An ultra-short course on General Relativity

David Langlois (APC, Paris)

Astroparticules et Cosmologie

Outline

- 1. Introduction
- 2. Geometric tools
- 3. Einstein's equations
- 4. Main physical applications
 - Compact objects
 - Gravitational waves
 - Cosmology

Introduction

General relativity (1915)

- How to extend special relativity to describe gravitation ?
- Gravitation: geometrical deformation
 of Minkowski spacetime
- The spacetime geometry depends on the matter content

• Einstein equations extend Poisson equation $\Delta U = 4\pi G \rho_m$

Newton vs Einstein

• Einstein

Free motion in a curved spacetime

$$m \, \vec{a}_{\text{eff}} = 0$$
$$\vec{a}_{\text{eff}} = \vec{a} + \vec{\nabla} \phi_g$$

Geometrical tools

Geometry & metric

• Fundamental object: metric

$$d\ell^2 = g_{ij} \, dx^i \, dx^j \qquad \qquad ds^2 = g_{\mu\nu} \, dx^\mu \, dx^\nu$$

• Measuring distances: $d(A,B) = \int_{A}^{B} d\ell$

• Change of coordinates: $x^i \longrightarrow \tilde{x}^k$

$$d\ell^2 = g_{ij} \, dx^i \, dx^j = g_{ij} \, \frac{\partial x^i}{\partial \tilde{x}^k} \, \frac{\partial x^j}{\partial \tilde{x}^l} \, d\tilde{x}^k \, d\tilde{x}^l \equiv \tilde{g}_{kl} \, d\tilde{x}^k d\tilde{x}^l$$

Geometry & metric

• Metric as a scalar product

$$\boldsymbol{g}(\boldsymbol{u},\boldsymbol{v}) = g_{ij} \, u^i \, v^j$$

• Vectors can be seen as (directional) derivative operators

 \frown

For any function f,
$$\boldsymbol{u}(f) := u^i \frac{\partial f}{\partial x^i}$$

Hence the notation

$$\boldsymbol{u} = u^i \, \frac{\partial}{\partial x^i}$$

• Change of coordinates

$$\boldsymbol{u}(f) = u^i \frac{\partial f}{\partial x^i} = \tilde{u}^k \frac{\partial f}{\partial \tilde{x}^k} \qquad \qquad \tilde{u}^k = \frac{\partial \tilde{x}^k}{\partial x^i} u^i$$

Tensors

• One can also consider arbitrary **tensors**, whose components are labelled by several indices.

$$F_{\mu\nu} := \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

- Mathematically: multilinear maps of vectors or covectors
- One can distinguish – Covariant indices: $\tilde{u}_{k} = \frac{\partial x^{i}}{\partial x^{i}}$

$$\tilde{u}_k = \frac{\partial x^*}{\partial \tilde{x}_k} u_i$$

$$\tilde{u}^k = \frac{\partial \tilde{x}^k}{\partial x^i} u^i$$

Example: polar coordinates

• In 2-dimensional Euclidean geometry

 $x = r\cos\theta, \qquad y = r\sin\theta$

• Metric

$$d\ell^{2} = dx^{2} + dy^{2} = dr^{2} + r^{2} d\theta^{2}$$

• Vectors

$$\boldsymbol{v} = v^x \frac{\partial}{\partial x} + v^y \frac{\partial}{\partial y} = v^r \frac{\partial}{\partial r} + v^\theta \frac{\partial}{\partial \theta}$$

 $v^{x} = \cos \theta v^{r} - r \sin \theta v^{\theta},$ $v^{y} = \sin \theta v^{r} + r \cos \theta v^{\theta}.$

Covariant derivative

• Derivation of a vector field valid in arbitrary coordinates ?

 $\frac{\partial v^i}{\partial x^j}$ are not the components of a tensor.

Example: constant vector field

$$\boldsymbol{u} = \frac{\partial}{\partial x} = \cos\theta \, \frac{\partial}{\partial r} - \frac{1}{r} \sin\theta \, \frac{\partial}{\partial \theta}$$

Covariant derivative

$$\nabla_i v^k \equiv \partial_i v^k + \Gamma_{ij}^k v^j \qquad \Gamma_{ij}^k = \frac{1}{2} g^{kl} \left(\partial_i g_{jl} + \partial_j g_{li} - \partial_l g_{ij} \right)$$

-

Christoffel symbols

• Polar coordinates:

$$\Gamma_{\theta\theta}^{r} = -r, \quad \Gamma_{r\theta}^{\theta} = \Gamma_{\theta r}^{\theta} = \frac{1}{r} \qquad \nabla \boldsymbol{u} = 0$$

Covariant derivative

• For arbitrary tensor fields

$$\nabla_i T^{j_1 \dots j_p}_{k_1 \dots k_q} = \partial_i T^{j_1 \dots j_p}_{k_1 \dots k_q} + \sum_{r=1}^p \Gamma^{j_r}_{i \ l} T^{j_1 \dots l \dots j_p}_{k_1 \dots k_q} - \sum_{s=1}^q \Gamma^{l}_{i \ k_s} T^{j_1 \dots j_p}_{k_1 \dots l \dots k_q}$$

• For the metric tensor

$$abla_k g_{ij} = 0$$
 by construction

Motion of a particle

- Newtonian physics
 - Parameter: time t
 - Trajectory: $x^i(t)$
 - Velocity $v^i \equiv \frac{dx^i}{dt}$
 - Acceleration $a^i \equiv v^k \nabla_k v^i$

$$a^k \equiv v^i \nabla_i v^k = \frac{dv^k}{dt} + \Gamma^k_{ij} \, v^i v^j$$

e.g. in polar coords

$$a^r = \ddot{r} - r\dot{\theta}^2, \quad a^\theta = \ddot{\theta} + \frac{2}{r}\,\dot{r}\,\dot{\theta}$$

- Relativistic physics
 - Parameter: proper time au
 - Trajectory: $x^{\mu}(\tau)$

– Velocity
$$v^{\mu}\equiv rac{dx^{\mu}}{d au}$$

- Acceleration
$$a^{\mu} \equiv u^{\sigma} \nabla_{\sigma} u^{\mu}$$

Curvature

• How to distinguish a curved space(-time) from a flat one ?

 In flat spaces, vectors are unchanged after parallel transport along a loop.
 Not always in curved spaces...

Curvature

 Consider an infinitesimal loop and the parallel transport of a vector along two paths.

$$\tilde{v}^{\sigma}(p_2) - v^{\sigma}(p_2) = R_{\mu\nu\alpha}{}^{\sigma} v^{\alpha} \delta_1 x^{\mu} \delta_2 x^{\nu}$$
$$R_{\mu\nu\alpha}{}^{\sigma} = \partial_{\mu} \Gamma^{\sigma}_{\nu\alpha} - \partial_{\nu} \Gamma^{\sigma}_{\mu\alpha} + \Gamma^{\sigma}_{\mu\beta} \Gamma^{\beta}_{\nu\alpha} - \Gamma^{\sigma}_{\nu\beta} \Gamma^{\beta}_{\mu\alpha}$$

Riemann curvature tensor

• This tensor characterizes the curvature of spacetime (or space). It vanishes for flat spacetimes (or spaces).

Einstein's equations

Gravitation in relativity

- Gravitation due to the **deformation of spacetime**
- Consider a spherically symmetric spacetime

 $ds^{2} = -\left[1 + 2U(r)\right]dt^{2} + \left[1 + 2V(r)\right]dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\phi^{2}\right)$

• Free motion of a particle in this spacetime: $a^{\mu}\equiv u^{\sigma}
abla_{\sigma}u^{\mu}$

$$\frac{d^2 x^{\lambda}}{d\tau^2} + \Gamma^{\lambda}_{\mu\,\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} = 0$$

In the nonrelativistic limit, one gets

$$\frac{dv^i}{dt} \simeq -\partial^i U$$

Fictitious force ! (with U as Newtonian potential)

Einstein equations

- How to determine $g_{\mu\nu}$?
- Goal: find the relativistic version of Poisson's equation

 $\Delta U = 4\pi G \ \rho_m$

• Distribution of matter

 $\rho_m \longrightarrow \rho$

For a particle, P^{μ} is conserved, as well as its charge Q

For a distribution of particles

- Current vector $j^{\mu} = \rho_{_Q} u^{\mu}$
- Stress-energy-momentum tensor $T^{\mu
 u}$

Einstein equations

- Equations of the form $G_{\mu
 u} \propto T_{\mu
 u}$
- Gravitational tensor ?
 - must depend on second derivatives of the metric
 - must satisfy $abla_{\mu}G^{\mu
 u}=0$, since $abla_{\mu}T^{\mu
 u}=0$

From the Riemann tensor, one can construct the Ricci tensor:

 $R_{\mu\nu} \equiv R_{\lambda\mu\nu}^{\lambda}$ $\nabla^{\mu}G_{\mu\nu} \equiv \nabla^{\mu}(R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}) = 0$ $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$

Einstein-Hilbert action

 Einstein's equations can also be derived from a variational principle

$$S_{EH}[g_{\mu\nu}] = \frac{1}{16\pi G} \int d^4x \sqrt{-g} R$$
$$R \equiv g^{\mu\nu} R_{\mu\nu}$$

Variation of the action

 $\delta S_{EH} = \frac{1}{16\pi G} \int d^4x \left[\delta(\sqrt{-g})R + \sqrt{-g} \,\delta(g^{\mu\nu})R_{\mu\nu} + \sqrt{-g} \,g^{\mu\nu} \delta R_{\mu\nu} \right]$

Using $\delta g = g g^{\rho\sigma} \delta g_{\rho\sigma}$ and $\delta g^{\mu\nu} = -g^{\mu\rho} g^{\nu\sigma} \delta g_{\rho\sigma}$

as well as $g^{\mu\nu}\delta R_{\mu\nu} = \nabla^{\lambda} \left[-g^{\rho\sigma} \nabla_{\lambda} \delta g_{\rho\sigma} + g^{\rho\sigma} \nabla_{\rho} \delta g_{\lambda\sigma} \right]$

one gets
$$\delta S_{EH} = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left[\frac{1}{2} R g^{\rho\sigma} - R^{\rho\sigma} \right] \delta g_{\rho\sigma}$$

Einstein-Hilbert action

• One can include matter via the action

$$S_m[\phi, g_{\mu\nu}] = \int d^4x \sqrt{-g} \,\mathcal{L}_m$$

• Defining the energy-momentum tensor as

$$T^{\mu\nu} \equiv \frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}\,\mathcal{L}_m)}{\delta g_{\mu\nu}}$$

the variation of the total action yields

$$\delta S_{EH} + \delta S_m = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left[\frac{1}{2} R g^{\rho\sigma} - R^{\rho\sigma} + 8\pi G T^{\rho\sigma} \right] \delta g_{\rho\sigma}$$

Solution of Einstein's equations

- Einstein's equations are extremely difficult in general
- One often imposes symmetries to solve them
- Spherical symmetry (and staticity) in vacuum

$$ds^{2} = -e^{\nu(r)}dt^{2} + e^{\lambda(r)}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\phi^{2}\right)$$

• Solving vacuum Einstein's equations, one finds

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r}\right)c^{2}dt^{2} + \left(1 - \frac{2GM}{c^{2}r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

Schwarzschild metric (1916)

Geodesics in Schwarzschild

• Metric

$$ds^{2} = -(1 - 2m/r) dt^{2} + \frac{dr^{2}}{1 - 2m/r} + r^{2} \left(d\theta^{2} + \sin^{2} \theta \, d\phi^{2} \right)$$

- Free particle with velocity $u^{\mu} = \{\dot{t}, \dot{r}, \dot{\theta}, \dot{\phi}\}$
- Integrals of motion of geodesic eq

$$\frac{d^2 x^{\lambda}}{d\tau^2} + \Gamma^{\lambda}_{\mu\,\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} = 0$$

- Energy: $E\equiv (1-2m/r)~\dot{t}$
- Angular momentum $L\equiv r^2\sin^2 heta\,\dot{\phi}$

- Normalization
$$-(1-2m/r)\dot{t}^2 + \frac{\dot{r}^2}{1-2m/r} + r^2\left(\dot{\theta}^2 + \sin^2\theta\,\dot{\phi}^2\right) = -1$$

Geodesics in Schwarzschild

Radial integral of motion

For the Sun, the relativistic correction is proportional to

$$m = \frac{GM_{\odot}}{c^2} \simeq 1.5 \text{ km}$$

Trajectories of planets

• Newtonian theory: $\frac{1}{r} = \frac{1}{\bar{r}} (1 + e \cos \phi), \quad \bar{r} \equiv \frac{L^2}{Mc^2}$ • General relativity: $\frac{1}{r} \simeq \frac{1}{\overline{r}} \left[1 + e \cos \left(\phi - 3 \frac{\mathcal{M}}{\overline{r}} \phi \right) \right]$. $e \ll 1$

Advance of the perihelion

$$\cos\left(\phi - 3\frac{\mathcal{M}}{\bar{r}}\phi\right) = 1$$

$$\implies \phi_0 = 0, \quad \phi_1 = 2\pi + \delta\phi$$

$$\delta\phi \simeq 6\pi \frac{\mathcal{M}}{\bar{r}}$$

For Mercury, $\bar{r} \simeq 5 \times 10^7$ km $\Delta \phi \simeq 43''$ per century

Deviation of light

- Light-like trajectory $g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} = 0$
- Integral of motion $\frac{1}{2}\dot{r}^2 + \frac{L^2}{2r^2} \frac{mL^2}{r^3} = \frac{E^2}{2}$

$$\left(\frac{du}{d\phi}\right)^2 + u^2 - 2m\,u^3 = u_0^2 - 2m\,u_0^3 \qquad (u \equiv 1/r)$$

• Deviation of light

$$\Delta \phi = 2 \int_0^{u_0} \frac{du}{\sqrt{u_0^2 - 2mu_0^3 - u^2 + 2mu^3}} \simeq \pi + 4mu_0 \qquad \qquad \delta \phi = \frac{4GM}{c^2 r_0}$$

Deviation of light

• Deviation angle

 $\alpha = \frac{4GM}{Rc^2}$

• Solar eclipse:

 $R_{\odot} \simeq 700\,000$ km $lpha \simeq 1,75''$

Observational confirmation in 1919

Relativistic stars

Solving Einstein's equations

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

Spherical symmetry (and staticity)

 $ds^{2} = -e^{\nu(r)}dt^{2} + e^{\lambda(r)}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\phi^{2}\right)$

- Outside the star: Schwarzschild metric.
- Inside the star: energy-momentum tensor

$$T_{\mu\nu} = (\rho + p) u_{\mu}u_{\nu} + p g_{\mu\nu}$$

 $T_{tt} = \rho e^{\nu}, \qquad T_{rr} = p e^{\lambda}, \qquad T_{\theta\theta} = p r^2, \qquad T_{\phi\phi} = p r^2 \sin^2 \theta$

TOV equation

• Combining Einstein's equations, one obtains

$$\frac{dp}{dr} = -G\frac{\mathcal{M} + 4\pi r^3 p}{r^2(1 - 2G\mathcal{M}/r)}(\rho + p) \qquad \qquad \mathcal{M}(r) \equiv 4\pi \int_0^r \rho(\bar{r}) \,\bar{r}^2 d\bar{r}$$

Tolman-Oppenheimer-Volkov

- In Newtonian theory, hydrostatic equilibrium $\vec{\nabla}p + \rho \, \vec{\nabla}U = 0$ leads to the relation $\frac{dp}{dr} = -\frac{G\mathcal{M}\rho}{r^2}$
- Existence of maximal masses

Various compact objects

• Compactness parameter

$$\Xi \equiv \frac{GM}{Rc^2}$$

- Three types:
 - 1. White dwarves $\Xi \sim 10^{-3} 10^{-4}$
 - 2. Neutron stars $\Xi \sim 0.2$
 - 3. Black holes $\Xi = 1/2$

Supernovae

- Gravitational collapse of a massive star
- Birth of a neutron star

 $p + e^- \rightarrow n + \nu$

• Example: Crab nebula

Supernova observed in 1054

Contains a pulsar de of period P=33 ms

ESO VLT

Pulsars

Interior of neutron stars

Weber(2001)

Black holes

Schwarzschild black holes

• Metric

$$ds^{2} = -(1 - 2m/r) dt^{2} + \frac{dr^{2}}{1 - 2m/r} + r^{2} \left(d\theta^{2} + \sin^{2} \theta \, d\phi^{2} \right)$$

- Star collapse: what if the radius reaches r = 2m ?
- The metric looks singular in r = 2m
 - But no curvature singularity
 - Only a **coordinate singularity**, which can be resolved by using new coordinates. $r_*(r) \equiv \int \frac{dr}{dr} = r + 2m \ln |r/2m - 1|$

$$f_{x}(r) \equiv \int \frac{ar}{1 - 2m/r} = r + 2m \ln |r/2m - 1|$$

 $T = \left[-e^{-(t-r_*)/4m} + e^{(t+r_*)/4m}\right]/2, \quad X = \left[e^{-(t-r_*)/4m} + e^{(t+r_*)/4m}\right]/2,$

Schwarzschild black holes

• Kruskal coordinates

Astrophysical Black Holes

In the core of our galaxy

Gravitational waves

Gravitational waves

• Linearisation of Einstein equations

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \qquad |h_{\mu\nu}| \ll 1$

 $\partial_{\lambda}\partial^{\lambda}h_{\mu\nu} = S_{\mu\nu}$

Analogous to Maxwell equations

$$\partial_{\lambda}\partial^{\lambda}A_{\mu} = J_{\mu}$$

- Gravitational waves propagate with the speed of light
- 2 independent modes

Sources of gravitational waves

 Coalescence of a binary system (up to 100 Mpc)

• Supernovae (up to 10 Mpc)

 Continuous sources (deformation of neutron stars)

Binary coalescence

F. Pretorius

Binary coalescence

-0.4 -500 -400

-300 -200 -100 (t - t_{CAH})/M

0

Emission of gravitational waves

• Energy loss

$$-\left(\frac{dE}{dt}\right)_{\rm grav} = \frac{G}{5} \langle \ddot{Q}_{ij} \ddot{Q}^{ij} \rangle \qquad \qquad Q_{ij} \equiv I_{ij} - \frac{1}{3} \delta_{ij} I_k^k$$

• Binary system
$$E = -\frac{GM\mu}{2d}$$
$$\dot{E} = -\frac{32}{5} \frac{G^4 \mu^2 M^3}{d^5} \sim \frac{c^5}{G} \left(\frac{R_S}{d}\right)^5$$

Indirect detection

Binary pulsar PSR B1913+16 (1974)

Evolution of the orbital period P=7h45m

Nobel prize in physics 1993 Russel Hulse & Joseph Taylor

[Weisberg & Taylor (2002)]

- Relative displacement $\frac{\delta L}{L} \sim h$
 - Typically, $h \sim 10^{-21}$
- Interferometers

LIGO

Hanford

Livingstone

VIRGO, near Pisa

Improved sensitivity

Spatial mission eLISA (ESA)

Relativistic cosmology

Relativistic cosmology

- Symmetries: spatial homogeneity & isotropy
- Metric of the form $ds^2 = -dt^2 + a^2(t) \gamma_{ij} dx^i dx^j$

$$\gamma_{ij} dx^{i} dx^{j} = \begin{cases} d\chi^{2} + \sin^{2} \chi \left(d\theta^{2} + \sin^{2} \theta \, d\phi^{2} \right) & K > 0 \\ d\chi^{2} + \chi^{2} \left(d\theta^{2} + \sin^{2} \theta \, d\phi^{2} \right) & K = 0 \\ d\chi^{2} + \sin^{2} \chi \left(d\theta^{2} + \sin^{2} \theta \, d\phi^{2} \right) & K < 0 \end{cases}$$
$$\gamma_{ij} dx^{i} dx^{j} = \frac{dr^{2}}{1 - kr^{2}} + r^{2} \left(d\theta^{2} + \sin^{2} \theta \, d\phi^{2} \right) & k = -1, 0, 1$$

where a(t) is the scale factor

Friedmann equations

• Einstein equations $R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu}$

with the metric
$$ds^2 = -dt^2 + a^2(t)\gamma_{ij}dx^i dx^j$$

and the energy-momentum tensor

 $T^{\nu}_{\mu} = \text{Diag}(-\rho, P, P, P)$

• This gives Friedmann's equations (1924)

$$H^2 \equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{\kappa}{a^2} \qquad \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\left(\rho + 3P\right).$$

Friedmann equations

- Several types of matter: characterized by $w \equiv P/\rho$
 - Non relativistic matter: $P \ll \rho \Rightarrow w = 0$
 - Relativistic matter: $P = \rho/3 \Rightarrow w = 1/3$
- Evolution of matter

 $\dot{\rho} + 3H(\rho + P) = 0 \Rightarrow \rho \propto a^{-3(1+w)}$ (const w)

• If one species dominates

$$\begin{pmatrix} \dot{a} \\ a \end{pmatrix}^2 \propto \rho \propto a^{-3(1+w)} \qquad \left\{ \begin{array}{l} w = 0 : \ \rho \propto \frac{1}{a^3}, \ a(t) \propto t^{2/3} \\ w = \frac{1}{3} : \ \rho \propto \frac{1}{a^4}, \ a(t) \propto t^{1/2} \end{array} \right.$$

Cosmological parameters

Total energy density made of several components

$$\rho = \sum_{i} \rho_i^{(0)} \left(\frac{a}{a_0}\right)^{-3(1+w_i)} = \sum_{i} \rho_i^{(0)} (1+z)^{3(1+w_i)}$$

$$\mathcal{H}^{2}(z) = \frac{H^{2}}{H_{0}^{2}} = \frac{8\pi G}{3H_{0}^{2}}\rho - \frac{k}{a^{2}H_{0}^{2}} = \sum_{i}\Omega_{i}(1+z)^{3(1+w_{i})},$$
$$\Omega_{i} \equiv \frac{8\pi G\rho_{i}^{(0)}}{3H_{0}^{2}}, \quad \Omega_{k} = -\frac{k}{a_{0}^{2}H_{0}^{2}}$$

• Example: non-relativistic matter + cosmological constant + k=0

$$\mathcal{H}(z) = \sqrt{\Omega_{\Lambda} + (1 - \Omega_{\Lambda})(1 + z)^3}$$

Luminosity distance

Observation of a light source

 $\mathcal{F} = \frac{L_s}{4\pi d_L^2} \qquad \text{where } \mathcal{F} \text{ is the observed flux} \\ \text{and } L_s \text{ the absolute luminosity} \\ L_s = \frac{\delta E_s}{\delta t_s} \Rightarrow L_0 = \frac{L_s}{(1+z)^2} \implies d_L = a_0 r \left(1+z\right)$

• In terms of the redshift (k=0)

$$-dt^{2} + a^{2}(t)dr^{2} = 0 \qquad r_{s} = \int_{t_{s}}^{t_{0}} \frac{dt}{a(t)} = \frac{1}{a_{0}H_{0}} \int_{0}^{z_{s}} \frac{dz}{\mathcal{H}(z)}$$

$$d_L(z_s) = \frac{1+z_s}{H_0} \int_0^{z_s} \frac{dz}{\mathcal{H}(z)} \quad \text{with} \quad \mathcal{H}(z) = \mathcal{H}(z;\Omega_i)$$

Supernovae

Supernovae (Ia) Explosion of a white dwarf that reaches the Chandrasekhar mass

quasi- «standard candle»

$$m - M = 5 \log_{10} \left(\frac{d_L}{\text{Mpc}} \right) + 25$$

- m : apparent magnitude
- M : absolute magnitude

Accelerated expansion

« for the discovery of the accelerating expansion of the Universe through observation of distant supernovae »

Conclusions

- General relativity celebrates its 100 years.
- In recent years, it has played a more and more crucial role in astrophysics and cosmology (relativistic stars, stellar and galactic black holes).
- The direct detection of gravitational waves would open a completely new window in astrophysics.
- In cosmology, there have been many attempts to modify general relativity to explain dark energy and dark matter... but observations and internal consistencies are very constraining.