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What we learned so far (previous lecture)
Estimating a parameter

• Build a likelihood L(for the 
measurement 

• Compute = -2 log Ldata(), 
as a function of 

• Find the minimum of 
 Minimum is reached for .θθ

• Move the parameter up and down to get 
θθup )θθ  andθθdown( )θθ . 
Then downupis a 68% confidence interval for θ=θ̂−σdown

+σup
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Relation with 2

• 2: say you measure θθ
1
...θθ

n
 with reference 

values θ*
1
...θ*

1
, an uncertainty . Then

• If good agreement : 2/n ~ 1. 
• If θθ

i 
are Gaussian (with same θ*

i
 and  as in the 2 expression), 

then 2 follows a 2 distribution with n degrees of freedom, 2
n(x)

• Now go back to the likelihood picture,  assume Gaussian 
measurements:

• So
–  is like a 2

– L is exp(-2/2)
–  is ~ 2

n . Quantiles :  
• for n=1, same as Gaussian
• For n>1, look up the values...

χ
2
=∑

i=1

n

( θ̂i−θi
*

σ )
2

L=∏
i=1

n

e
−

1
2

( θ̂i−θi
*

σ )
2

λ=−2 log L=∑
i=1

n

( θ̂i−θi
*

σ )
2

Nsigmas 2
1 2

2
1-

1 1 2.30 0.68

1.645 2.71 4.61 0.90

1.96 3.84 6.00 0.95
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This Lecture
• “Hypothesis testing” : determining if a statement is true or not.

• We focus on 2 particular statements:

– Discovery 
• Does a new particle exist ?
• Do we have evidence for a new process ?
• Useful when we saw something unusual

– Upper limits
• Useful if we didn't see anything
• Determine how small the signal must be
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Example: Discovery
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Example: Discovery
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Example: Upper Limits
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Hypothesis testing
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Hypothesis Testing: Setup
• We define 2 mutually exclusive “hypotheses” = regions of 

parameter space Usually:
– H0 (“null”) = no signal (e.g. no Higgs, =0)

– H1 (“alternative”) = something new (e.g. Higgs, =1)

• We want to use data to make a statement on the hypotheses
– data favors H0 : nothing new

– data favors H1 : discovery!

=0 =1 

H0 H1
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Possible Outcomes in Hypothesis Testing

Data disfavors H0 
(Discovery claim)

Data favors H0

(Nothing found)

H0 is false 
(New physics!)

Discovery! Missed discovery

H0 is true 
(Nothing new)

False discovery 
claim

No new physics, 
none found
Not very exciting 
but correct



11

Classic Discoveries (1)

Discovery 
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Z0 Discovery

Huge signal
S/B~50
Several 1000 events

(almost) no background
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Classic Discoveries (2) ' : discovered online 
by the (lucky) shifters

First hints of top at D0: 
O(10) signal events, 

a few bkg events, 2.4



13

Aside : Why we need Statistical Tools now
• The high-signal, low-background experiments have been done 

already (but a surprise at 13 TeV would be welcome...)
• At LHC:

– High background levels, need precise modeling
– Large systematics, need to be treated correctly
– Small signals: need optimal use of available information :

• Shape analyses instead of counting
• Isolation of signal-enriched regions (categories)
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A Classic Miss
H. Christenson, L. Lederman, et al., 
PRL 25(21) 1523 (1970)

“Lederman
Shoulder”
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A Classic Miss
H. Christenson, L. Lederman, et al., 
PRL 25(21) 1523 (1970)

4 years later...

“Lederman
Shoulder”
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A Classic Miss
H. Christenson, L. Lederman, et al., 
PRL 25(21) 1523 (1970)

4 years later...

“Lederman
Shoulder”

“ I think it's important to emphasize that this story is one of 
missed opportunities, abysmal judgment, monumental 
blunders, stupid mistakes, and inoperative equipment.

(...)

This experiment, properly carried out, would have produced 
results that won five Nobel prizes!”

L. Lederman,  “The Rise of the Standard Model”
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Discoveries that weren't

 Phys. Rev. Lett. 91, 252001 (2003)

Feb. 2015 : arXiv:1502.00612

UA1 Monojets (1984)

Pentaquarks (2003) BICEP2 B-mode Polarization (2014)

5.8
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Errors in Hypothesis Testing
Data disfavors H0 Data favors H0

H0 is false Discovery, OK Missed discovery
Type-II error ()

H0 is true False discovery
Type-I error ()

No Discovery, OK

Avoid false discoveries : lower  make it harder to reject H0

 also makes it harder to reject H0 when it is false : increase 
Usually : 
● Fix p-value  to a small value
● Goal find the method giving 

the smallest  for this .
● Equivalently, maximize Power = 1- 

Nsigmas 1- p-value

1 0.68 0.32

3 0.997 0.003

5 0.999999 6 10-7
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Statistic
• Idea: build some a discriminant q from the data to test H0.
• q has different distributions

if H0 is true or H1 is true
• Looking for q such as 

– low values of q  favor H0

– high values of q  favor H1

– High separation between
the two distributions

• Define a critical value qc.
Then for the value qobs computed from data,

– qobs < qc  choose H0 (“accept H0”) => Claim no discovery
– qobs > qc  choose H1 (“exclude H0”) => Claim discovery!

H1H0
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Statistic
• Idea: build some a discriminant q from the data to test H0.
• q has different distributions

if H0 is true or H1 is true
• Looking for q such as 

– low values of q  favor H0

– high values of q  favor H1

– High separation between
the two distributions

• Define a critical value qc.
Then for the value qobs computed from data,

– qobs < qc  choose H0 (“accept H0”) => Claim no discovery
– qobs > qc  choose H1 (“exclude H0”) => Claim discovery!

H1H0

qc

p-value ()

powerType-II 
error ()
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Statistic
• Idea: build some a discriminant q from the data to test H0.
• q has different distributions

if H0 is true or H1 is true
• Looking for q such as 

– low values of q  favor H0

– high values of q  favor H1

– High separation between
the two distributions

• Define a critical value qc.
Then for the value qobs computed from data,

– qobs < qc  choose H0 (“accept H0”) => Claim no discovery
– qobs > qc  choose H1 (“exclude H0”) => Claim discovery!

H1H0

qc
qobs

p-value ()

powerType-II 
error ()
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Neyman-Pearson Lemma
• Define q from likelihoods:

– Compute for H0 : L(H0; data) = L((H0); data) e.g. =0

– Compute for H1 : L(H1; data) = L((H1); data) e.g. =1

• Then LR = L(H1; data)/L(H0; data) obviously carries information:

– Data is H0-like : L(H1; data) small, L(H0; data) large  small LR
– Data is H1-like : L(H1; data) large, L(H0; data) small  large LR

• Neyman-Pearson lemma: The Likelihood ratio is actually 
optimal – it carries the maximum available information

• In practice 
use :

q=−2 log
L(H 0 ;data)

L(H1 ;data)
=λ(H 0 ;data)−λ(H1 ;data)



23

What we learned so far (1)
• When testing hypotheses 2 types of potential errors:

– False discoveries
• probability to happen = p-value

– Missed discoveries
• probability to happen = 1-power

• Optimal: use likelihood-ratio statistic for decision:

• Highest power for a given (small) -value, and vice-versa.
• High values of q  discovery

q=−2 log
L(H 0 ;data)

L(H1 ;data)
=λ(H 0 ;data)−λ(H1 ;data)
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Testing for Discovery
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Profile Likelihood Ratio
• Sometimes an hypothesis corresponds 

to a range of values:
– “Any Higgs” : >0  (not just =1)
– Additional parameters:  e.g. mH can have any value.

• Many values of L(H; data) to consider – which one to take ?
•  Take the one that Maximizes the Likelihood within H.

– Give the hypothesis its “best chance” (highest L)
• Discovery test: H0 : =0,  H1 : >0

– L(H0, data) = L(=0; data)
– L(H1, data) = L(μθ ; data)
– q0 gives similar information to  :μθ

•  μθ ~ 0 : L(μθ) ~ L(0) q0 ~ 0
• | | μθ  1 ≫ : L(μθ)  L(0) ≫  q0  1≫

H0
H1

=0 =1
H1

H0

q0=−2 log
L(μ=0)

L(μ̂)
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Wilks' Theorem
• We have q0 = (0) - (μθ)
• Gaussian likelihood: 

(μ) - (μ θ) = (μ - μθ)2/σ2

• So q0 = μθ 2/σ2

• So q0 = square of a Normal-distributed variable : 
follows a 2 distribution So also same quantiles:

P(q0>n2)=P(|x|<n)

Z Region p-value

1 q0 > 1 0.32
3 q0 > 9 0.003
5 q0 > 25 6 x 10-7

square
μθ/σ q0 = μθ2/σ2 

Significance (p-value in number of sigmas) : Z=√q0
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Trivial Examples
• Gaussian Counting, fixed B.

– (S) = (N – (S+B))2/(B)2

Reminder: 
• Best fit signal : S = N-B
• 68% CI : [S–B, S+B]

– Now we compute the significance:
• q0 = (0) – (S) = (N-B)2/B

• So Z = (N-B)/B = S/B
• Multiple Gaussian Measurements:

– Two indep. measurements, likelihoods L1 and L2

– L = L1L2  q0 = q0,1 + q0,2 

Z2 = Z1
2 + Z2

2 : significances add in quadrature

S+B

B

N
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Our Usual Example
• Use pseudo-data generated with 

s=200, mH=125 GeV
• We had
• So we expect Z = 181/33 = 5.5
• q0 = (0) – (μθ) = 33.6 Z=5.8
• Small difference due to residual non-Gaussianity

s=181−33
+34

unzoom
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Wilks' Theorem (2)
• Testing using q0 is equivalent to using  , μθ so why use q0 ?

– In case of non-Gaussianity, q0 is generally more robust
– Simple treatment for additional parameters:

• Wilks' theorem: if we have L(, ), where q can stand for 
many parameters, then compute q0 as

Where 
– θθ     = value of θ at Lmax, with  also free (within H1)

– θθ=0 = value of θ at Lmax, with fixed =0 (within H0)
Then q0 is still distributed as a 2. 
In other words, “nuisance parameters” can be “profiled away” 
and do not need special treatment.

q0=−2 log
L(μ=0, θ̂μ=0)

L(μ̂ , θ̂)
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Our Usual Example, Again
• Same as before, but now let the

background parameters b and  free

• q0 = (0, αα0, bα0) – ( , , μθ αθ bb )

• Now b can vary: bα0 = 10k but  bα = 9800
due to some events going into the signal for >0.

• Slope parameter  can also vary

•  q0 = 37.0, Z = 6.1.

slope 

b
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Real-Life: p0 vs. mH for H  
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What we learned so far (2)
Testing for discovery

• As usual, start with a likelihood 
L(for the measurement 

• Compute = -2 log Ldata(), 
as a function of 

• Find the minima of 
– For no signal
– In the presence of signal
– Compute q0 : 

• Compute the p-value for discovery assuming a 2 distribution. 
For a single signal parameter just use

Z Region p-value

1 q0 > 1 0.32
3 q0 > 9 0.003
5 q0 > 25 6 x 10-7

q0=−2 log
L(μ=0)
L(μ̂)

Z=√q0
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Setting Limits
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Hypothesis tests for Limits
• If no signal in data, testing for

discovery is not very relevant 
(report 0.2 excess ?)

• More interesting to exclude
large values of 

• For discovery, hypotheses were:
– Try to exclude H0 : =0
– Alternative : H1 : >0

• For limit-setting:
– Try to exclude H0 : =0

– Alternative : H1 : <0

• Usually, adjust 0 until a given p-value is reached (typically 95%)
• Interesting p-values (“Confidence Levels”, CL) typically lower 

than for discovery (95%  1.96)

H0

=0 

H0
H1

H1

Discovery

Limit-Setting

?
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Hypothesis tests for Limits
• If no signal in data, testing for

discovery is not very relevant 
(report 0.2 excess ?)

• More interesting to exclude
large values of 

• For discovery, hypotheses were:
– Try to exclude H0 : =0
– Alternative : H1 : >0

• For limit-setting:
– Try to exclude H0 : =0

– Alternative : H1 : <0

• Usually, adjust 0 until a given p-value is reached (typically 95%)
• Interesting p-values (“Confidence Levels”, CL) typically lower 

than for discovery (95%  1.96)

H0

=0 

H0
H1

H1

Discovery

Limit-Setting

OK ?
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Hypothesis tests for Limits
• If no signal in data, testing for

discovery is not very relevant 
(report 0.2 excess ?)

• More interesting to exclude
large values of 

• For discovery, hypotheses were:
– Try to exclude H0 : =0
– Alternative : H1 : >0

• For limit-setting:
– Try to exclude H0 : =0

– Alternative : H1 : <0

• Usually, adjust 0 until a given p-value is reached (typically 95%)
• Interesting p-values (“Confidence Levels”, CL) typically lower 

than for discovery (95%  1.96)

H0

=0 

H0
H1

H1

Discovery

Limit-Setting

Not OK ?
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Statistic for Limit-Setting

• For discovery :
– H0 : =0
– H1 : 0

• For limit-setting
– H0 : =0

– H1 : 0

q0=−2 log
L(μ=0, θ̂μ=0)

L(μ̂ , θ̂)

Compare
Likelihood of H0

Likelihood of H1



H0H1

qμ0
=−2 log

L(μ0, θ̂μ0
)

L(μ̂ , θ̂)

Compare
Likelihood of H0

Likelihood of H1

=0

H0

H1

μθ  ~ 0 (no exclusion) : q0 ~ 0
μθ   ≪ 0 (good exclusion) : q0  ≫ 1 

Same as q0 : large values 
 good rejection of H0.
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Distribution for q

• Gaussian case: (μ) - (μ θ) = (μ - μ̂)2/σ2 
• We have q0 = (0) – (μθ) = (μα-μ0)2/σ2

– Under H0(=0), μα ~ G(μ0,σ), 
 (μα-μ0)/σ is Normal-distributed   q0 has a 2 distribution

• All the q have the same distribution. 
• The observed q,obs are 

different : q,obs higher for 
larger 

Z Region CL

1.64 q > 2.70 0.90
1.96 q > 3.84 0.95
2.58 q > 6.63 0.99

q,obs q1,obs

p-value 

for q1,obs 
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Finding the limit
• Compute q,obs for various .

• Find the  for which q,obs gives the
required p-value (e.g. 5% for 95% CL)

q1,obs

p-value 

for q1,obs 

Z Region CL

1.64 q > 2.70 0.90

1.96 q > 3.84 0.95

2.58 q > 6.63 0.99

q = 3.84
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Finding the limit
• Compute q,obs for various .

• Find the  for which q,obs gives the
required p-value (e.g. 5% for 95% CL)

q2,obs

q1,obs

p-value 

for q1,obs 

Z Region CL

1.64 q > 2.70 0.90

1.96 q > 3.84 0.95

2.58 q > 6.63 0.99

q = 3.84
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Finding the limit
• Compute q,obs for various .

• Find the  for which q,obs gives the
required p-value (e.g. 5% for 95% CL)

q2,obs

q1,obs

p-value 

for q1,obs 

Z Region CL

1.64 q > 2.70 0.90

1.96 q > 3.84 0.95

2.58 q > 6.63 0.99

q = 3.84

q,obs

 < 3 @ 95% CL
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Gaussian Example

Gaussian Counting, fixed B.
• (S) = (N – (S+B))2/(B)2

• Reminder: 
– Best fit signal : S = N-B
– 68% CI : [S–B, S+B]

– Significance: S/B

• Now we compute the 95% CL upper limit on S:
• qS = (S) – (S) = (N – (S+B))2/B = (SS)2/B

• qS=3.84 (SS)/B = 1.96 S = S + 1.96B

So at 95% C.L., S < S + 1.96B

S+B

B

N
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Our Usual Example
• Same as before, but now generate

a dataset with s=0
• Best-fit s=47±31
• 95% CL limit on s in Gaussian

approximation: 47+1.96*31 = 107.8
• Compute qs using the usual 

extended likelihood: L(s ,b ,θ ;m1 ...mnobs
)=e−(s+b) ∏

i=1

nobs

s Psignal(m)+bPbkg(m)

qs = 3.84

p = 0.05

s < 109.7 
@ 95% CL

 p-value from
 2 distribution
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Expected Limits
• “Expected” results: median outcome 

under given hypothesis, usually B-only
• From toys:

– Generate pseudo-data in B-only hypo
– Compute limit
– Repeat and histogram the results, report median & quantiles

• From Asimov Datasets
– Alternative: generate a “perfect

dataset” without fluctuations
(by setting bin contents carefully)

– Gives the median immediately
– Bands from Gaussian approximation

(see Asimov paper)
⊖ relies on Gaussian approximation
⊕ Much faster (1 “toy”)

limit

95% of 
toys

68% of toys

median
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Real-Life Example: Limits on X

Phys. Rev. Lett. 113, 171801
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One-sided vs. Two-Sided : Discovery
• If || 1≫  but <0 is it a “discovery” (rejects =0 hypothesis) ?
• Both treatments are possible, but usually no (A signal is positive!)
• Change statistic so that <0  q0=0 (perfect agreement)

H1
=0H0=0H0

H1

Yes : Two-sided treatment No : One-sided treatment

q0=−2log
L(μ=0)
L(μ̂)

q0={−2 log
L(μ=0)

L(μ̂)
μ̂≥0

0 μ̂<0

Z 2-sided 1-sided

1 0.32 0.16

2 0.045 0.022

3 0.003 0.0015

5 6 x 10-7 6 x 10-7

Factor of 2 in 
p-values for 
a given Z

H1
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Real-Life H  Z 2-sided 1-sided

1 0.32 0.16

2 0.045 0.022

3 0.003 1.5 x 10-7

5 6 x 10-7 3 x 10-7
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One-Sided vs. Two-Sided limits
• Same issue for limits: if μθ > , does that help reject the  hypo ? 
• Usually no: only reject  if signal is too low (“upper” limit)
• Again, p-values divided by 2
• “Magic number” for 95% CL 

limits is 1.64 for 1-sided case 
(recall: 1.96 for 2-sided)

• 2-sided

• 1-sided

qμ=−2 log
L(μ)

L(μ̂)

qμ= {−2 log
L(μ)

L(μ̂)
μ̂≤μ

0 μ̂>μ

Z 2-sided 1-sided

1.64 0.90 0.95

1.96 0.95 0.975

H1  H0

H0H1 H1
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What we learned so far (3)
Setting Limits

• As usual, start with a likelihood 
L(for the measurement 

• Compute = -2 log Ldata(), 
– For the best-fit signal μθ
– For fixed signal hypotheses 0

– Compute q : 

• Compute p-values in data assuming a 2 distribution. Adjust the 
hypothesis 0 so that the p-value is 5% (for a 95% exclusion)

– This corresponds to adjusting 0 so that q=1.642 or 1.962 

qμ0
=−2 log

L(μ0)

L(μ̂)

Z 2-sided 1-sided

1.64 0.90 0.95

1.96 0.95 0.975
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Additional Topics
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A Limit-Setting Issue
• Limit ~ μθ + 1.96

• Problem: 
– for negative ,μθ  get very 

good (too good) limits. 
– For  sufficiently negative, 

can have limit < 0! 
• How can this be ?

– This is a 95% limit
 5% of the time, the limit 
wrongly excludes the true 
value.

– If we assume  must be >0,  
we know these are “wrong” 
cases  

Special procedure for <0μθ   
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Sensitivity to 
• When setting limits, goal is to exclude 

large  to indicate that ~0.
• Investigate the =0 hypothesis:

– Normal case: ~0μθ , so =0 not 
excluded : large p-value.

– Pathological case, <0μθ , so not 
compatible with =0, which is also 
excluded : p-value for =0 also 
small

Bad case: large  and ~0 both 
excluded : no sensitivity in >0 region 
!

q,obs

=0


p=5% for 

large p 
for 

q,obs

=0


p=5% for 

small p
for 


H0H1

=0


H0H1

=0

μθ

μθ
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CLs

• Fix method to avoid unphysical limits. 
Usual solution in HEP: CLs.

• Compute modified p-value ps+b / pb  

– ps+b is the usual exclusion CL (5%)

– pb is the p-value for =0

– Rescale the ps+b by the p-value for 
=0 : use =0 exclusion as reference

• “Good case” : pb ~ 1
CLs~ ps+b ~ 5%, no change.

• “Pathological case” : pb  1≪
CLs~ ps+b/pb  5%≫

• So worse limit, as we wanted
• Drawback: overcoverage (e.g. 98% limit)

pbps+b

=0




=0
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Systematic Uncertainties
• The uncertainties we have dealt with so far are statistical 

uncertainties
– “Random noise”, not correlated between events
– Decrease with n, usually as 1/n.

• Systematics
– Can have anderlying bias in the measurement

• If we can correct for it, we do
• If not possible (small, hard to measure,...), treat it as an 

uncertainty : systematic uncertainty
– Same for all the events : does not improve with more data

Systematic Statistical
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Nuisance Parameters and Systematics
• Models usually have “Nuisance parameters” : not useful but 

needed to describe the data.
– e.g. background yield 

& shape parameters
– NPs can often be fitted in data

• What if not ?
• Related issue: systematics

– Example: signal efficiency in Hgg
Signal yield : s = sSM with  = signal eff, sSM total SM yield
Get  from signal MC, but how to account for uncertainty ?

• Systematic Uncertainty, not related to the data itself.
• Solution : promote  to a free parameter
• But  cannot be fitted from data (degenerate with )

• Each systematic  a NP – but how to fit their values ?

slope 

b


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Auxiliary measurement
• Solution: get more information!
• Back to efficiency: 

– Often estimated from a “control sample” e.g. Zee for 
electrons or photons

– Separate measurement, but relevant for this result
=> Combine the measurements:

• Zee “auxiliary measurement” determines 
• H main measurement determines the rest

– Use likelihood combination
H   Zee

L( data) L(Z data)

Slope 
L( data; ) L(Z data; )

=
L(+Z data)

From H From Zee
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Systematics In Practice
• Not practical to include a full auxiliary measurement for each 

systematic!
• Include a simplified likelihood: L(Z data) = G(data; , ) 

• No necessary to know the details
of the auxiliary measurement:
central value and uncertainty are usually sufficient

• Almost always use Gaussian PDFs or similar (log-normal), 
although often not well-motivated

• Can also be used in cases where the auxiliary measurement is 
hard to define – e.g. theory uncertainties

Central value Uncertainty
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Trivial Example
• Back to our counting experiment 

with background: 
L(S, B; n) = G(n; S+B, S)  S~B

• But assume B is not known a priori,
but measured in the sideband
LSB(B; nSB) = G(nSB; B, SB)

• Combine: (S, B; n, nSB)= (n-S-B)2/S
2 + (B-nSB)2/SB

2

• Ŝ=(n – nSB), Bb=nSB

• Profile B:
• So (S)-(Ŝ)= (S-Ŝ)2/2  

with  2 = S
2 + SB

2 B

S

S+B


N

B̂S=
σSB

2
(n−S)+σS

2nSB

σSB
2

+σSB
2

Statistical Uncertainty Systematic Uncertainty
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Trivial Example

S

(
S)

-
(Ŝ

)
Without systematics

With systematics
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Real-Life: Systematics from H  

Log-Normal

Gaussian
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Conclusions
• We have reviewed most of the important topics for HEP:

– Estimating a parameter
– Computing discovery significances
– Computing Limits

• Will be put into practice at tutorials on these topics:
– Today 16:00 – 18:00
– Tomorrow, same time
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