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Abstract

This letter reports a measurement of the muon charge asymmetry fromW bosons produced in proton-proton collisions
at a centre-of-mass energy of 7 TeV with the ATLAS experiment at the LHC. The asymmetry is measured in theW → µν
decay mode as a function of the muon pseudorapidity using a data sample corresponding to a total integrated luminosity
of 31 pb−1. The results are compared to predictions based on next-to-leading order calculations with various parton
distribution functions. This measurement provides information on the u and d quark momentum fractions in the proton.

1. Introduction

The measurement of the charge asymmetry of leptons
originating from the decay of singly produced W bosons
at pp, pp̄ and ep colliders provides important information
about the proton structure as described by parton distri-
bution functions (PDFs). TheW boson charge asymmetry
is mainly sensitive to valence quark distributions [1] via the
dominant production process ud̄(ūd) → W+(−) and pro-
vides complementary information to that obtained from
measurements of inclusive deep inelastic scattering cross-
sections at the HERA electron-proton collider [2, 3, 4, 5].
The HERA data do not strongly constrain the ratio be-
tween u and d quarks in the kinematic regime of low x,
where x is the proton momentum fraction carried by the
parton [6]. A precise measurement of the W asymmetry
at the Large Hadron Collider (LHC) [7] on the other hand,
can contribute significantly to the understanding of PDFs
and quantum chromodynamics (QCD) in the parton mo-
mentum fraction range 10−3 . x . 10−1.

In pp collisions the overall production rate ofW+ bosons
is significantly larger than the corresponding W− rate,
since the proton contains two u and one d valence quarks.
The first measurements of the inclusive W± cross-sections
at the LHC by the ATLAS [8] and the CMS [9] Collabora-
tions confirmed the difference predicted by the Standard
Model. The asymmetry in pp collisions is symmetric with

respect to theW rapidity, whereas in pp̄ collisions it is anti-
symmetric; the small sensitivity to sea quark contributions
is strongly suppressed in pp̄ compared to pp collisions [10].
Measurements in pp̄ collisions have been performed at the
Tevatron by both the CDF [11, 12] and DØ [13, 14] Col-
laborations, and the data have been included in global fits
of parton distributions [15, 16].

This letter presents a differential measurement of the
muon charge asymmetry from the decay of W± bosons in
pp collisions at a centre-of-mass energy of

√
s = 7 TeV at

the LHC. The asymmetry varies significantly as a function
of the pseudorapidity1 ηµ of the charged decay lepton ow-
ing to its strong correlation with the momentum fraction x
of the partons producing the W boson. It is defined from
the cross sections for W → µν production dσWµ±/dηµ as:

Aµ =
dσWµ+/dηµ − dσWµ−/dηµ

dσWµ+/dηµ + dσWµ−/dηµ
, (1)

where the cross sections include the event kinematical cuts
used to select W → µν events. No extrapolation to the

1The nominal pp interaction point at the centre of the detector
is defined as the origin of a right-handed coordinate system. The
positive x-axis is defined by the direction from the interaction point
to the centre of the LHC ring, with the positive y-axis pointing up-
wards. The azimuthal angle φ is measured around the beam axis and
the polar angle θ is the angle from the z-axis. The pseudorapidity is
defined as η = − ln tan(θ/2).
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full phase space is attempted in order to reduce the de-
pendence on theoretical predictions.

Systematic effects on the W -production cross-section
measurements are typically the same for positive and neg-
ative muons, mostly canceling in the asymmetry. The AT-
LAS detector measures muons with two independent de-
tector systems. These two independent measurements al-
low systematic uncertainties to be controlled. The results
presented are based on data collected in 2010 with an in-
tegrated luminosity of 31 pb−1. These results significantly
improve on the previous measurement by the ATLAS Col-
laboration [8], which is based on a data set approximately
100 times smaller.

2. The ATLAS Detector

The ATLAS detector [17, 18] consists of an inner track-
ing system (inner detector, or ID) surrounded by a super-
conducting solenoid providing a 2T magnetic field, elec-
tromagnetic and hadronic calorimeters and a muon spec-
trometer (MS). The ID consists of pixel and silicon mi-
crostrip (SCT) detectors, surrounded by a transition radi-
ation tracker (TRT). The electromagnetic calorimeter is a
lead liquid-argon (LAr) detector in the barrel and the end-
cap, and in the forward region copper LAr technology is
used. Hadron calorimetry is based on two different detec-
tor technologies, with scintillator tiles or LAr as the active
media, and with either steel, copper, or tungsten as the
absorber material. There is a poorly instrumented tran-
sition region between the barrel and endcap calorimeter,
1.37 < |η| < 1.52, where electrons cannot be precisely mea-
sured. In view of a later combination, this motivates the
binning in that region for the present muon analysis. The
MS is based on three large superconducting toroids, and a
system of three stations of chambers for trigger and pre-
cise tracking measurements. There is a transition between
the barrel and endcap muon detectors around |η| = 1.05.

3. Data and Simulated Event Samples

The data used in this analysis were collected from the
end of September to the end of October 2010. Basic re-
quirements on beam, detector, stable trigger conditions
and data-quality were used in the event selection, result-
ing in a total integrated luminosity of 31 pb−1. Events
in this analysis are selected using a single-muon trigger
with a requirement on the momentum transverse to the
beam (pT) of at least 13 GeV. The trigger includes three
levels of event selection: a first level hardware-based selec-
tion using hit patterns in the MS and two higher levels of
software-based requirements.

Simulated event samples are used for the background
estimation, the acceptance calculation and for compari-
son of data with theoretical expectations. The processes
considered are the W → µν signal, and backgrounds from
W → τν, Z → µµ, Z → ττ , tt̄ and jet production via QCD

processes (referred to as “QCD background” in the text).
The signal and background samples (except tt̄) were gener-
ated with PYTHIA 6.421 [19] using MRST 2007 LO∗ [20]
PDFs. The tt̄ sample was generated with POWHEG-HVQ
v1.01 patch 4 [21]; the PDF set was CTEQ 6.6M [22] for
the NLO matrix element calculations, while CTEQ 6L1
was used for the parton showering and underlying event
via the POWHEG interface to PYTHIA. The radiation of
photons from charged leptons was treated using PHOTOS
v2.15.4 [23] and TAUOLA v1.0.2 [24] was used for tau de-
cays. The underlying and pile-up events were simulated
according to the ATLAS MC09 tune [25]. The generated
samples were passed through the GEANT4
[26] simulation of the ATLAS detector [27], reconstructed
and analysed with the same analysis chain as the data.
The cross-section predictions for W and Z were calculated
to next-to-next-to-leading-order (NNLO) using FEWZ [28]
with the MSTW 2008 [29] PDFs. The tt̄ cross-section
was obtained at next-to-leading-order (plus next-to-next-
to-leading-log, NNLL) using POWHEG [30]. The Monte
Carlo (MC) were generated with, on average, two soft
inelastic collisions overlaid on top of the hard-scattering
event. Events in the MC samples were weighted so that
the distribution of the number of inelastic collisions per
bunch crossing matched that in data, which has an aver-
age of 2.2.

4. Event Selection

The criteria for the event selection and muon identi-
fication follow closely those used for the W boson inclu-
sive cross-sectionmeasurement [8], with an improved muon
quality selection [31]. Events from pp collisions are selected
by requiring a collision vertex with at least three tracks
each with transverse momentum greater than 150 MeV. A
beam-spot constraint has been applied in the collision ver-
tex reconstruction stage significantly improving the resolu-
tion on the collision vertex position in the transverse plane.
To reduce the contribution of cosmic-ray and beam-halo
events, induced by proton losses from the beam, the anal-
ysis requires the collision vertex position along the beam
axis to be within 20 cm of the nominal interaction point.

Events with a high transverse momentum muon are se-
lected by imposing stringent requirements to ensure good
discrimination of W → µν events from background. The
muon parameters are first reconstructed separately in the
MS and ID. Subsequently, the tracks from the ID and
MS are matched. Their parameters are then combined,
weighted by their respective errors, to form a combined
muon. The W candidate events are required to have at
least one combined muon track with pT > 20 GeV and pT
measured by the MS alone greater than pMS

T > 10 GeV,
within the range |ηµ| < 2.4. The difference between the
ID and MS pT, corrected for the mean energy loss in the
material traversed between the ID and MS, is required to
be less than 0.5 times the ID pT,
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pMS
T (energy loss corrected)− pIDT < 0.5 pIDT .

This requirement increases the robustness against track
reconstruction mismatches, including decays-in-flight of
hadrons. In addition, a minimum number of hits in the
ID is required to ensure high quality tracks [31]. In order
to further reduce non-collision backgrounds, the difference
between the z position of the muon track extrapolated to
the beam line and the z coordinate of the collision vertex
is required to be less than 1 cm. A track-based isolation
for the muon is defined as

∑

pIDT /pT < 0.2, where
∑

pIDT
is the scalar sum of transverse momenta of all other tracks
measured in the ID within a cone2 ∆R < 0.4 around the
muon direction excluding the ID track associated with the
muon, and pT is the transverse momentum of the muon
combined track.

The reconstruction of the missing transverse energy
(Emiss

T ) and the transverse mass (mT) follows the prescrip-
tion in [8]. The Emiss

T is determined from the energy de-
posits of calibrated calorimeter cells in three-dimensional
clusters and is corrected for the momentum of all muons
reconstructed in the event. Jet-quality requirements are
applied to remove a small fraction of events where spo-
radic calorimeter noise and non-collision backgrounds can
affect the Emiss

T reconstruction [32]. The transverse mass
is defined as

mT =
√

2pµTp
ν
T(1 − cos(φµ − φν)), (2)

where the highest pT muon is used and the (x, y) com-
ponents of the neutrino momentum are inferred from the
corresponding Emiss

T components. Events are required to
have Emiss

T > 25 GeV and mT > 40 GeV, yielding 129572
W candidates.

5. W
± Signal Yield and Background Estimation

Many components in theW cross-sectionmeasurement,
such as the luminosity or detector efficiencies, are in prin-
ciple the same for positive and negative muons and there-
fore mostly cancel in the asymmetry calculation. The main
experimental biases on the asymmetry measurement come
from possible differences in the reconstruction of positive
and negative muons. Each effect (trigger and reconstruc-
tion efficiency and momentum scale) is examined to check
that the two charges behave in the same way within the
systematic uncertainties. These studies are performed in
absolute pseudorapidity in order to reduce the uncertainty
associated with the limited size of the data samples used.

As in past W analyses, trigger [31] and muon recon-
struction [8, 31] efficiencies as a function of muon ηµ have
been measured in data using a sample of unbiased muons

2∆R is defined as ∆R =
√

∆η2 +∆φ2.

from Z → µµ decays, which provides a source of muons
with small background. The trigger efficiency is deter-
mined relative to a reconstructed muon satisfying the se-
lection criteria of the analysis. The average trigger effi-
ciencies after the full W selection are (81 ± 2)% in the
central detector region, |ηµ| < 1.05, and (94 ± 1)% in the
forward detector region, 1.05 < |ηµ| < 2.4, where the dif-
ferences are due to the geometrical acceptance of the muon
trigger chambers. In the same muon sample, the muon re-
construction efficiency relative to an ID track is measured
to be (93 ± 1)% overall. The efficiency for reconstructing
an ID track is (99± 1)% [8]. The quoted uncertainties on
these efficiencies are statistical.

Corrections have been applied to the simulated sam-
ples to account for differences in the trigger and recon-
struction efficiencies between data and simulation. These
are based on the ratio of the efficiency in data and in sim-
ulation, and are computed as a function of the muon ηµ
and charge. The corrections for each charge agree within
the statistical uncertainties, so the charge-averaged result
is applied. For the trigger, the corrections are 0.98 and
1.03 in the central and forward MS regions, respectively.
For the reconstruction efficiency, the correction factors are
about 0.99 per ηµ bin except for the central-forward MS
transition region (|ηµ| about 1.05) where the correction
factor is 0.94.

The muon momentum resolution is affected by the a-
mount of material traversed by the muon, the spatial res-
olution of the individual track points and the degree of
internal alignment of the ID and MS [33]. This resolution
has been measured as a function of ηµ for the main detec-
tor regions (in ηµ ranges delimited by 1.05, 1.7, 2.0 and 2.4)
from the width of the di-muon invariant mass distribution
in Z → µµ decays and from the comparison of the mo-
mentum measurements in the ID and MS in Z → µµ and
W → µν decays. The measured resolution is worse than
expected from simulation by 1 – 5%, with the maximum
discrepancy reached in the high-ηµ region of the detector.
The discrepancy is due to residual mis-alignments in the
ID and MS, imperfections in the description of the inert
material in simulation and an imperfect mapping of the
magnetic field in the MS transition region where the field
is highly non-uniform. Smearing corrections are therefore
applied to the simulation in order to improve the agree-
ment with data.

If the accuracy of the muon momentum measurement
is different for positive and negative muons, this difference
can produce a bias in the acceptance of µ+ with respect
to µ−. Differences in the muon pT measurement between
data and simulation have been evaluated comparing the
curvature of muons from W candidates in data and in tem-
plates derived from simulation. A binned likelihood fit for
a momentum-scale correction that yields the best agree-
ment between data and simulation is performed as a func-
tion of ηµ separately for positive and negative charges. The
measured biases in the pT scale between the two charges
are < 1%, but they increase to about 3% in the transi-
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Figure 1: Distribution of the muon pseudorapidity ηµ of W+ (a) and W− (b) candidates, after final selection. The data are compared to
MC simulation, broken down into the signal and various background components. The MC distributions are normalised to the total number
of events in data.

tion and high-ηµ regions due to residual mis-alignments in
the ID and MS. These corrections are applied to the muon
momenta in the simulated samples.

Figure 1 shows the pseudorapidity distribution of the
selected positive and negative muons. Data distributions
are compared to the MC simulation, normalised to the to-
tal number of events in data. The shape of the simulation
agrees well with the shape of the data after the correc-
tions for the reconstruction and trigger efficiencies, and
the muon-momentum scale and resolution.

The main backgrounds to W → µν arise from heavy
flavour decays in multijet events and from the electro-
weak background from W → τν where the tau decays
to a muon, Z → µµ where one muon is not reconstructed
and Z → ττ where one tau decays to a muon, as well
as semileptonic tt̄ decays in the muon channel. Di-boson
and single top backgrounds are found to be negligible.
The W → τν contribution is treated as a background.
While this contribution presents the same asymmetry as
the W → µν signal, it is difficult to include in PDF fits,
which assume that the asymmetry is a function of ηℓ for
W → lν.

The background estimates of the electro-weak and tt̄
backgrounds and the QCD background closely follow the
methods used in the W inclusive cross-section measure-
ment [8]. They are determined separately for positive and
negative muons as a function of ηµ. The electro-weak
and tt̄ backgrounds are estimated using MC simulation.
The QCD background comes primarily from b and c quark
decays, with a smaller contribution from pion and kaon
decays in flight. This background is estimated using a
data-driven method similar to the one described in [8].
The sample of events fulfilling the full W selection criteria
with the exception of the muon isolation requirement is

compared before and after the isolation requirement. The
isolation efficiency for non-QCD events is measured in data
with the Z → µµ sample. The efficiency for QCD events
is estimated in a control sample of low-pT muons extrapo-
lated to the high-pT and high-Emiss

T signal region using the
simulated jet sample. Since the samples before and after
isolation can be defined in terms of a QCD and non-QCD
component, the expected number of QCD events can thus
be determined.

The expected background amounts to 7% of the se-
lected events; 6% is the electro-weak and tt̄ contribution
(3% Z → µµ, 2% W → τν, and 1% for the sum of tt̄
and Z → ττ) and the remainder is the QCD background.
The cosmic ray background contamination is estimated to
be smaller by a factor of 105 compared to the signal and
thus negligible. The W± candidate events and expected
background contributions are summarised in Table 1.

Figure 2 shows the transverse momentum distribution
for positive and negative muons after the full event selec-
tion. They are compared with the distributions predicted
by the corrected MC simulation normalised to the total
number of events in data. The correction factors, CWµ± ,
corresponding to the ratio of reconstructed over gener-
ated events in the simulated W sample, satisfying all kine-
matic requirements of the event selection, pµT > 20 GeV,
pνT > 25 GeV, mT > 40 GeV, are also listed in Table 1.
No correction is made to the full acceptance. The CWµ±

factors include trigger and muon reconstruction scale fac-
tors to correct for observed deviations between data and
MC efficiencies. Due to a reduced geometric acceptance in
the trigger, the CWµ± factors for the lowest |ηµ| bins are
significantly smaller than those for the higher |ηµ| regions.
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µ+ µ−

Observed Exp. Background CWµ+ Observed Exp. Background CWµ−

0.00 < |ηµ| < 0.21 5052 272± 51 0.594± 0.005 3726 236± 55 0.584± 0.004
0.21 < |ηµ| < 0.42 6519 385± 70 0.779± 0.009 4757 334± 70 0.759± 0.008
0.42 < |ηµ| < 0.63 6845 481± 88 0.808± 0.009 4936 357± 70 0.800± 0.009
0.63 < |ηµ| < 0.84 5963 366± 76 0.686± 0.008 4212 329± 64 0.691± 0.008
0.84 < |ηµ| < 1.05 5933 395± 63 0.672± 0.007 4207 358± 63 0.681± 0.008
1.05 < |ηµ| < 1.37 10114 627± 93 0.735± 0.007 6544 585± 101 0.752± 0.007
1.37 < |ηµ| < 1.52 5726 363± 57 0.905± 0.009 3601 348± 59 0.914± 0.009
1.52 < |ηµ| < 1.74 8228 542± 89 0.905± 0.008 5043 518± 82 0.925± 0.008
1.74 < |ηµ| < 1.95 7982 605± 114 0.896± 0.009 4688 456± 80 0.898± 0.008
1.95 < |ηµ| < 2.18 8392 647± 100 0.903± 0.009 4971 548± 91 0.910± 0.009
2.18 < |ηµ| < 2.40 7562 534± 81 0.881± 0.010 4571 492± 82 0.896± 0.010

Table 1: Summary of observed number of events, expected background and correction factor CWµ± for positive and negative muons in bins
of |ηµ|. The errors given for the background estimates include systematic uncertainties, including the uncertainty due to the luminosity, used
in the normalization of the electro-weak and tt̄ components. The CWµ± factors include trigger and muon reconstruction scale factors; they
include the statistical uncertainty from the MC sample and the trigger and reconstruction scale factors.

6. Systematic Uncertainties

All systematic uncertainties on the asymmetry mea-
surement are determined in each |ηµ| bin accounting for
correlations between the charges and are summarised in
Table 2. The dominant sources of systematic uncertainty
on the asymmetry come from the trigger and reconstruc-
tion efficiencies. The determination of these efficiencies
is affected by the statistical uncertainty due to the small
available sample of Z → µµ events. Systematic uncer-
tainties on the efficiencies are determined from studies of
the impact of the selection criteria and backgrounds, and
no significant charge biases are found. There is a loss of
trigger efficiency in the low pseudorapidity region due to
reduced geometric acceptance, resulting in a larger sta-
tistical error. As a result, the trigger systematic uncer-
tainty on the asymmetry is largest in the low pseudorapid-
ity bins (6-7% for central |ηµ| and 2-3% for forward |ηµ|).
Similarly, the uncertainties associated with the reconstruc-
tion efficiency are larger in the lowest pseudorapidity bin
(about 7%), and in the MS central-forward transition re-
gion (about 3%), due to geometrical acceptance effects as-
sociated with reduced chamber coverage. In the remaining
regions, the uncertainty is about 1-2%.

The muon momentum scale and resolution corrections
contribute to the uncertainty primarily due to the limited
statistics for the fitting procedures used to measure the dif-
ferences between the data and simulation. An additional
source of uncertainty arises from potential biases in the
template shapes. The size of this effect is determined by
using different templates created by shifting the resolution
parameters in opposite directions to account for possible
charge biases. Uncertainties associated with the modelling
of the background contributions to the templates, particu-
larly the QCD background, are also included. The result-
ing uncertainty on the asymmetry is in the 1-2% range,
with little dependence on ηµ. The redundant ID and MS

momentum measurements result in a rate of charge mis-
identification smaller than 10−4 in the pT range consid-
ered, resulting in a negligible impact on the asymmetry.

The momentum-scale correction procedure is further
tested by exploiting the redundant muon-momentum mea-
surements offered by the ATLAS detector. The full asym-
metry measurement is performed with the ID and MS
components of the combined muon separately, including
the scale corrections. Figure 3 compares the two indepen-
dently corrected charge-asymmetry distributions, showing
good agreement within the systematic uncertainty associ-
ated with the momentum-scale correction.
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Figure 3: W charge asymmetry measured using the ID and MS sepa-
rately. The MS measurement is extrapolated to the collision vertex,
and corrected for energy-loss in the calorimeters. The two measure-
ments are independently corrected for effects of the muon-momentum
scale on the muon acceptance. The two measurements are statisti-
cally correlated to a large extent, since they use the same muons re-
constructed by different subdetectors and algorithms. The error bar
reports therefore only the systematic uncertainty associated with the
momentum-scale correction.
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Figure 2: Distribution of the transverse momentum of positive and negative muons after the final selection. The data are compared to MC
simulation, broken down into the signal and various background components. The MC distributions are normalised to the total number of
entries in data.

The systematic uncertainties on the QCD background
arise primarily from the uncertainty on the isolation ef-
ficiency for muons in QCD events due to possible mis-
modellings of the extrapolation of the isolation efficiency
to the large pT and Emiss

T region in the QCD simulation
(40%). This has been derived from differences in the ef-
ficiency predictions between data and simulation in the
low muon pT control region and in sideband regions where
the muon pT or Emiss

T cuts are reversed. The electro-weak
and tt̄ background and signal contributions are subtracted
from data in these comparisons. Additional uncertainties
due to the non-QCD isolation efficiency and the statisti-
cal uncertainty are included in the total uncertainty on
the QCD background estimate. The corresponding sys-
tematic uncertainty on the asymmetry is 1-2%, with little
dependence on ηµ.

For the electro-weak and tt̄ backgrounds, the uncer-
tainty in the cross-sections includes the PDF uncertainties
(3%), and the uncertainties estimated from varying the
renormalization and factorization scales: 5% for W and
Z, and 6% for tt̄ [34, 35, 8]. An additional uncertainty
from the luminosity of 11% is included, since the back-
grounds are scaled to the luminosity measured in data.
The combination of all these contributions results in an
uncertainty on the asymmetry of less than 1%.

The impact of using an NLO MC rather than Pythia
in the CWµ± factor calculation has been evaluated and an
additional systematic uncertainty of about 3% is included
to account for the small variations observed. Pythia uses a
leading-log calculation for W production and is expected
to give a reasonably accurate prediction for the low W
transverse momentum pWT region whereas MC@NLO [36]
uses higher-order matrix elements and is therefore expected
to be more reliable in the high pWT region. Therefore the

differences in the scale factors associated with these two
MC calculations gives a reasonable estimate of the associ-
ated systematic error.

7. Results and Conclusions

The measured particle-level differential charge asym-
metry in eleven bins of muon absolute pseudorapidity is
shown in Table 3 and Figure 4. The statistical and system-
atic uncertainties per |ηµ| bin are included and contribute
comparably to the total uncertainty. Table 3 and Figure 4
also show particle-level expectations from W predictions
at NLO with different PDF sets: CTEQ 6.6 [16], HERA
1.0 [5] and MSTW 2008 [15]; all predictions are presented
with 90% confidence-level error bands. All MC predic-
tions are calculated using MC@NLO, with all kinematic
selection criteria applied to the truth particles. The PDF
uncertainty bands are obtained by summing in quadra-
ture the deviations of each of the PDF error sets [37] from
the respective nominal predictions, according to the spec-
ifications of the corresponding PDF collaborations to get
90% C.L. bands. These uncertainties for all predictions
include experimental uncertainties as well as model and
parametrization uncertainties. The HERA 1.0 [5] set also
includes the uncertainty in αs, which, however, is not the
dominant source of uncertainty.

While the predictions with different PDF sets differ
within their respective uncertainty bands [38, 39], they
follow the same global trend, rising with ηµ. The measured
asymmetry agrees with this expectation. As demonstrated
graphically in Figure 4, the data are roughly compatible
with all the predictions with different PDF sets, though
some are slightly preferred to others. A χ2-comparison
using the measurement uncertainty and the central value
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of the PDF predictions yields values per number of degrees
of freedom of 9.16/11 for the CTEQ 6.6 PDF sets, 35.81/11
for the HERA 1.0 PDF sets and 27.31/11 for the MSTW
2008 PDF sets.

In summary, this letter reports a measurement of the
W charge asymmetry in pp collisions at

√
s = 7 TeV per-

formed in the W → µν decay mode using 31 pb−1 of data
recorded with the ATLAS detector at the LHC. Until the
start of the LHC, it has not been kinematically possi-
ble to precisely measure the valence quark distributions
and in particular the ratio of u/d quarks below x . 0.05.
Whereas none of the predictions with different PDF sets
are inconsistent with these data, the predictions are not
fully consistent with each other since they are all phe-
nomenological extrapolations in x. The input of the data
presented here is therefore expected to contribute to the
determination of the next generation of PDF sets, helping
reduce PDF uncertainties, particularly the shapes of the
valence quark distributions in the low-x region.
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MC@NLO, CTEQ 6.6
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-1
 L dt = 31 pb∫

νµ →W 

ATLAS

Figure 4: The muon charge asymmetry from W -boson decays in bins
of absolute pseudorapidity. The kinematic requirements applied are
pµ
T

> 20 GeV, pν
T

> 25 GeV and mT > 40 GeV. The data points
(shown with error bars including the statistical and systematic un-
certainties) are compared to MC@NLO predictions with different
PDF sets. The PDF uncertainty bands are described in the text and
include experimental uncertainties as well as model and parametriza-
tion uncertainties.
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Trigger Reconstruction
pT Scale and QCD Electro-weak and tt̄ Theoretical
Resolution Normalisation Normalisation Modelling

0.00 < |ηµ| < 0.21 0.011 0.010 0.003 0.003 < 0.001 0.007
0.21 < |ηµ| < 0.42 0.010 0.004 0.003 0.003 < 0.001 0.005
0.42 < |ηµ| < 0.63 0.009 0.004 0.003 0.003 < 0.001 0.006
0.63 < |ηµ| < 0.84 0.012 0.004 0.003 0.002 0.001 0.007
0.84 < |ηµ| < 1.05 0.013 0.006 0.003 0.003 0.001 0.008
1.05 < |ηµ| < 1.37 0.006 0.007 0.002 0.002 0.001 0.006
1.37 < |ηµ| < 1.52 0.006 0.005 0.002 0.003 0.002 0.005
1.52 < |ηµ| < 1.74 0.005 0.004 0.002 0.003 0.002 0.007
1.74 < |ηµ| < 1.95 0.006 0.003 0.002 0.002 0.001 0.006
1.95 < |ηµ| < 2.18 0.006 0.004 0.002 0.003 0.002 0.009
2.18 < |ηµ| < 2.40 0.007 0.005 0.002 0.003 0.002 0.007

Table 2: Absolute systematic uncertainties on the W charge asymmetry from different sources as a function of absolute muon pseudorapidity
that are described in the text.

Data MSTW 2008 CTEQ 6.6 HERA 1.0

0.00 < |ηµ| < 0.21 0.147± 0.011± 0.017 0.142+0.006
−0.014 0.164+0.006

−0.007 0.163± 0.007

0.21 < |ηµ| < 0.42 0.150± 0.010± 0.012 0.147+0.007
−0.014 0.168+0.006

−0.007 0.167± 0.007

0.42 < |ηµ| < 0.63 0.158± 0.010± 0.012 0.151+0.007
−0.013 0.173+0.006

−0.007 0.169± 0.007

0.63 < |ηµ| < 0.84 0.184± 0.010± 0.015 0.163+0.008
−0.012 0.186+0.007

−0.008 0.179+0.008
−0.007

0.84 < |ηµ| < 1.05 0.186± 0.011± 0.017 0.176+0.009
−0.012 0.198+0.007

−0.008 0.188± 0.008

1.05 < |ηµ| < 1.37 0.240± 0.008± 0.011 0.197± 0.010 0.219+0.008
−0.010 0.203+0.009

−0.008

1.37 < |ηµ| < 1.52 0.250± 0.011± 0.010 0.215+0.011
−0.010 0.237+0.009

−0.010 0.214± 0.009

1.52 < |ηµ| < 1.74 0.269± 0.009± 0.010 0.230+0.012
−0.010 0.251+0.009

−0.011 0.224± 0.009

1.74 < |ηµ| < 1.95 0.273± 0.009± 0.010 0.251+0.013
−0.009 0.270+0.010

−0.011 0.239+0.010
−0.009

1.95 < |ηµ| < 2.18 0.276± 0.009± 0.012 0.266+0.014
−0.010 0.284+0.010

−0.011 0.251+0.009
−0.010

2.18 < |ηµ| < 2.40 0.273± 0.010± 0.012 0.272+0.015
−0.011 0.288+0.009

−0.010 0.255+0.009
−0.010

Table 3: The muon charge asymmetry from W -boson decays in bins of absolute pseudorapidity. The data measurements are listed with
statistical and systematic uncertainties respectively. Predicted asymmetries of the MSTW 2008, CTEQ 6.6, and HERA 1.0 PDF sets are
shown for comparison.
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D. Moreno81, M. Moreno Llácer167, P. Morettini50a,
M. Morii57, J. Morin75, Y. Morita66, A.K. Morley29,
G. Mornacchi29, M-C. Morone49, S.V. Morozov96,
J.D. Morris75, H.G. Moser99, M. Mosidze51, J. Moss109,
R. Mount143, E. Mountricha9, S.V. Mouraviev94,
E.J.W. Moyse84, M. Mudrinic12b, F. Mueller58a,
J. Mueller123, K. Mueller20, T.A. Müller98,
D. Muenstermann29, A. Muijs105, A. Muir168,
Y. Munwes153, K. Murakami66, W.J. Murray129,
I. Mussche105, E. Musto102a,102b, A.G. Myagkov128,
M. Myska125, J. Nadal11, K. Nagai160, K. Nagano66,
Y. Nagasaka60, A.M. Nairz29, Y. Nakahama115,
K. Nakamura155, I. Nakano110, G. Nanava20,
A. Napier161, M. Nash77,s, N.R. Nation21,
T. Nattermann20, T. Naumann41, G. Navarro162,
H.A. Neal87, E. Nebot80, P.Yu. Nechaeva94,
A. Negri119a,119b, G. Negri29, S. Nektarijevic49,
A. Nelson64, S. Nelson143, T.K. Nelson143, S. Nemecek125,
P. Nemethy108, A.A. Nepomuceno23a, M. Nessi29,t,
S.Y. Nesterov121, M.S. Neubauer165, A. Neusiedl81,
R.M. Neves108, P. Nevski24, P.R. Newman17,
R.B. Nickerson118, R. Nicolaidou136, L. Nicolas139,
B. Nicquevert29, F. Niedercorn115, J. Nielsen137,
T. Niinikoski29, A. Nikiforov15, V. Nikolaenko128,
K. Nikolaev65, I. Nikolic-Audit78, K. Nikolopoulos24,
H. Nilsen48, P. Nilsson7, Y. Ninomiya 155, A. Nisati132a,
T. Nishiyama67, R. Nisius99, L. Nodulman5,
M. Nomachi116, I. Nomidis154, H. Nomoto155,
M. Nordberg29, B. Nordkvist146a,146b, P.R. Norton129,
J. Novakova126, M. Nozaki66, M. Nožička41, L. Nozka113,
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Autònoma de Barcelona and ICREA, Barcelona, Spain
12 (a)Institute of Physics, University of Belgrade,
Belgrade; (b)Vinca Institute of Nuclear Sciences,
Belgrade, Serbia
13 Department for Physics and Technology, University of
Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National
Laboratory and University of California, Berkeley CA,
United States of America
15 Department of Physics, Humboldt University, Berlin,
Germany
16 Albert Einstein Center for Fundamental Physics and
Laboratory for High Energy Physics, University of Bern,
Bern, Switzerland
17 School of Physics and Astronomy, University of
Birmingham, Birmingham, United Kingdom
18 (a)Department of Physics, Bogazici University,
Istanbul; (b)Division of Physics, Dogus University,
Istanbul; (c)Department of Physics Engineering,
Gaziantep University, Gaziantep; (d)Department of
Physics, Istanbul Technical University, Istanbul, Turkey
19 (a)INFN Sezione di Bologna; (b)Dipartimento di Fisica,
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Hautes Energies, UPMC and Université Paris-Diderot
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