost pure o-band feeds the second 4⁺ (*maximum o-p mixing*)

$I[\hbar]$	spherical	prolate	oblate
01	12%	43%	45%
0+	84%	12%	4%
0+	1%	57%	42%
04	2%	10%	88%

• strong prolate-oblate mixing $\Delta E (2^{+}_{prolate} - 2^{+}_{oblate}) = 206 \text{ keV}$ $\Delta E (4^{+}_{prolate} - 4^{+}_{oblate}) = 431 \text{ keV}$

The mixing for the 2^+ and 4^+ states.

$I[\hbar]$	prolate	oblate
2_{1}^{+}	60(8)%	31%
2^{+}_{2}	36%	63(1)%
4_{1}^{+}	83(7)%	10%
4_{2}^{+}	13(1)%	85(1)%

spherical EXVAM configurations for spins 2⁺
 and 4⁺ not found up to 4 MeV excitation energy

po(p)-band - strong prolate-oblate mixing at low spins

variable prolate mixing at higher spins

o-band feeds the second 2⁺ (maximum o-p mixing)

Occupation of valence single-particle orbitals for 0^+ states – sensitive to intrinsic deformation

$d^{v}_{5/2}$ occupation – essential for spherical 0⁺ EXVAM configuration $g^{\pi}_{9/2}$ occupation – significantly changing from intrinsically oblate to prolate deformed 0⁺ EXVAM configurations

Strong E0 transitions support mixing of differently deformed configurations in 0^+ wave functions $\rho^{2 exp}_{max}(E0; 0^+_3 \rightarrow 0^+_2) = 0.180$ $\rho^{2 exp}_{max}(E0; 0^+_3 \rightarrow 0^+_2) = 0.075(8)$ $\rho^{2 EXVAM}_{max}(E0; 0^+_2 \rightarrow 0^+_1) = 0.066$ $\rho^{2 EXVAM}_{max}(E0; 0^+_2 \rightarrow 0^+_1) = 0.060$

Evolution in structure with spin and excitation energy revealed by relevant spherical occupations

changes in structure corroborated with underlying shapes and evolution of shape mixing

Changes in structure revealed by angular momentum alignment and magnetic properties

 $B(M1; 8_3^+ \rightarrow 8_1^+) = 1.29 \ \mu^2_N$

 $B(M1; 8_2^+ \rightarrow 8_1^+) = 1.60 \ \mu_N^2$

$B(E2;\Delta I = 2)$ strengths \rightarrow fragmentation \leftrightarrow mixing

 $B(E2; I \rightarrow I-2)$ values (in $e^2 fm^4$) for the lowest bands of ⁹⁶Sr (EXVAM) (effective charges $e_p = 1.3$, $e_n = 0.3$).

$I[\hbar]$	po(p)-band	o-band
2+	795 340(209) (580 (preli	old) ninary-Isolde)
4 ⁺	1770 (187)	1901 (12)
6+	1911 (560)	1484 (215) (89)
8+	2127 (361)(122)	1436 (159) (121) (99)
10+	819 (1329) (168)	1514 (231)
12+	2332 (142)	1760
14+	2354 (57) (44)	1392
16+	238 (2237) (160)	1590
18+	753 (1374) (248)	1459
20+	2183 (97)	1359

 $B(E2; I \rightarrow I - 2)$ values (in $e^2 fm^4$) for the lowest bands of ⁹⁸Zr (EXVAM) (effective charges $e_p = 1.3$, $e_n = 0.3$).

$I[\hbar]$	po(p)-band	p-band	o-band
2+	1140 (198)(161)		1305 (28) (18) (15)
4+	2072 (620)		1593 (56)
6+	2558 (101)		1662
8+	1802 (942)(153)		1572 (123)
10+	719 (1430)		1314 (119) (100)
12+	2300 (216)	731 (345) (212)	663 (621) (307)
14+	2428 (123)	1840 (392)	1094 (494)
16+	1360 (832) (190)	548 (246) (1421)	602 (250) (195)
18+	863 (207) (1416)	1347 (713) (808)	1115
20+	409 (1958)	347 (185) (1972)	1313

Experimental lifetimes for intermediate spin states: simultaneous fit to several levels suggests deformation

 $Q^{exp}_{\ 0} (12^+ \to 10^+ \to 8^+) = 220 (15) \ efm^2 \qquad \qquad Q^{exp}_{\ 0} (12^+ \to 10^+ \to 8^+ \to 6^+) = 200 (10) \ efm^2$

Spectroscopic quadrupole moments \rightarrow deformation and mixing

Q_2^{sp} (in efm^2) for the lowest bands of ⁹⁶ Sr (effective charges $e_p = 1.3$, $e_n = 0.3$).		st bands of ⁹⁶ Sr .3, $e_n = 0.3$).	Q_2^{sp} (i (eff	n <i>efm</i> ²) for the fective charges	e lowest bands $e_p = 1.3, e_n = 0$	of ⁹⁸ Zr).3).
$I[\hbar]$	po(p)	0	$I[\hbar]$	po(p)	P	0
2+	9.5 () ((preliminary-Isolde)	2+	-36.6		7.1
4+	-23.9	1.4	4+	-89.6		54.7
6+	-100.3	75.5	6+	-115.5		76.7
8+	-120.1	77.3	8+	-126.7		70.7
10+	-120.7	94.4	10+	-130.1		58.2
12+	-124.1	94.6	12+	-129.1	-98.5	55.6
14+	-124.5	90.5	14+	-126.1	-121.2	30.5
16+	-130.0	85.4	16+	-126.6	-123.0	60.8
18+	-126.2	80.1	18+	-124.2	-134.4	74.9
20+	-124.4	68.1	20+	-125.6	-135.4	68.9

po(p)-band: $\beta_2^{EXVAM} (8^+/10^+/12^+) \approx 0.3$

o-band: β_2^{EXVAM} (8⁺/10⁺/12⁺) \cong -0.19 \div -0.23 *o-band*: β_2^{EXVAM} (8⁺/10⁺/12⁺) \cong -0.17 \div -0.13

Gamow-Teller β decay of ¹⁰²Tc and ¹⁰⁴Tc (reactor decay heat)

M.D. Jordan, A. Algora A. Petrovici et al., Phys. Rev. C87 (2013) 044318

$$102 Tc_{59} \rightarrow 102 Ru_{58} \qquad 104 Tc_{61} \rightarrow 104 Ru_{60}$$

$$Q_{\beta} = 4.532 \pm 0.009 MeV \qquad Q_{\beta} = 5.516 \pm 0.006 MeV$$

$$1^{+}_{gs} \rightarrow 0^{+} / 1^{+} / 2^{+} \qquad 3^{+}_{gs} \rightarrow 2^{+} / 3^{+} / 4^{+}$$

$$T_{1/2} = 5.28(15) s \qquad T_{1/2} = 1098(18) s$$

complex EXCITED VAMPIR wave functions

 $1^+_{gs} \rightarrow 53\% \text{ oblate / 47\% prolate}$ (7 EXVAM components) $3^+_{gs} \rightarrow > 99\%$ prolate (7 EXVAM components)

¹⁰²**Ru**₅₈

complex EXCITED VAMPIR bases: 26 orthogonal projected configurations for the spins 0⁺, 1⁺, 2⁺

Gamow-Teller contributing states

- 0⁺: from 85% to 26% prolate components including almost spherical ones
- 2⁺: from 78% to 26% prolate components

 $^{104}Ru_{60}$

complex EXCITED VAMPIR bases: 25 orthogonal projected configurations for the spins 2⁺, 3⁺, 4⁺

Gamow-Teller contributing states 2⁺: from 82% to 9% prolate components 4⁺: from 96% to 8% prolate components

Spectroscopic quadrupole moments: larger deformation for the N=60 states with respect to the N=58 ones $^{102}Tc_{59} \rightarrow ^{102}Ru_{58}$

Essential contribution from $g_{9/2} g_{7/2}^{\nu}$, $d_{5/2} d_{3/2}^{\nu}$, and $d_{5/2} d_{5/2}^{\nu}$ matrix elements

 $^{104}Tc_{61} \rightarrow ^{104}Ru_{60}$

Contributions from $g_{9/2}^{\pi}g_{7/2}^{\nu}$, $d_{5/2}^{\pi}d_{3/2}^{\nu}$, $d_{5/2}^{\pi}d_{5/2}^{\nu}$, $p_{1/2}^{\pi}p_{3/2}^{\nu}$, $p_{3/2}^{\pi}p_{1/2}^{\nu}$ matrix elements, all small, manifesting also cancellation effect

Gamow-Teller β -decay half-lives and β -delayed neutron emission probabilities of Zr isotopes relevant for the r-process A = 104, 106

$^{98-110}Zr$ chain : rapid transition \rightarrow from spherical to deformed shape shape coexistence \rightarrow competing prolate, oblate, and spherical shapes

• variable mixing of prolate deformed EXVAM configurations at intermediate and high spins • ground state dominated (99%) by a strongly deformed EXVAM configuration

A. Petrovici et al., J. Phys. 312 (2011) 092051

 $^{104}Zr \rightarrow ^{104}Nb$ $^{106}Zr \rightarrow ^{106}Nb$

A. Petrovici et al., Prog. Part. Nucl. Phys. 66 (2011) 287

complex Excited Vampir many-nucleon basis: 50 projected 1⁺ configurations in ¹⁰⁴Nb and ¹⁰⁶Nb

Gamow-Teller contributing states: large variety of spectroscopic quadrupole moments above 2 MeV excitation energy

Essential contribution from $g_{9/2} g_{7/2}^{\nu}$, $d_{5/2} d_{3/2}^{\nu}$, and $d_{5/2} d_{5/2}^{\nu} GT$ matrix elements

Gamow-Teller accumulated strengths, half-lives, β -delayed v-emission probabilities

Summary and outlook

complex EXCITED VAMPIR model explains self-consistently

- experimental trends in the N=58 Sr and Zr isotopes manifesting shape coexistence and mixing :
 - triple coexistence of spherical, prolate, and oblate configurations in the structure of lowest 4 0^+ states
 - multifaceted yrast structure specific for ⁹⁶Sr and ⁹⁸Zr
- large prolate deformation in ¹⁰⁴Zr and ¹⁰⁶Zr
- Gamow-Teller β -decay and β -delayed neutron-emission for ^{104,106}Zr
- remarkable difference in the Gamow-Teller β -decay of ¹⁰²Tc and ¹⁰⁴Tc revealed by TAGS data

The effective interaction for the A~100 region is currently improved starting from a G-matrix based on Bonn CD potential