Measurement of high-energy gamma-rays accompanied by ²³⁵U(n_{th},f)

Katsuhisa Nishio

Advanced Science Research Center Japan Atomic Energy Agency Tokai, JAPAN

EXILL 2015

Tokai Campus, JAEA

J-PARC —

Tokyo

Tandem facility

Experimental Research Program at the JAEA Nuclear Physics Group

- Nuclear fission (JAEA tandem, J-PARC n-TOF, ...)
- Reaction mechanism for heavy-element synthesis (JAEA tandem)
- Surrogate and multi-nucleon transfer reaction study (JAEA Tandem)
- Search for the heaviest N=Z nucleus beyond ¹⁰⁰Sn (JAEA Tandem + RMS)
- Structure study of neutron-rich nucleus (CERN-ISOLDE, RIKEN-RIBF,...)
- Fukushima issues

High-energy γ -rays accompanied by fission

- FUKSHIMA Issues
- A surveillance detector to monitor criticality and power.
- Nuclear fission and deexcitation of fission fragments.
- LaBr₃(Ce) detector
- Experimental Setup

FUKUSHIMA Atomic Power Plants

Surveillance Detector for criticality and Power

Fission rate must be measured in a strong radiation environment

Energy Spectrum from Spent Nuclear Fuels

After 10 years has past

Fission gamma-rays spectrum ²⁵²Cf (sf)

H. Van der Ploeg et al., Phys. Rev. C, 52 (1995) 1915.

Gamma-ray spectrum for ²³⁵U(n_{th}, f)

J.R. Huizenga, Academic Press 1973

Nuclear Fission

Fission Fragment Yield

K. Nishio et al., J. Nucl. Sci. Technol. 35 (1998) 631.

Prompt Neutrons from Fission Fragment

K. Nishio et al., Nucl. Phys. A632 (1998) 540.

Neutron multiplicity from individual fragments

Total neutron multiplicity as function of TKE

²³³U(n_{th},t)

Average Excitation energy of fission fragments for ${}^{235}U(n_{th},f)$

$$E_{GDR} = 18.0A^{-1/3} + 25.0A^{-1/6}$$

Data from K. Nishio et al., Nucl. Phys. A632 (1998) 540.

Level Density Parameters

Neutron-energy spectrum from individual fragment

²³³U(n_{th},f)

Setup to measure fission γ -rays in ²³⁵U(n_{th},f)

LaBr₃(Ce) detector

Diameter 4" x Length 5"

- (1) High Efficiency
- (2) High-resolution
- (3) Fast timing properties

H. Makii et al., submitted to Nucl. Instr. Meth. A

Digital Data Taking

Surveillance Detector

Summary

- A surveillance detector to monitor criticality of melted fuel debris at the FUKSHIMA power plant is proposed.
- Detection of high-energy γ -rays in ²³⁵U(n_{th},f).
- Developed a large volume LaBr₃(Ce) detector and setup
 - → Supported by Government Fund

K. Nishio, H. Makii, K. Hirose, I. Nishinaka, R. Orlandi, R. Léguillon, J. Smallcombe

I. Tsekhanovich, B. Jurado, S. Czajkowskiu, L. Mathiew

T. Soldner

C. Petrache

S. Sekimoto, K. Takamiya, T. Ohtsuki

A. Andreyev, D. Jenkins

F.-J. Hambsch, S. Overstedt

European Commission **IRMM**

A.G. Smith