Search of WIMPs with Liquid Argon: The DarkSide experiment

Claudio Giganti

Outline

- At our first meeting I introduced the Darkside physics program
 - Search for WIMPs with Liquid Argon detectors
 - In the first phase we are taking data with a 50 kg detector
- Since then there has been few updates that I'll discuss today
 - Darkside-50 released the first paper with dark matter results
 - Definition a plan for the next generation of Darkside detectors
 - French contributions to WIMPs search with Liquid Argon
 - Analysis effort for Darkside-50
 - R&D efforts for Darkside-G2
 - ANR proposal for the study of directionality of Nuclear Recoils with Liquid Argon

Noble liquids TPC

LAr or LXe

		LAr	LKr	LXe
	Atomic number	18	36	54
Physical	Boiling point at 1 bar, T _b (K)	87.3	119.8	165.0
properties	Density at T _b (g/cm ³)	1.40	2.41	2.94
Ionisation	W (eV) ¹	23.6	20.5	15.6
	Fano factor	0.11	~0.06	0.041
	Drift velocity (cm/ μ s) at 3 kV/cm	0.30	0.33	0.26
	Transversal diffusion coefficient			
	at 1 kV/cm (cm ² /s)	~20		~80
Scintillation	Decay time ² , fast (ns)	5	2.1	2.2
	slow (ns)	1000	80	27/45
	Emission peak (nm)	127	150	175
	Light yield ² (phot./Mev)	40000	25000	42000
	Radiation length (cm)	14	4.7	2.8
	Moliere radius (cm)	10.0	6.6	5.7
				

Excellent discrimination power!

- Liquid Xenon has excellent radio-purity → key ingredient to build large detectors
- Liquid Argon has much better PSD but a serious problem
 - Cosmogenic ³⁹Ar in atmospheric argon → high rate β emitter
 → pile-up if you want to build large detectors

Pulse Shape Discrimination

- Fast decay time (Singlet) ~ 7 ns
- Slow decay time (Triplet) ~ 1600 ns
- NR: ~70% of the energy goes in the singlet → large f90
- ER: ~30% of the energy goes in the singlet: small f90

f90: Q(0-90 ns)/Q(all)

Rejection factor > 108

another factor 10² from S1/S2

DarkSide-50

Experiment installed in the Gran Sasso Laboratory

Double phase TPC with 50 kg of liquid Argon

2 vetoes system: Liquid Scintillator and Water Cherenkov

Started data taking in January 2014 with Atm. Ar

Background reduction

Depleted Underground Argon
Low background materials
Active Shields against neutrons
and muons

Background identification

Pulse Shape Discrimination S1/S2 discrimination Measure neutron flux in borate scintillator Position reconstruction

Demonstrate the potential of the technology for multi ton background-free detector

DarkSide Collaboration

- Collaboration ~ 100 people
- Mainly from US and Italy

Ukraine

KINR, NAS Ukraine - Kiev

CHINA

IHEP – Beijing

POLAND

Jagiellonian University – Krakow

FRANCE

Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité – Paris IPHC, Université de Strasbourg, CNRS/IN2P3 – Strasbourg

USA

Augustana College – SD

Black Hills State University – SD

Fermilab – IL

Princeton University – NJ

SLAC National Accelerator Center - CA

Temple University – PA

University of Arkansan – AR

University of California – Los Angeles, CA

University of Chicago – IL

University of Hawaii – HI

University of Houston – TX

University of Massachusetts – MA

Virginia Tech – VA

ITALY

INFN Laboratori Nazionali del Gran Sasso – Assergi

Università degli Studi and INFN – Genova

Università degli Studi and INFN – Milano

Università degli Studi Federico II and INFN – Napoli

Università degli Studi and INFN – Perugia

Università degli Studi Roma Tre and INFN – Roma

RUSSIA

Joint Institute for Nucelar Research – Dubna

Lomonosov Moscow State University – Moscow

National Research Centre Kurchatov Institute – Moscow

Saint Petersburg Nuclear Physics Institute – Gatchina

TPC

- 50 kg active mass of UAr (37 kg FV)
- 19 top + 19 bottom High Quantum Efficiency 3" PMTs (R11065)
- 36 cm height, 36 cm diameter
- All inner surfaces coated with TPB (used to shift wavelength of Ar scintillation from 128 nm to 420 nm)

Large electron life-time (> 5 ms)

High purity of Argon Stable operations of electric fields

GAr

CathodeWindow

Outer LAr

Active vetoes

- Liquid Scintillator Neutron veto
- 30 tonnes boron-loaded liquid scintillator detector
 - Readout with 110 low-radioactivity PMTs
 - 2 m radius sphere
- Passive shield against neutrons and gamma
- Tag neutrons from TPC through n-capture to measure the neutron flux
- Muon veto
 - 1 kton ultra pure water
 - 10 m height, 11 m diameter
 - 80 PMTs
 - Tag cosmogenic neutron events

Both vetoes are designed to host DarkSide-G2 (5 ton TPC)!

Underground Argon

- ³⁹Ar β-decay with a rate of ~1 Hz/Kg in Atm. Ar
 - Even if you can distinguish ER from NR with PSD it's impossible to build large detectors with AAr due to pile-up
- Solution: use Underground Argon → factor of >150 of depletion

DarkSide status

- ~2 months of data taking with Atmospheric Argon
- Huge statistics of ER to demonstrate background free operations
 - Number of ³⁹Ar corresponding to two decades of DarkSide-50 with UAr!
- Release first physics results with this data set http://arxiv.org/pdf/1410.0653v1.pdf
- Replace Atmospheric Argon with Underground Argon in December
- Start 3 years run with UAR
- Move to Darkside-G2 (ton-scale LAr) in the future

Background free

- 2 months of data with AAr → > 20 years of UAr
- 15x10⁶ ER selected and none of them has a pulse shape compatible with a NR above

WIMP search

 Define the WIMP search region as the region in which there are less than 0.1 ER expected into the search region with the current data-set

Nuclear recoils

WIMPs limits

PSD in LXe and LAr

- LXe → ER close to the NR mean
- LAr → no ER leaking in the NR region (not even in the 90% acceptance line for the NR)
 - These results were obtained with 50 days of Atm Argon →
 >20 years of data with Underground Argon
 - Zero-background detector!

Darkside-G2

- Results presented by Darkside gave very good boost to the Darkside operations with funding agencies
- Ton-scale TPC to be installed inside the same veto systems currently used by DS-50
- Replace PMTs with SiPM → cheaper, cleaner, smaller
- Ask for funding mainly to INFN + contribution from DOE (depleted Argon)
- Discussions will be done in the next few months, start building in the next couple of years
 - Good time to join

LAr on long term

- The Xenon technology still has the better limits for WIMPs
- But the Argon technology proved to be free of electron recoils while keeping a 90% acceptance for NR
 - Thanks to the PSD in Liquid Argon
 - LUX have some backgrounds even keeping a 50% acceptance for NR

- Necessary to continue the Argon program in view of the next generations detectors
- LAr is certainly an interesting technology for the ultimate WIMP detector (Darwin?)

Joining Darkside

- The APC and IPHC groups are already part of Darkside-50
- We have recently joined the collaboration and in general they would be very happy to have additional collaborators
 - Some discussion with Cristian Galbiati (spokesman)
 - We can contribute to the analysis of Darkside-50 data
 - Contributions to R&D for the next phases of this program → SiPM and characterization of the detector
- Meeting in Milan the 11th and 12th of December to strengthen the European part of the collaboration
 - We plan to attend this meeting (me and Sandro)

French laboratories in DS

- 2 laboratories are part of the DarkSide collaboration (APC, IPHC)
 - APC: Davide Franco, Alessandra Tonazzo, Stefano Perasso (postdoc), Paolo Agnes (PhD)
 - IPHC: Anselmo Meregaglia, Cecile Jollet
- Their main contribution was to write the GEANT4 based MC simulation of the experiment → used for the on-going analyses
- We are now working on the analysis of DS-50
 - Luca Agostino is working on the analysis of DarkSide
 - Analysis of the data from the on-going calibration campaign
 - Analysis of the data with Underground Ar next year
- Participate to the necessary R&D for the next generation
 - Sandro and Stefano are interested in these developments

French laboratories in DS

2 laboratories a

APC: Davide doc), Paolo A

IPHC: Anseln

Their main conf of the experime

We are now wo

Luca Agostin

Analysis of tlWE \

Analysis of the d

Participate to the n

Sandro and Stef

oration (APC, IPHC)

Stefano Perasso (post-

NT4 based MC simulation alyses

DarkSide

ration campaign

Ar next year

next generation

ese developments

Some examples

- For DS-50 analysis there's an existing MC framework developed at APC
- Easy to use, but still a lot of work to do to fully characterize the detector

Data/MC comparison for ³⁹Ar

TPC with SiPM on the top

Simulation of y inside Darkside-50

Directionality with LAr

- S1 is different if the electric field is parallel or perpendicular to the nuclear recoil
- Some weak hints of this effect in LAr have been observed in SCENE
- This effect might strengthen the significance of few WIMPs candidates if they will be observed in DS-G2
- There's a large interest in some of the DS groups to investigate this effect
- We made an ANR proposal to build a small TPC
 - Study directionality
 - Develop SiPM

Directionality in France

- The main limitation to study the directionality is to have enough beam time allocate
 - Neutrons with a well defined energy
- Writing the ANR we discussed with the director of IPNO where they have an excellent neutron beam for these kind of studies (Tandem accelerator)
- Faizal Azaiez participate to the ANR proposal
- We will have further discussion with him and Cristian at the begin of 2015 to see if we can have a collaboration also independently on the ANR

SiPM for DS-G2

- Advantages of SiPM for DS-G2
 - Higher QE → reduce threshold for WIMP search
 - Smaller than PMTs → increase the FV
 - Better PSD thanks to the higher Single Photo-Electron resolution
 - Smaller backgrounds than PMTs that might mimic NR in the TPC
- Our contribution to the ANR would be mainly for the electronics part
 - Development of SiPM
 - Readout electronics for the TPC
- Possibility to contribute independently from the ANR under investigation

Conclusions

- Liquid Argon TPC are good candidates to build large detector to search for direct dark matter
 - Current limits are behind the ones from Liquid Xenon
 - Disadvantage : 39Ar β emitter → use Underground Argon
 - Advantage: Pulse Shape Discrimination in LAr better than in LXe
- Darkside-50 is proving that it's possible to build a background-free detector to search for WIMPs
- A ton-scale detector can be built in the next years
- French groups are already working on DarkSide
 - The collaboration will be happy to have new collaborators
- I believe it's a good option for us to get involved in an experiment searching for WIMPs
 - Analysis of DarkSide-50 data
 - Necessary R&D towards DarkSide-G2

Back-up

Noble liquids TPC

Noble liquids: scintillation

Primary scintillation photons emitted and detected →

WIMP scatter deposits energy in the FV

Noble liquids: ionization

lonized
electrons drift to
the gas region
where
secondary
photons are
emitted and
detected → \$2

WIMP direct detection

Low rate (~1 ev/ton/yr @ σ =10⁻⁴⁷cm⁻²)

Large masses

Low energy nuclear recoils (<100 keV)

Low energy thresholds

Background suppression

Deep underground
Passive and active shielding
Low radioactivity
Discrimination of ER from NR

WIMPs and neutrons \rightarrow Nuclear Recoils β , $\gamma \rightarrow$ Electron Recoils

Noble liquids

- Dense and relatively inexpensive → Large masses
- Easy to purify
- Use electrons ionization and photons scintillation
 - High ionization (W~20 eV)
 - High scintillation yield (~40 photons/MeV)
- Discriminate electron recoils from nuclear recoils

2 liquids used in DM experiments:
Liquid Xenon
Liquid Argon

Electron recoils in DS-50

- Use 39AR and a Kr source to estimate the light yield for the scintillation in DS-50
- This is a very important parameter because the pulse shape discrimination critically depends on the number of photons produced in the scintillation process

8 PE/keVee @ 0 field (better than design → 6 PE/keVee)

NR calibration: SCENE

- Calibrating the response for the nuclear recoils is more difficult because you need single scatter in the TPC
- A calibration experiment has been performed putting a small TPC onto a neutron beam and measuring the scintillation produced by single scatter nuclear recoils of known energy

ER vs NR

- f90 for ER ~ 0.3
- f90 for NR ~0.7
- This is the variable used to perform the PSD

Argon vs Xenon

- Xenon experiments are currently putting best limits on DM thanks to their large volume and the lowest activity of the Xenon
- On the other side the PSD of the Xenon is worst than the one obtainable with LAr → a background-free experiment is only possible with LAr

LUX results → 0.6 ER events expected below NR mean, some more observed close to the NR mean

DarkSide-50 sensitivity

- The goal of DS-50 is to demonstrate that DM search with zero background can be done
- Due to the small size of the detector even after 3 years of running with UAr the limit will be just slightly better then the current limits from LUX
- Once the technology is established plans to build a larger detector → DarkSide-G2

