Neutron rich Ruthenium isotope study in the cold-neutron-induced ²⁴¹Pu fission: analysis status #### **Clément MANCUSO** PhD supervised by Pr. **D. GUINET** & group "Matière Nucléaire", IPNLyon Ecole Doctorale PHysique et ASTrophysique de Lyon ²⁴¹Pu (n,f γ) experiment # Detector calibrations and stabilities Ruthenium analysis status ## ²⁴¹Pu (n,f γ) experimental set-up ≈ 4000 runs for 16 days (March-April 2013) Target of ²⁴¹Pu thickness 300 μm.cm⁻² 78,6 % enriched with a 25 μm Be backing **8** clovers **EXOGAM** (EXO 00 a to EXO 07 d) 2 clovers LOHENGRIN (ILL_08_a to ILL_09_d) 5 singles GASP 45° (GASP 10 to GAPS 14) 135° 1 clover **EXOGAM** (EXO_15_a to EXO_15_d) Total of 49 crystals anti-Compton BGO (AC_01 to AC_15) for EXOGAM clovers and GASP singles Total of 72 channels ## Time stamp alignment ## Full energy range calibrations: ¹⁵²Eu & (n,γ) #### Calibration validation EXO_04, EXO_15_d, ILL_08_d and GASP detectors exibit discontinuities between ¹⁵²Eu and Pu data peaks. Discontinuity amplitudes: same order of magnitude as spectrum bin size. ### Energy and resolution stabilities Energy Most significant shift: 1,2 keV at 3 MeV ΔE/E < 0.5 ‰ Resolution Shifts of less than 0.5 keV under 3 MeV #### Ru in EXILL Pu Fission simulated Yields in function of N and Z #### Fold effects: tools #### Fold effects: results ## ¹⁰⁸Ru ## ¹⁰⁸Ru ## ¹¹⁰Ru ## ¹¹²Ru and ¹¹⁴Ru ## Statements on ruthenium isotopes Bands are named as ENSDF ones ¹⁰⁸Ru: ground state band up to level 12+ possible g-vibrationnal band up to level 4+ two-phonon γ -vibrational band level (5+) ¹⁰⁹Ru: All bands up to E* ≈ 1300 keV ¹¹⁰Ru: ground state band up to level 12+ one phonon quasi- γ band up to level 4+ ¹¹¹Ru: $7/2^{-}$ (α =-1/2) band up to level 23/2⁻ ¹¹²Ru: ground state band up to level 8+ ¹¹³Ru: $7/2 (\alpha = -1/2)$ band up to level 19/2 ¹¹⁴Ru: yrast band up to level 4+ ¹¹⁵Ru: not observed #### Conclusion Time and energy calibrations have been performed. Detector energy and resolution time stabilities have been checked. The whole information is available in a report (soon available for the collaboration). Fold effect on fission event analysis has been studied. Ruthenium isotopes have been studied. No new transitions have been found. ¹¹⁵Ru isotope has not been observed. Original physics program is out of reach. I would like to thank all the people having participated in this work as well as the whole EXILL collaboration. Thank for your attention! Feel free to ask questions.