
An ultra-short course on  
General Relativity   

David Langlois 
(APC, Paris) 



Outline 
 
1.  Introduction 
2.  Geometric tools 
3.  Einstein’s equations 
4.  Main physical applications 

–  Compact objects 
–  Gravitational waves 
–  Cosmology 

 
 
 
 
 
 

 



Introduction 



General relativity (1915) 

•  How to extend special relativity  
    to describe gravitation  ?  

•  Gravitation: geometrical deformation 
    of Minkowski spacetime 

•  The spacetime geometry depends 
     on the matter content 

  
•  Einstein equations extend Poisson equation 

 

•  Equivalent relativiste de l’équation de Poisson 

Curvature of  
spacetime 

Distribution of  
matter  

�U = 4⇡G ⇢m



Newton vs Einstein 

•  Newton 

•  Einstein 

Free motion in a 
curved spacetime 
 



Geometrical tools 



Geometry & metric 

•  Fundamental object: metric 

 

•  Measuring distances: 
 

•  Change of coordinates: 
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Geometry & metric 

•  Metric as a scalar product 

•  Vectors can be seen as (directional) derivative operators 
 
For any function f,    
 
Hence the notation 

•  Change of coordinates 
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Tensors 

•  One can also consider arbitrary tensors, whose 
components are labelled by several indices. 

 
•  Mathematically: multilinear maps of vectors or covectors 
 
•  One can distinguish  

–  Covariant indices:    
 

–  Contravariant indices:   
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Example: polar coordinates 

•  In 2-dimensional Euclidean geometry 

•  Metric  

 

•  Vectors 
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Covariant derivative 

•  Derivation of a vector field valid in arbitrary coordinates ?  
 

  are not the components of a tensor. 
 
Example: constant vector field 

•  Covariant derivative 

•  Polar coordinates:  
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Covariant derivative 

•  For arbitrary tensor fields 

•  For the metric tensor                                                 
 
                                                  by construction 
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Motion of a particle 

•  Newtonian physics 
–  Parameter:  time 

–  Trajectory:  

–  Velocity 

–  Acceleration 

   
 
e.g. in polar coords 

•  Relativistic physics 
–  Parameter: proper time   

–  Trajectory:  

–  Velocity 

–  Acceleration 
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Curvature 

•  How to distinguish a curved space(-time) from a flat one ?  

•  Parallel transport 

•  In flat spaces, vectors are unchanged 
    after parallel transport along a loop. 
    Not always in curved spaces…  
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Curvature 

•  Consider an infinitesimal loop 
    and the parallel transport of a  
    vector along two paths. 
 

 
   

 
 
•  This tensor characterizes the curvature of spacetime (or 

space). It vanishes for flat spacetimes (or spaces). 
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Einstein’s equations 



Gravitation in relativity 

•  Gravitation due to the deformation of spacetime  

•  Consider a spherically symmetric spacetime 

 

•  Free motion of a particle in this spacetime: 

 
•  In the nonrelativistic limit, one gets 
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Einstein equations 

•  How to determine  ?  

•  Goal: find the relativistic version of Poisson’s equation 
 
 
•  Distribution of matter  

For a particle,         is conserved, as well as  its charge 
 
For a distribution of particles 

•  Current vector  

•  Stress-energy-momentum tensor  

�U = 4⇡G ⇢m
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Einstein equations 

•  Equations of the form  

•  Gravitational tensor ? 
–  must depend on second derivatives of the metric 

–  must satisfy     ,  since  
 
From the Riemann tensor, one can construct the Ricci tensor:  

 

 

Gµ⌫ / Tµ⌫

rµG
µ⌫ = 0 rµT

µ⌫ = 0

Rµ⌫ ⌘ R �
�µ⌫

rµGµ⌫ ⌘ rµ(Rµ⌫ � 1

2
Rgµ⌫) = 0



Einstein-Hilbert action 

•  Einstein’s equations can also be derived 
    from a variational principle 

•  Variation of the action  
 
 
 
Using    and  
 
as well as  
 
one gets 
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Einstein-Hilbert action 

•  One can include matter via the action 

•  Defining the energy-momentum tensor as 

    the variation of the total action  yields 
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Solution of Einstein’s equations 

•  Einstein’s equations are extremely difficult in general 

•  One often imposes symmetries to solve them 

•  Spherical symmetry (and staticity) in vacuum 

•  Solving vacuum Einstein’s equations, one finds  
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Geodesics in Schwarzschild 
•  Metric  

•  Free particle with velocity 

•  Integrals of motion of geodesic eq 

–  Energy:  

–  Angular momentum  

–  Normalization 
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•  Radial integral of motion 

 

 
 
 

•  For the Sun, the relativistic correction is proportional to  
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Trajectories of planets 

•  Newtonian theory: 

•  General relativity : 

 Advance of the perihelion  
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Deviation of light 
•  Light-like trajectory  

•  Integral of motion 

 
•  Deviation of light 
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Deviation of light 

  
•  Deviation angle  
 

•  Solar eclipse: 
 
 
 
Observational confirmation in 

1919   

Apparent 
position  

Real  
position  



Relativistic stars 



Solving Einstein’s equations 

•  Spherical symmetry (and staticity) 

 

•  Outside the star: Schwarzschild metric. 

•  Inside the star: energy-momentum tensor 
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TOV equation 

•  Combining Einstein’s equations, one obtains  

 

•  In Newtonian theory, hydrostatic equilibrium 
    leads to the relation 
 
 
•  Existence of maximal masses 
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Various compact objects 

•  Compactness parameter  

•  Three types: 

1.  White dwarves 

2.  Neutron stars 

3.  Black holes 
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Supernovae 

•  Gravitational collapse of a 
massive star 

•  Birth of a neutron star 

•  Example: Crab nebula 

Supernova observed in 1054 
 
Contains a pulsar de of period 

P=33 ms ESO VLT 



Pulsars 



Interior of neutron stars 

Weber(2001) 



Black holes 



Schwarzschild black holes 
•  Metric  

•  Star collapse: what if the radius reaches                ?  

•  The metric looks singular in  
–  But no curvature singularity  
–  Only a coordinate singularity, which can be resolved by using 

new coordinates. 
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Schwarzschild black holes 
•  Kruskal coordinates   
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Astrophysical Black Holes 



In the core of our galaxy 



Gravitational waves 



Gravitational waves  

•  Linearisation of Einstein equations 

•  Analogous to Maxwell equations  

•  Gravitational waves propagate with the speed of light 

•  2 independent modes  
 



Sources of gravitational waves 

•  Coalescence of a binary system 
(up to 100 Mpc)  

 
•  Supernovae (up to 10 Mpc) 

•  Continuous sources  
 (deformation of neutron stars) 



F. Pretorius 

Binary coalescence 



Binary coalescence 

F. Pretorius 



Emission of gravitational waves 

•  Energy loss 
 
 
 
 
•  Binary system 
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Indirect detection 

Binary pulsar PSR B1913+16 
(1974) 
 

 Evolution of the orbital period   
P=7h45m 

Nobel prize in physics 1993  
Russel Hulse & Joseph Taylor 

[Weisberg & Taylor (2002)] 



Gravitational wave detectors 

•  Relative displacement   
   
  Typically,  

 
•  Interferometers  



Gravitational wave detectors 

Hanford 

Livingstone 

LIGO 



Gravitational wave detectors 

VIRGO, near Pisa 



Gravitational wave detectors 

Improved sensitivity 



Spatial mission  eLISA (ESA)  



Relativistic cosmology 



Relativistic cosmology 

•  Symmetries: spatial homogeneity & isotropy 
 
•  Metric of the form 
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Friedmann equations 

•  Einstein equations 

 
 with the metric 

 
 and the energy-momentum tensor 

  

•  This gives Friedmann’s equations (1924) 
 

 
	




Friedmann equations 

•  Several types of matter:   characterized by   

–  Non relativistic matter:   

–  Relativistic matter:   

•  Evolution of matter 

•  If one species dominates  
	




Cosmological parameters 

•  Total energy density made of several components 

•  Example: non-relativistic matter + cosmological constant + k=0 



•  Observation of a light source  

•  In terms of the redshift 
 

    

where      is the observed flux  
and       the absolute luminosity 
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Supernovae 

 Supernovae (Ia) 
     Explosion of a white dwarf that 

reaches the Chandrasekhar mass 

  
 quasi- «standard candle» 

      
  

: apparent magnitude 
: absolute magnitude 



Accelerated expansion  

Nobel Prize 2011 

« for the discovery of the accelerating expansion of the Universe through 
observation of distant supernovae »   
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Conclusions 

•  General relativity celebrates its 100 years. 

•  In recent years, it has played a more and more crucial 
role in astrophysics and cosmology (relativistic stars, 
stellar and galactic black holes). 

•  The direct detection of gravitational waves would open a 
completely new window in astrophysics. 

•  In cosmology, there have been many attempts to modify 
general relativity to explain dark energy and dark 
matter… but  observations and internal consistencies are 
very constraining. 


