An ultra-short course on General Relativity

David Langlois
(APC, Paris)

Astroparticules et Cosmologie

Outline

1. Introduction
2. Geometric tools
3. Einstein's equations
4. Main physical applications

- Compact objects
- Gravitational waves
- Cosmology

Introduction

General relativity (1915)

- How to extend special relativity to describe gravitation ?
- Gravitation: geometrical deformation of Minkowski spacetime
- The spacetime geometry depends
 on the matter content
- Einstein equations extend Poisson equation $\Delta U=4 \pi G \rho_{m}$

Newton vs Einstein

- Newton

$$
m \vec{a}=-m \vec{\nabla} \phi_{g}
$$

- Einstein

Free motion in a curved spacetime

$$
\begin{gathered}
m \vec{a}_{\mathrm{eff}}=0 \\
\vec{a}_{\mathrm{eff}}=\vec{a}+\vec{\nabla} \phi_{g}
\end{gathered}
$$

Geometrical tools

Geometry \& metric

- Fundamental object: metric

$$
d \ell^{2}=g_{i j} d x^{i} d x^{j} \quad d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

- Measuring distances: $d(A, B)=\int_{A}^{B} d \ell$
- Change of coordinates: $x^{i} \longrightarrow \tilde{x}^{k}$

$$
d \ell^{2}=g_{i j} d x^{i} d x^{j}=g_{i j} \frac{\partial x^{i}}{\partial \tilde{x}^{k}} \frac{\partial x^{j}}{\partial \tilde{x}^{l}} d \tilde{x}^{k} d \tilde{x}^{l} \equiv \tilde{g}_{k l} d \tilde{x}^{k} d \tilde{x}^{l}
$$

Geometry \& metric

- Metric as a scalar product

$$
\boldsymbol{g}(\boldsymbol{u}, \boldsymbol{v})=g_{i j} u^{i} v^{j}
$$

- Vectors can be seen as (directional) derivative operators

For any function $\mathrm{f}, \quad \boldsymbol{u}(f):=u^{i} \frac{\partial f}{\partial x^{i}}$
Hence the notation $\quad \boldsymbol{u}=u^{i} \frac{\partial}{\partial x^{i}}$

- Change of coordinates

$$
\boldsymbol{u}(f)=u^{i} \frac{\partial f}{\partial x^{i}}=\tilde{u}^{k} \frac{\partial f}{\partial \tilde{x}^{k}} \quad \quad \tilde{u}^{k}=\frac{\partial \tilde{x}^{k}}{\partial x^{i}} u^{i}
$$

Tensors

- One can also consider arbitrary tensors, whose components are labelled by several indices.

$$
F_{\mu \nu}:=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

- Mathematically: multilinear maps of vectors or covectors
- One can distinguish
- Covariant indices: $\quad \tilde{u}_{k}=\frac{\partial x^{i}}{\partial \tilde{x}_{k}} u_{i}$
- Contravariant indices: $\quad \tilde{u}^{k}=\frac{\partial \tilde{x}^{k}}{\partial x^{i}} u^{i}$

Example: polar coordinates

- In 2-dimensional Euclidean geometry

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

- Metric

$$
d \ell^{2}=d x^{2}+d y^{2}=d r^{2}+r^{2} d \theta^{2}
$$

- Vectors

$$
\boldsymbol{v}=v^{x} \frac{\partial}{\partial x}+v^{y} \frac{\partial}{\partial y}=v^{r} \frac{\partial}{\partial r}+v^{\theta} \frac{\partial}{\partial \theta} \quad \begin{aligned}
& v^{x}=\cos \theta v^{r}-r \sin \theta v^{\theta} \\
& v^{y}=\sin \theta v^{r}+r \cos \theta v^{\theta}
\end{aligned}
$$

Covariant derivative

- Derivation of a vector field valid in arbitrary coordinates ?

$$
\frac{\partial v^{i}}{\partial x^{j}} \text { are not the components of a tensor. }
$$

Example: constant vector field

$$
\boldsymbol{u}=\frac{\partial}{\partial x}=\cos \theta \frac{\partial}{\partial r}-\frac{1}{r} \sin \theta \frac{\partial}{\partial \theta}
$$

- Covariant derivative

$$
\nabla_{i} v^{k} \equiv \partial_{i} v^{k}+\Gamma_{i j}^{k} v^{j} \quad \Gamma_{i j}^{k}=\frac{1}{2} g^{k l}\left(\partial_{i} g_{j l}+\partial_{j} g_{l i}-\partial_{l} g_{i j}\right)
$$

Christoffel symbols

- Polar coordinates:

$$
\Gamma_{\theta \theta}^{r}=-r, \quad \Gamma_{r \theta}^{\theta}=\Gamma_{\theta r}^{\theta}=\frac{1}{r} \quad \nabla \boldsymbol{u}=0
$$

Covariant derivative

- For arbitrary tensor fields

$$
\nabla_{i} T^{j_{1} \ldots j_{p}}{ }_{k_{1} \ldots k_{q}}=\partial_{i} T^{j_{1} \ldots j_{p}}{ }_{k_{1} \ldots k_{q}}+\sum_{r=1}^{p} \Gamma_{i l}^{j_{r}} T_{k_{1} \ldots k_{q}}^{j_{1} \ldots l \ldots j_{p}}-\sum_{s=1}^{q} \Gamma_{i k_{s}}^{l} T^{j_{1} \ldots j_{p}}{ }_{k_{1} \ldots l \ldots k_{q}}
$$

- For the metric tensor

$$
\nabla_{k} g_{i j}=0 \quad \text { by construction }
$$

Motion of a particle

- Newtonian physics
- Parameter: time t
- Trajectory: $x^{i}(t)$
- Velocity $\quad v^{i} \equiv \frac{d x^{i}}{d t}$
- Acceleration $\quad a^{i} \equiv v^{k} \nabla_{k} v^{i}$
$a^{k} \equiv v^{i} \nabla_{i} v^{k}=\frac{d v^{k}}{d t}+\Gamma_{i j}^{k} v^{i} v^{j}$
e.g. in polar coords
$a^{r}=\ddot{r}-r \dot{\theta}^{2}, \quad a^{\theta}=\ddot{\theta}+\frac{2}{r} \dot{r} \dot{\theta}$
- Relativistic physics
- Parameter: proper time τ
- Trajectory: $x^{\mu}(\tau)$
- Velocity $\quad v^{\mu} \equiv \frac{d x^{\mu}}{d \tau}$
- Acceleration $a^{\mu} \equiv u^{\sigma} \nabla_{\sigma} u^{\mu}$

Curvature

- How to distinguish a curved space(-time) from a flat one ?
- Parallel transport

$$
t^{i} \nabla_{i} u^{k}=0
$$

- In flat spaces, vectors are unchanged after parallel transport along a loop. Not always in curved spaces...

Curvature

- Consider an infinitesimal loop and the parallel transport of a vector along two paths.

$$
\begin{gathered}
\tilde{v}^{\sigma}\left(p_{2}\right)-v^{\sigma}\left(p_{2}\right)=R_{\mu \nu \alpha}^{\sigma} v^{\alpha} \delta_{1} x^{\mu} \delta_{2} x^{\nu} \\
R_{\mu \nu \alpha}^{\sigma}=\partial_{\mu} \Gamma_{\nu \alpha}^{\sigma}-\partial_{\nu} \Gamma_{\mu \alpha}^{\sigma}+\Gamma_{\mu \beta}^{\sigma} \Gamma_{\nu \alpha}^{\beta}-\Gamma_{\nu \beta}^{\sigma} \Gamma_{\mu \alpha}^{\beta}
\end{gathered}
$$

Riemann curvature tensor

- This tensor characterizes the curvature of spacetime (or space). It vanishes for flat spacetimes (or spaces).

Einstein's equations

Gravitation in relativity

- Gravitation due to the deformation of spacetime
- Consider a spherically symmetric spacetime

$$
d s^{2}=-[1+2 U(r)] d t^{2}+[1+2 V(r)] d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

- Free motion of a particle in this spacetime: $a^{\mu} \equiv u^{\sigma} \nabla_{\sigma} u^{\mu}$

$$
\frac{d^{2} x^{\lambda}}{d \tau^{2}}+\Gamma_{\mu \nu}^{\lambda} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}=0
$$

- In the nonrelativistic limit, one gets $\frac{d v^{i}}{d t} \simeq-\partial^{i} U$

Fictitious force! (with U as Newtonian potential)

Einstein equations

- How to determine $g_{\mu \nu}$?
- Goal: find the relativistic version of Poisson's equation

$$
\Delta U=4 \pi G \rho_{m}
$$

- Distribution of matter

$$
\rho_{m} \longrightarrow \rho
$$

For a particle, P^{μ} is conserved, as well as its charge Q
For a distribution of particles

- Current vector $j^{\mu}=\rho_{Q} u^{\mu}$
- Stress-energy-momentum tensor $T^{\mu \nu}$

Einstein equations

- Equations of the form

$$
G_{\mu \nu} \propto T_{\mu \nu}
$$

- Gravitational tensor?
- must depend on second derivatives of the metric
- must satisfy $\nabla_{\mu} G^{\mu \nu}=0$, since $\quad \nabla_{\mu} T^{\mu \nu}=0$

From the Riemann tensor, one can construct the Ricci tensor:

$$
\begin{gathered}
R_{\mu \nu} \equiv R_{\lambda \mu \nu}{ }^{\lambda} \\
\nabla^{\mu} G_{\mu \nu} \equiv \nabla^{\mu}\left(R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}\right)=0 \\
G_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
\end{gathered}
$$

Einstein-Hilbert action

- Einstein's equations can also be derived from a variational principle

$$
\begin{array}{r}
S_{E H}\left[g_{\mu \nu}\right]=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g} R \\
R \equiv g^{\mu \nu} R_{\mu \nu}
\end{array}
$$

- Variation of the action

$\delta S_{E H}=\frac{1}{16 \pi G} \int d^{4} x\left[\delta(\sqrt{-g}) R+\sqrt{-g} \delta\left(g^{\mu \nu}\right) R_{\mu \nu}+\sqrt{-g} g^{\mu \nu} \delta R_{\mu \nu}\right]$
Using $\quad \delta g=g g^{\rho \sigma} \delta g_{\rho \sigma} \quad$ and $\quad \delta g^{\mu \nu}=-g^{\mu \rho} g^{\nu \sigma} \delta g_{\rho \sigma}$
as well as $\quad g^{\mu \nu} \delta R_{\mu \nu}=\nabla^{\lambda}\left[-g^{\rho \sigma} \nabla_{\lambda} \delta g_{\rho \sigma}+g^{\rho \sigma} \nabla_{\rho} \delta g_{\lambda \sigma}\right]$
one gets $\quad \delta S_{E H}=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}\left[\frac{1}{2} R g^{\rho \sigma}-R^{\rho \sigma}\right] \delta g_{\rho \sigma}$

Einstein-Hilbert action

- One can include matter via the action

$$
S_{m}\left[\phi, g_{\mu \nu}\right]=\int d^{4} x \sqrt{-g} \mathcal{L}_{m}
$$

- Defining the energy-momentum tensor as

$$
T^{\mu \nu} \equiv \frac{2}{\sqrt{-g}} \frac{\delta\left(\sqrt{-g} \mathcal{L}_{m}\right)}{\delta g_{\mu \nu}}
$$

the variation of the total action yields

$$
\delta S_{E H}+\delta S_{m}=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}\left[\frac{1}{2} R g^{\rho \sigma}-R^{\rho \sigma}+8 \pi G T^{\rho \sigma}\right] \delta g_{\rho \sigma}
$$

Solution of Einstein's equations

- Einstein's equations are extremely difficult in general
- One often imposes symmetries to solve them
- Spherical symmetry (and staticity) in vacuum

$$
d s^{2}=-e^{\nu(r)} d t^{2}+e^{\lambda(r)} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

- Solving vacuum Einstein's equations, one finds
$d s^{2}=-\left(1-\frac{2 G M}{c^{2} r}\right) c^{2} d t^{2}+\left(1-\frac{2 G M}{c^{2} r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$
Schwarzschild metric (1916)

Geodesics in Schwarzschild

- Metric
$d s^{2}=-(1-2 m / r) d t^{2}+\frac{d r^{2}}{1-2 m / r}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$
- Free particle with velocity $u^{\mu}=\{\dot{t}, \dot{r}, \dot{\theta}, \dot{\phi}\}$
- Integrals of motion of geodesic eq $\frac{d^{2} x^{\lambda}}{d \tau^{2}}+\Gamma_{\mu \nu}^{\lambda} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}=0$
- Energy: $\quad E \equiv(1-2 m / r) \dot{t}$
- Angular momentum $\quad L \equiv r^{2} \sin ^{2} \theta \dot{\phi}$
- Normalization

$$
-(1-2 m / r) \dot{t}^{2}+\frac{\dot{r}^{2}}{1-2 m / r}+r^{2}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)=-1
$$

Geodesics in Schwarzschild

- Radial integral of motion

$$
\begin{aligned}
\frac{1}{2} \dot{r}^{2} & +V_{\mathrm{eff}}(r)=\frac{E^{2}-1}{2} \\
V_{\mathrm{eff}}(r) & \equiv \underbrace{-\frac{m}{r}+\frac{L^{2}}{2 r^{2}}}_{\begin{array}{c}
\text { Newtonian } \\
\text { effective potential }
\end{array}}-\frac{m L^{2}}{r^{3}}
\end{aligned}
$$

- For the Sun, the relativistic correction is proportional to

$$
m=\frac{G M_{\odot}}{c^{2}} \simeq 1.5 \mathrm{~km}
$$

Trajectories of planets

- Newtonian theory: $\quad \frac{1}{r}=\frac{1}{\bar{r}}(1+e \cos \phi), \quad \bar{r} \equiv \frac{L^{2}}{\mathcal{M} c^{2}}$
- General relativity : $\frac{1}{r} \simeq \frac{1}{\bar{r}}\left[1+e \cos \left(\phi-3 \frac{\mathcal{M}}{\bar{r}} \phi\right)\right] . \quad e \ll 1$

Advance of the perihelion

$$
\begin{aligned}
& \cos \left(\phi-3 \frac{\mathcal{M}}{\bar{r}} \phi\right)=1 \\
& \phi_{0}=0, \quad \phi_{1}=2 \pi+\delta \phi \\
& \quad \delta \phi \simeq 6 \pi \frac{\mathcal{M}}{\bar{r}}
\end{aligned}
$$

For Mercury, $\quad \bar{r} \simeq 5 \times 10^{7} \mathrm{~km} \quad \Delta \phi \simeq 43^{\prime \prime}$ per century

Deviation of light

- Light-like trajectory

$$
g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}=0
$$

- Integral of motion

$$
\frac{1}{2} \dot{r}^{2}+\frac{L^{2}}{2 r^{2}}-\frac{m L^{2}}{r^{3}}=\frac{E^{2}}{2}
$$

$$
\left(\frac{d u}{d \phi}\right)^{2}+u^{2}-2 m u^{3}=u_{0}^{2}-2 m u_{0}^{3} \quad(u \equiv 1 / r)
$$

- Deviation of light

$$
\Delta \phi=2 \int_{0}^{u_{0}} \frac{d u}{\sqrt{u_{0}^{2}-2 m u_{0}^{3}-u^{2}+2 m u^{3}}} \simeq \pi+4 m u_{0} \quad \delta \phi=\frac{4 G M}{c^{2} r_{0}}
$$

Deviation of light

- Deviation angle

$$
\alpha=\frac{4 G M}{R c^{2}}
$$

- Solar eclipse:

$$
\begin{gathered}
R_{\odot} \simeq 700000 \mathrm{~km} \\
\alpha \simeq 1,75^{\prime \prime}
\end{gathered}
$$

Observational confirmation in 1919

Relativistic stars

Solving Einstein's equations

$$
G_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

- Spherical symmetry (and staticity)

$$
d s^{2}=-e^{\nu(r)} d t^{2}+e^{\lambda(r)} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

- Outside the star: Schwarzschild metric.
- Inside the star: energy-momentum tensor

$$
\begin{aligned}
& T_{\mu \nu}=(\rho+p) u_{\mu} u_{\nu}+p g_{\mu \nu} \\
& T_{t t}=\rho e^{\nu}, \quad T_{r r}=p e^{\lambda}, \quad T_{\theta \theta}=p r^{2}, \quad T_{\phi \phi}=p r^{2} \sin ^{2} \theta
\end{aligned}
$$

TOV equation

- Combining Einstein's equations, one obtains

$$
\frac{d p}{d r}=-G \frac{\mathcal{M}+4 \pi r^{3} p}{r^{2}(1-2 G \mathcal{M} / r)}(\rho+p) \quad \mathcal{M}(r) \equiv 4 \pi \int_{0}^{r} \rho(\bar{r}) \bar{r}^{2} d \bar{r}
$$

Tolman-Oppenheimer-Volkov

- In Newtonian theory, hydrostatic equilibrium $\vec{\nabla} p+\rho \vec{\nabla} U=0$ leads to the relation

$$
\frac{d p}{d r}=-\frac{G \mathcal{M} \rho}{r^{2}}
$$

- Existence of maximal masses

Various compact objects

- Compactness parameter $\quad \Xi \equiv \frac{G M}{R c^{2}}$
- Three types:

1. White dwarves $\Xi \sim 10^{-3}-10^{-4}$
2. Neutron stars $\quad \Xi \sim 0.2$
3. Black holes $\quad \Xi=1 / 2$

Supernovae

- Gravitational collapse of a massive star
- Birth of a neutron star

$$
p+e^{-} \rightarrow n+\nu
$$

- Example: Crab nebula

Supernova observed in 1054

Contains a pulsar de of period $\mathrm{P}=33 \mathrm{~ms}$

ESO VLT

Pulsars

Interior of neutron stars

Black holes

Schwarzschild black holes

- Metric

$$
d s^{2}=-(1-2 m / r) d t^{2}+\frac{d r^{2}}{1-2 m / r}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

- Star collapse: what if the radius reaches $r=2 m$?
- The metric looks singular in $r=2 m$
- But no curvature singularity
- Only a coordinate singularity, which can be resolved by using new coordinates.

$$
r_{*}(r) \equiv \int \frac{d r}{1-2 m / r}=r+2 m \ln |r / 2 m-1|
$$

$$
T=\left[-e^{-\left(t-r_{*}\right) / 4 m}+e^{\left(t+r_{*}\right) / 4 m}\right] / 2, \quad X=\left[e^{-\left(t-r_{*}\right) / 4 m}+e^{\left(t+r_{*}\right) / 4 m}\right] / 2
$$

Schwarzschild black holes

- Kruskal coordinates

$$
d s^{2}=32 \frac{m^{3}}{r} e^{-r / 2 m}\left(-d T^{2}+d X^{2}\right)+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Astrophysical Black Holes

In the core of our galaxy

Gravitational waves

Gravitational waves

- Linearisation of Einstein equations

$$
\begin{aligned}
& g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}, \quad\left|h_{\mu \nu}\right| \ll 1 \\
& \partial_{\lambda} \partial^{\lambda} h_{\mu \nu}=S_{\mu \nu}
\end{aligned}
$$

- Analogous to Maxwell equations

$$
\partial_{\lambda} \partial^{\lambda} A_{\mu}=J_{\mu}
$$

- Gravitational waves propagate with the speed of light
- 2 independent modes

Sources of gravitational waves

- Coalescence of a binary system (up to 100 Mpc)
- Supernovae (up to 10 Mpc)
- Continuous sources (deformation of neutron stars)

Binary coalescence

F. Pretorius

Binary coalescence

F. Pretorius

Emission of gravitational waves

- Energy loss

$$
-\left(\frac{d E}{d t}\right)_{\text {grav }}=\frac{G}{5}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle \quad Q_{i j} \equiv I_{i j}-\frac{1}{3} \delta_{i j} I_{k}^{k}
$$

- Binary system $E=-\frac{G M \mu}{2 d}$

$$
\dot{E}=-\frac{32}{5} \frac{G^{4} \mu^{2} M^{3}}{d^{5}} \sim \frac{c^{5}}{G}\left(\frac{R_{S}}{d}\right)^{5}
$$

Indirect detection

Binary pulsar PSR B1913+16 (1974)

Evolution of the orbital period $\mathrm{P}=7 \mathrm{~h} 45 \mathrm{~m}$

Nobel prize in physics 1993 Russel Hulse \& Joseph Taylor

[Weisberg \& Taylor (2002)]

Gravitational wave detectors

- Relative displacement $\frac{\delta L}{L} \sim h$

Typically, $\quad h \sim 10^{-21}$

- Interferometers

Gravitational wave detectors

Gravitational wave detectors

VIRGO, near Pisa

Gravitational wave detectors

Improved sensitivity

Spatial mission eLISA (ESA)

Relativistic cosmology

Relativistic cosmology

- Symmetries: spatial homogeneity \& isotropy
- Metric of the form $d s^{2}=-d t^{2}+a^{2}(t) \gamma_{i j} d x^{i} d x^{j}$

$$
\begin{aligned}
& \gamma_{i j} d x^{i} d x^{j}=\left\{\begin{array}{cc}
d \chi^{2}+\sin ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) & K>0 \\
d \chi^{2}+\chi^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) & K=0 \\
d \chi^{2}+\operatorname{sh}^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) & K<0
\end{array}\right. \\
& \gamma_{i j} d x^{i} d x^{j}=\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \quad k=-1,0,1
\end{aligned}
$$

where $a(t)$ is the scale factor

Friedmann equations

- Einstein equations

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

with the metric

$$
d s^{2}=-d t^{2}+a^{2}(t) \gamma_{i j} d x^{i} d x^{j}
$$

and the energy-momentum tensor

$$
T_{\mu}^{\nu}=\operatorname{Diag}(-\rho, P, P, P)
$$

- This gives Friedmann's equations (1924)

$$
H^{2} \equiv\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho-\frac{\kappa}{a^{2}} \quad \frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}(\rho+3 P) .
$$

Friedmann equations

- Several types of matter: characterized by $w \equiv P / \rho$
- Non relativistic matter: $P \ll \rho \Rightarrow w=0$
- Relativistic matter: $\quad P=\rho / 3 \Rightarrow w=1 / 3$
- Evolution of matter

$$
\dot{\rho}+3 H(\rho+P)=0 \Rightarrow \rho \propto a^{-3(1+w)} \quad(\text { const } w)
$$

- If one species dominates

$$
\left(\frac{\dot{a}}{a}\right)^{2} \propto \rho \propto a^{-3(1+w)} \quad\left\{\begin{array}{l}
w=0: \rho \propto \frac{1}{a^{3}}, a(t) \propto t^{2 / 3} \\
w=\frac{1}{3}: \rho \propto \frac{1}{a^{4}}, a(t) \propto t^{1 / 2}
\end{array}\right.
$$

Cosmological parameters

- Total energy density made of several components

$$
\begin{gathered}
\rho=\sum_{i} \rho_{i}^{(0)}\left(\frac{a}{a_{0}}\right)^{-3\left(1+w_{i}\right)}=\sum_{i} \rho_{i}^{(0)}(1+z)^{3\left(1+w_{i}\right)} \\
\mathcal{H}^{2}(z)=\frac{H^{2}}{H_{0}^{2}}=\frac{8 \pi G}{3 H_{0}^{2}} \rho-\frac{k}{a^{2} H_{0}^{2}}=\sum_{i} \Omega_{i}(1+z)^{3\left(1+w_{i}\right)}, \\
\Omega_{i} \equiv \frac{8 \pi G \rho_{i}^{(0)}}{3 H_{0}^{2}}, \quad \Omega_{k}=-\frac{k}{a_{0}^{2} H_{0}^{2}}
\end{gathered}
$$

- Example: non-relativistic matter + cosmological constant $+\mathrm{k}=0$

$$
\mathcal{H}(z)=\sqrt{\Omega_{\wedge}+\left(1-\Omega_{\wedge}\right)(1+z)^{3}}
$$

Luminosity distance

- Observation of a light source

$$
\begin{gathered}
\mathcal{F}=\frac{L_{s}}{4 \pi d_{L}^{2}} \quad \begin{array}{l}
\text { where } \mathcal{F} \text { is the observed flux } \\
\text { and } L_{s} \text { the absolute luminosity }
\end{array} \\
L_{s}=\frac{\delta E_{s}}{\delta t_{s}} \Rightarrow L_{0}=\frac{L_{s}}{(1+z)^{2}} \Rightarrow d_{L}=a_{0} r(1+z)
\end{gathered}
$$

- In terms of the redshift $\quad(k=0)$

$$
\begin{aligned}
-d t^{2}+a^{2}(t) d r^{2} & =0 \quad r_{s}=\int_{t_{s}}^{t_{0}} \frac{d t}{a(t)}=\frac{1}{a_{0} H_{0}} \int_{0}^{z_{s}} \frac{d z}{\mathcal{H}(z)} \\
d_{L}\left(z_{s}\right) & =\frac{1+z_{s}}{H_{0}} \int_{0}^{z_{s}} \frac{d z}{\mathcal{H}(z)} \quad \text { with } \quad \mathcal{H}(z)=\mathcal{H}\left(z ; \Omega_{i}\right)
\end{aligned}
$$

Supernovae

Supernovae (la)
Explosion of a white dwarf that reaches the Chandrasekhar mass
quasi- «standard candle»
$m-M=5 \log _{10}\left(\frac{d_{L}}{M p c}\right)+25$
m : apparent magnitude

M : absolute magnitude

Accelerated expansion

$$
m(z)=M+5 \log _{10}\left(\frac{d_{L}(z)}{\mathrm{Mpc}}\right)+25
$$

« for the discovery of the accelerating expansion of the Universe through observation of distant supernovae »

Conclusions

- General relativity celebrates its 100 years.
- In recent years, it has played a more and more crucial role in astrophysics and cosmology (relativistic stars, stellar and galactic black holes).
- The direct detection of gravitational waves would open a completely new window in astrophysics.
- In cosmology, there have been many attempts to modify general relativity to explain dark energy and dark matter... but observations and internal consistencies are very constraining.

