Dark photons: HPS & BDX

Giovanni Marchiori Dark Matter @ LPNHE

3 Novembre 2014

The dark photon sector

- the search for DM is dominated by the search or WIMPs of m~5,000 GeV
- some physics models naturally predict non-WIMP DMs
- among them, models with a light (sub-GeV) dark sector communicating with SM particles through a light dark photon (additional gauge U(1)) which mixes with hypercharge

$$\begin{array}{c} m_{\chi}, m_{A'}, \epsilon, g_{\chi} \\ \gamma \\ \kappa \\ \sim \mathbf{M}_{A'} \sim \mathbf{M}_{A'} \\ \leftarrow \mathbf{$$

this gives rise to diagrams like

HPS and BDX

HPS @ JLAB (slide from Witek)

The Heavy Photon Search uses the lower current beam on a thin target with a high precision vertexing & tracking detector to search for displaced vertices
→HALL B beam: <700 nA with 2 ns bunch spacing; σ_{x,y} <50um
→12-layer Si microstrip detector inside 0.5T magnet measures momentum & decay vertex
→PbW crystal calorimeter w/APD readout used for triggering
→decent mass resolution (~2-10%), decent acceptance (up to ~20%)
→vertex resolution ~few mm; 10⁻⁶ rejection of prompt decays
→mass resolution dominated by MS in tracker

HPS: physics perspectives, current status $m_{A'} < 2 m_{\chi}$

- sensitive to regions not excluded by previous experiments
- experiment approved, installation almost complete (some delay with installation of tracker, probably in by end of 2014)
- accelerator in commissioning
- ~3.5 weeks of engineering run, + 4 weeks of data taking around April 2015
- further data-taking periods/ upgrades depend on schedule of other JLAB experiments and DOE funding

Note: if A' can also decay invisibly, visible signals should be rescaled by ϵ^2 and there's no limit below $\epsilon^2 \sim 1e-3..$

HPS: possible contributions

- even though installation is almost complete, offline reconstruction and analysis software still requires some effort & manpower
- data taking soon, time to enter collaboration = now or never
- possible contributions:
 - coordination of ECAL reconstruction
 - ECAL calibration
 - SVT DB, timing, monitoring plots, ..
 - improvements to track reconstruction to increase sensitivity
 - data taking shifts
- one French group (IPNO) already in the Collaboration

BDX (Lol: arXiv:1406.3028)

- beam-dump experiment proposal based on theory paper "New Electron Beam-Dump Experiments to Search for MeV to few-GeV Dark Matter", PRD88,114015. Large overlap with HPS collaboration
 - search for signal from X pairs produced either in decay of on-shell A' or through mediation of off-shell A'

Why an electron beam?

- similar searches can be done with fixed target experiments with proton beams (LSND, MiniBoone), typically (for low-mass A') from $\pi^0 \rightarrow \gamma \gamma \rightarrow \gamma A'$ decays, but
 - no sensitivity if $m_{A'} > m_{\pi}$ or $m_X > m_{\pi}/2$
 - large bkg from v in beam
 - possibly leptophilic U-boson not produced in meson decay (kinetic mixing with universal coupling ɛq to all electric charges just the baseline; U-boson could couple to baryon number or to lepton number...)

Signal cross sections for 2 benchmark scenarios

	S.I	S.II
M_{χ}	$10 \mathrm{MeV}$	$68 { m MeV}$
$\mathcal{M}_{A'}$	$50 \mathrm{MeV}$	$150 { m MeV}$
ϵ	10^{-3}	10^{-3}
α_{Dark}	0.1	0.1
N_χ pairs produced per EOT	$3.4 10^{-10}$	$3.4 10^{-11}$
$\sigma_{\chi-p}$	1.4 nb	0.14 nb

ynamonly \sim 091100 A', X boosted forward > small (1m³) detector enough for large acceptance

Detector concept and possible JLAB beam dumps

- No room behind the beam dump enclosure
- Ideal place for a full experiment

• Simplified logistic: (shielded roof) hut, power, network, A/C

Detector concept/prototype

CORMORAD prototype CORMORINO scale (1:3)³~3% m³

Prototype cell * 4 30x5x5 cm³ NE110 bars * 1 5x10x10 cm³ NE110 block ★ 12.5 µm Gd foils wrapping

* Light read-out **18 Photonis** XP2312 3" PMTs

active veto (plastic scintillators paddles 2cm thick + single-side PMT readout)

- Implemented Geant4 simulation which includes attenuation length and light quenching effect
- Two detection thresholds studied: 1 MeV and 10 MeV 12

Backgrounds

- beam-related: only neutrinos are expected to exit from the beam-dump (confirmed by simulation with 1.6e9 EOT so far)
 - negligible compared to beam-unrelated
- beam-unrelated:
 - cosmic v: negligible considering flux, xsec and threshold
 - cosmic n: sizeable (small probability to interact with plastic of veto)
 - 1m iron shield + detection energy threshold introduce a neutron energy cutoff (detection efficiency = 0 for $T_N < 50$ (100) MeV)
 - cosmic mu: sizeable
 - crossing: \propto veto inefficiency (5%)² x probability(single hit)
 - decaying: ∝ veto inefficiency x probability(single hit)
 - estimated with MC, to be validated by real measurements

BDX expectations

baseline detector = 30x Cormorino interleaved with 1mm lead foils to • increase X/X₀

assume time coincidence giving non-beam ullet

Nucleon Scattering $E_{rec} > 1 \text{ MeV}$, $\alpha_D = 0.1$, $m_{\chi} = 10 \text{ MeV}$

BDX 1000 **BDX 100**

BDX 10

200

 $m_{A'}$ (MeV)

1000

14

500

Activities foreseen

- Measurement of cosmogenic bkg
- Define full detector design, try to
 - improve electron/proton discrimination
 - directionality to correlate hits with beam
 - optimise cost (PMTs, # of instrumented channels)
- Prepare full simulations
- Reconstruction
- Financing/construction/installation..

Conclusion

- low-mass DM and dark photons a possible alternative to the WIMP paradigm
- HPS: visible decays of the dark photon: short-term perspectives, requiring no R&D effort
 - possible contributions to software, data-taking and analysis in 2015 and 2016 (further data-taking depending on JLAB schedule and DOE funds)
 - data taking in 2015, join now or never
- BDX: complementary search for invisible decays, more medium term, contribution to design phase possible
 - important overlap with HPS Collaboration
- partial contributions from people already involved at larger FTEs in other projects possible
- small initial investment needed for an activity that is complementary to the WIMP searches in which other LPNHE members are getting involved

Current landscape

Some unknowns

Matter couplings

- Baseline model: A' kinetic mixing (coupling εq to all electric charges)
- But U-boson could couple to baryon number, or to lepton numbers
 some beams/scattering reactions insensitive
 - \Rightarrow indirect constraints (e.g. modified e-v scattering from U(1)_L)

Dark Matter Structure

- Generic possibility: χ splits into two Majorana/real states of different mass (χ and χ^*). A' coupling is off-diagonal.

⇒ kinematic threshold $E_{\chi} > m_{\chi^*} + \frac{\Delta m_{\chi}^2}{2m_e}$ for up-scattering **shuts off** direct detection ⇒ new signal: decay e⁺e⁻ pair

10

Current limits

0.01

0.1

 $m_{A'}$ [GeV]

0.001

drastically

10

Expected backgrounds in Cormorino prototype

	Rate $_{Thr=1MeV}$ (Hz/ μ A))	$\mathrm{Rate}_{\mathit{Thr}=10\mathrm{MeV}}~(\mathrm{Hz}/\mu\mathrm{A}))$
χ detection - S.I	$1.0 \ 10^{-5}$	$1.2 \ 10^{-6}$
χ detection - S.II	$2.0 \ 10^{-7}$	$0.7 \ 10^{-7}$
B-rel ν	$2.0 \ 10^{-9}$	$2.0 \ 10^{-10}$
B-rel neutron	0	0
	Rate $_{Thr=1MeV}$ (Hz)	Rate $_{Thr=10MeV}$ (Hz)
B-unrel ν	$2.0 \ 10^{-6}$	$2.0 \ 10^{-7}$
B-unrel neutron	$2.7 \ 10^{-3}$	$0.6 \ 10^{-3}$
Crossing muons	$3.3 \ 10^{-3}$	$3.5 \ 10^{-3}$
Captured μ^+	$1.4 \ 10^{-3}$	$2.4 \ 10^{-3}$
Decaying μ^- (CORM)	$2.9 \ 10^{-3}$	$4.8 \ 10^{-3}$
Stopped μ in lead	$7.0 \ 10^{-3}$	$4.3 \ 10^{-3}$
μ^- rare decay	$2.0 \ 10^{-5}$	8.0 10 ⁻⁶
Total Beam-unrelated bg	$1.7 \ 10^{-2}$	$1.5 \ 10^{-2}$

- with baseline granularity and no use of timing information
- beam-related bkg does not seem to be an issue
- cosmoger kg to be validated by real measurements