Interaction particle-matter at high energy. An example

IDPASC School LPNHE, Paris, 8-21 February, 2015

Patrick Puzo Laboratoire de l'Accélérateur Linéaire, Université Paris-Sud puzo@lal.in2p3.fr

- Detectors played a key role in physics since 1900
- Four detectors have been distinguished:
 - Cloud chamber (C. Wilson, Nobel prize in 1927 and Patrick Blackett, Nobel prize in 1948)
 - Bubble chamber (D. Glaser, Nobel prize in 1960)
 - Wire chamber (G. Charpak, Nobel prize in 1992)
 - CCD (Willard Boyle and George Smith, Nobel prize in 2009)
- Implies nuclear physics, thermodynamics, condensed matter, chemistry, optics, ...

Sources and references

- « Particle Detectors », C. Grupen and B. Schwartz, 1996
- CERN Summer Student Lectures
 - □ In particular « Particule Detectors », C. Joram (2002)

Typical numbers

Distances:

- In 1 ns, a particle with v = c moves by 30 cm
- $\hfill\square$ In 1 μs , an ionization electron moves 5 cm in a gaz
- In 1 ms, a proton runs 11 times around LHC (11×27 ≈ 300 km) and an ion moves 5 cm in a gaseous detector

Lifetime / distance:

	Muon	Pion	Méson B
Lifetime	2,2 µs	26 ns	1 ps
Distance	660 m	7,8 m	300 µm

 Within a detector, muons are stable, B mesons will not be seen before their decay

Plan

- I. Interaction particle-matter
 - 1) Heavy charged particles
 - 2) Light charged particles
 - 3) Photons
 - 4) Neutrinos
- II. An example: charged tracks reconstruction

• We consider here heavy particles with $m > m_{\mu} \approx 200 \ m_e$ (ie everything but electrons) : μ^{\pm} , π^{\pm} , α , p, ...

- At low energy, heavy particles loose energy in matter via collisions with the atomic electrons of the target by photon exchange:
 - Excitation of the atom
 - If $\hbar\omega$ is large enough, ionization can occur
 - Ionization electrons have sometimes enough energy to ionize other atoms (δ electrons)
 - In some cases, the photon can escape instead of ionizing (Cherenkov effect and transition radiation)

- « collision » is to be taken with quantum mechanics meaning and not classical one
 - Nothing to do with collision of two cars but has to be seen as an interaction
- The relevant parameter to characterize the collision is the impact parameter (minimum distance between two particles)

- Cross section is very small ($\sigma \approx 10^{-16} 10^{-17} \text{ cm}^2$) but the number of atoms is very high ($N_A \approx 10^{23} \text{ atoms/cm}^3$)
 - \square A 10 MeV proton looses all its energy in 250 μm of copper
- The number of interaction is controlled by statistics:
 - $\square \Rightarrow$ relative fluctuations very small
 - In practice, we observe a continuous decrease of the energy down to the thermal kinetic energy
 - We use the mean energy loss per unit length:

 Relativistic quantum mechanics gives the Bethe-Bloch formula which describe the average energy loss by ionization:

$$\left\langle \frac{dE}{dx} \right\rangle \,=\, -\,4\,\pi\,N_A\,r_e^2\,m_e\,c^2\,\frac{Z}{A}\,\frac{z^2}{\beta^2}\,\left[\ln\left(\frac{2\,m_e\,c^2\,\gamma^2\,\beta^2}{I^2}\right) - \beta^2 - \frac{\delta}{2} - \frac{C}{Z} \right]$$

- Validity domain:
 - As soon as the speed of the incoming
 $\beta_{min} = \frac{v}{c} \approx 0.01$ particle is > speed of the atomic electrons
 - As long as the Bremsstrahlung (see later) does not dominate:
 - For muons, it means E < 1 TeV

$$\left\langle \frac{dE}{dx} \right\rangle = -4\pi N_A r_e^2 m_e c^2 \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \left(\frac{2m_e c^2 \gamma^2 \beta^2}{I^2} \right) - \beta^2 - \frac{\delta}{2} - \frac{C}{Z} \right]$$

$$\textbf{Constants: } N_A, r_e, m_e, Z, A$$

$$\textbf{Avogadro Classical radius and mass of the e-} \qquad \textbf{Charge and atomic mass of the target}$$

$$N_A \approx 6,02 \ 10^{23} \ \text{mol}^{-1} \qquad r_e = \frac{e^2}{4\pi \epsilon_0 m_e c^2} \approx 2,8 \ \text{fm} = 2,8 \ 10^{-15} \ \text{m}$$

- Dependences:
 - Does not depend on the mass of the incoming particle but only on its charge z and its velocity β !
 - Depend upon the target via Z, A, I, δ et C (constants)
- N_A is expressed in mol⁻¹, r_e in cm, $m_e c^2$ in MeV, A in g/mol

$$\left\langle \frac{dE}{dx} \right\rangle \; \Rightarrow \; expressed in MeV g^{-1} cm^2$$

$$K = 4\pi N_A r_e^2 m_e c^2 \approx 0,307 \text{ MeV g}^{-1} \text{ cm}^2$$

• We set:

$$\left\langle \frac{dE}{dx} \right\rangle = -K \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \left(\frac{2m_e c^2 \gamma^2 \beta^2}{I^2} \right) - \beta^2 - \frac{\delta}{2} - \frac{C}{Z} \right]$$

- $\hfill\square$ Precision of several % from several MeV ($\beta \approx 0,1$) up to several tens of GeV
- $dx = \rho dl$ is the surface density (ρ : density in g/cm^3)

From now on, we will write
$$~~rac{dE}{dx}~~$$
 and no longer $\left< rac{dE}{dx} \right>$

• dE/dx decreases like $\beta^{-5/3}$ for $\beta\gamma < 3$

- dE/dx has a minimum for $\beta\gamma \approx 3.5$ (Minimum Ionizing Particle or MIP) for which $\langle dE/dX \rangle \approx 1 2$ MeVg⁻¹cm²
- After the minimum, $\langle dE/dx \rangle$ increases as $\ln(\gamma^2)$

- Position and value of the minimum do not depend upon the particle
 dE/dx ≈ 1 2 MeV g⁻¹ cm²
- Curves are different for various particles because of the β variation (for *p* constant)
- Real detectors do not measure dE/dxbut deposited energy ΔE in width Δx

MIP

Energy deposited by muons in several media as function of $\beta\gamma$

 Used in hadron therapy or proton therapy

Plan

- I. Interaction particle-matter
 - 1) Heavy charged particles
 - 2) Light charged particles
 - 3) Photons
 - 4) Neutrinos
- II. An example: charged tracks reconstruction

- Electrons or positrons first
- Bethe-Bloch formula must be modified because the incoming particule is the same one as the target

$$\frac{dE}{dx} = -K \frac{Z}{A \beta^2} \left[\ln \left(\frac{m_e c^2 T \sqrt{T+2}}{I \sqrt{2}} \right) + \frac{f(T)}{2} - \frac{\delta}{2} \right]$$

• where T is the incoming particle cinetic energy (in units of m_ec^2) and f(T) another function (not the same one for electrons and positrons)

A new mechanism

• A light particle will radiate a real photon in the field of a nucleus

Bremsstrahlung

 $\hfill\square$ Only apply for e[±] (and μ with energy > 1 TeV)

□ For e[±]:

$$\frac{dE}{dx} = -\frac{E}{X_0} \qquad X_0 = \frac{A}{4 \alpha N_A Z^2 r_e^2 \ln\left(\frac{138}{Z^{1/3}}\right)}$$

- Proportional to E: dominates at high energy
- Introduced radiation length X_0 (g/cm²)
- Relationship between radiation lengths in g/cm^2 and in cm is:

$$X_{0\,[g/cm^2]} =
ho_{[g/cm^3]} X_{0\,[cm]}$$

- A large part of the energy (up to $\approx 100\%$!) can be taken by bremsstrahlung photons
 - $\square \Rightarrow$ huge fluctuation on the path in matter

Total losses

Finally:

Critical energy

 By definition, critical energy is the energy where ionization and bremsstrahlung losses are equal

For e[±]:

Bremsstrahlung for heavy particles

Incoming particle with mass m and charge ze:

$$\frac{dE}{dx}\Big|_{Rayonnement}(m, z) = \left(\frac{m_e}{m}\right)^2 z^2 \left.\frac{dE}{dx}\right|_{Rayonnement}(e^-)$$

For μ[±], this translates into:

$$E_c \approx E_c^{Electron} \left(\frac{m_{\mu}}{m_e}\right)^2$$

Example for iron (Z = 26):

$$E_c(e^-) = 22,4 \text{ MeV}$$
 et $E_c(\mu) = 1 \text{ TeV}$

We now understand fully the dE/dx curve

Energy deposited by muons in copper

Plan

- I. Interaction particle-matter
 - 1) Heavy charged particles
 - 2) Light charged particles
 - 3) Photons
 - 4) Neutrinos
- II. An example: charged tracks reconstruction

Interaction of photons with matter

- To be detected, a γ must create charged particles or transfer energy to a charged particle. Several possible effects:
 - Photoelectric effect (dominant for $E_{\gamma} < 100$ keV)
 - Compton diffusion (dominant for $E_{\gamma} \approx 1 \text{ MeV}$)
 - Pair production (dominant for $E_{\gamma} > 1$ MeV)
- In each case, the γ is absorbed or elastically scattered. They keep their energy but the beam intensity decreases
- Attenuation μ is defined by:

$$I(x) = I_0 \exp(-\mu x)$$

Х

N

Photoelectric effect

- Mechanism: γ + atom \rightarrow atom⁺ + e⁻
- Deal with K shell e⁻
 - Cross section $\sigma_{Photo} \approx 4\sqrt{2} \alpha^4 Z^5 \left(\frac{m_e c^2}{E_\gamma}\right)^{7/2} \sigma_{Th}$ Thomson cross section $\sigma_{Th} = \frac{8}{3} \pi r_e^2 \approx 665 \text{ mb}$

Remember: 1 mb = 10⁻²⁴ cm²

Compton diffusion

- Mechanism: $\gamma + e \rightarrow \gamma' + e'$
 - Scattering of a photon on a quasi free electron

Pair creation

- Mechanism: γ + nucleus \rightarrow e⁻ + e⁺ + nucleus
- Occur in the field of a nucleus only if

$$E_{\gamma} > 2 m_e c^2 \approx 1 \text{ MeV}$$

Cross section at high energy (cm²/atom):

$$\sigma_{Paire} \approx \frac{7}{9} \frac{A}{N_A} \frac{1}{X_0}$$
 Independant of the energy !!

• One introduces λ_{Paire} :

$$\lambda_{Paire} \;=\; rac{9}{7} \, X_0$$

On average, a high energy γ converts into e⁺e⁻ pair after 1
 X₀

Plan

I. Interaction particle-matter

- 1) Heavy charged particles
- 2) Light charged particles
- 3) Photons
- 4) Neutrinos
- II. An example: charged tracks reconstruction

- Neutrinos are only sensitive to weak interaction
 - Very small cross sections
- To detect them, they have to interact:

- Typically, detection efficiencies are of the order of 10⁻¹⁷ in 1 m of iron
 - Neutrino detectors are enormous and have to deal with very high fluxes

Example: UA1

- On colliders, missing energy and momentum are tagged to neutrino(s)
- Allow UA1 to reconstruct the neutrino in:

One need a very strong commitment to theory to say this..

Plan

- I. Interaction particle-matter
- II. An example: charged tracks reconstruction
 - 1) Generalities
 - 2) Ionization detectors
 - 3) Scintillation detectors
 - 4) Semiconductors

 \Rightarrow The sign of the charge is given by the curvature in B field

Momentum measurements in B field

Plan

- I. Interaction particle-matter
- II. An example: charged tracks reconstruction
 - 1) Generalities
 - 2) Ionization detectors
 - 3) Scintillation detectors
 - 4) Semiconductors

- They detect a charged particle by measuring to total charge (electron + ion) deposited in matter
- Detector could be gas, liquid or solid
- If one does not do anything, probability of recombination is very high.
 - To get ionization electron, we need to apply an electric field

Simplest detector: ionization chamber

• Typical values: d = 5 cm and E = 500 V/cm

 $\Box \Delta v^{+} = 7,5 \text{ mm/ms} \text{ and } \Delta v^{-} = 5 \text{ mm/ms}$

- Signals are very small and require either a good electronics or a huge amplification
- Expectation: selection of gas should matter

- Several types of detectors based on their physical process:
 - Recombination (no interest)
 - Ionization chamber
 - All initial charge is collected without amplification
 - Gain ≈ 1
 - Proportional counters
 - Electric field is strong enough to initiate cascade
 - Gain ≈ 10⁴-10⁵

Number of collected ions for α and electrons

- Saturated proportional counters
 - Efield even higher
 - Pulsed HV
 - Gain ≈ 10⁸-10⁹
- Geiger Muller counters
 - All the anode wire is affected
 - Only way to recover is to turn off the HV

Number of collected ions for α and electrons

The simplest proportional counter: a wire

- Electrons drift towards anode wire. Field scale as 1/r. Above a given value: cascade !
 Typical gain: 10⁴ 10⁵
 - Amplification time is typically ns
 - Measurement in one direction only
- Signal proportional to initial charge deposited: dE/dx measurement
- Typically a hundred e-/ion pair
 - □ Not easy to detect: electronics noise ≈ 10 times higher

$$E = rac{C V_0}{2 \pi \epsilon_0} rac{1}{r}$$

MWPC

- Extension of this idea by Charpak et al (1968)
 - MWPC = Multi Wire Proportional Chambers
 - □ Typically: L=5 mm, d=1 mm
- Resolution limited to

$$\sigma \approx \frac{d}{\sqrt{12}}$$

 \Box ie 300 μ m for *d* = 1 mm

Field lines around the wires

Drift chambers

- Main drawback of MWPC: small detection volume
 - $\Box \rightarrow$ drift chambers
- Time measurement allow to measure x coordinate

$$x = \int v_D(t) \, dt$$

- Drawback: control of the electron drift in the gas
 - Diffusion
 - Calibration
 - Slow detection:
 - Typical drift time: 5 cm/ μ s (e⁻), 500 μ m/ μ s (ions)

An example: TPC's

- TPC = Time Projection Chamber
- E//B (solenoid)
- Baseline of detectors for e⁺e⁻ colliders
- Allow 3D reconstruction
 - x and y come from the wire and pad hited
 - □ z come from the time
- Calibration required to know E in the complete volume

1st TPC (PEP-4)

Recent development: GEM

- GEM = Gas Electron Multiplier
 - Foil Cu-Kapton-Cu with holes
 30-50 μm
 - 200 to 400 V between both faces
 - 100 to 1000 e⁻ from a unique e⁻ entering a hole
 - Large detector possible
 - Possibility to put several detectors in a row

(R. Bouclier et al., NIM A 396 (1997) 50)

Recent development: MSGC

- MSGC = Micro Strip Gas
 Chamber
- Small segmentation fine, small cellule (≈ 3-5 mm)
 - No longer fragile wires
 - Fast
 - Based on technologies coming from microelectronics
- Optimized for high fluxes

Initially foreseen for CMS tracker

Plan

- I. Interaction particle-matter
- II. An example: charged tracks reconstruction
 - 1) Generalities
 - 2) Ionization detectors
 - 3) Scintillation detectors
 - 4) Semiconductors

- Two types of scintillators:
 - Inorganic scintillators
 - Dense, high yield, quite slow
 - Ideal for charged particles and γs
 - Expensive !
 - Organic scintillators
 - Light, low yield, quite fast
 - Low detection efficiency for γs
 - Low cost !

- Rising time is very fast (1-2 ns) and much faster than ioniation detectors
 - Used for trigger and time of flight systems
- Decrease of the signal is very slow (time constant ≈ 100-200 ns)

- Linear response (except low energy): calorimetry !
- Photons have to go through matter to arrive to the photon detection area. Number of transmitted photons is:

$$N(x) = N_0 \exp\left(-\frac{x}{\lambda}\right)$$
 λ : attenuation length

For large dimension detector, we need, $\lambda \approx 1$ m or higher

Time

Inorganic scintillators

- Two types
 - Cristals (NaI, BaF₂, BGO, PbWO₄, ..)
 - Very often several time constants (from 1-2 ns to 100 ms) and not always the same wavelength (typically 200-500 nm)

- Very high sensitivity to temperature
- 10^3-10^4 photons/MeV, except for PbWO₄ (~ 100)

BaBar: CsI(TI) : 16 X_0 L3: BGO : 22 X_0 CMS: PWO(Y) : 25 X_0

« L » means « liquid »

- Noble liquids (LAr, LXe, LXr)
 - Several time constants (100 to 1000 ns), but same wavelength (120-170 nm)
 - 4 10⁴ photons/MeV for LXe
 - drawback: cryogenics temperatures
- In both cases, fluorescence is due to intermediate states form impurities in matter

Organic scintillators

- Usually called scintillators (liquid or plastic)
 - Mix (delicate) of a main component with impurities whose role is to shift the radiation towards higher wavelengths: Wave Length Shifting (WLS)
 - Those impurities absorb scintillation photons and emit photons very quickly (~ 1 ns) with a wavelength easier to detect (typically from 300 to 500 nm)

		a a lavant	a a a a a d a mu	to at any
		solvent	secondary	ternary
			fluor	fluor
	Liquid	Benzene	p-terphenyl	POPOP
	scintillators	Toluene	DPO	BBO
		Xylene	PBD	BPO
Some examples	Plastic	Polyvinylbenzene	p-terphenyl	POPOP
	scintillators	Polyvinyltoluene	DPO	TBP
		Polystyrene	PBD	BBO
				DPS

- Tracking:
 - Round, square or hexagonal fibers, ...

Plan

- I. Interaction particle-matter
- II. An example: charged tracks reconstruction
 - 1) Generalities
 - 2) Ionization detectors
 - 3) Scintillation detectors
 - 4) Semiconductors

- Semiconductors are a special type of ionization detectors: instead of exciting (or ionizing), a charged particle crated quasi free e-/holes pairs
 - Charged are collected by an electric field
- One uses:
 - silicon: charged particles and photons
 - germanium: photons
- ≈ 3 eV are needed to create a pair e-/home (for Si and Ge), ≈ 30 eV for a ionization detector and ≈ 300 eV for a scintillator !!

Conclusions

- Particle interaction with matter treated with Bethe-Block formalism is enough in most cases
- This is the root for all sensitive devices