

Cosmic Ray Positron Fraction and Lepton Fluxes With AMS-02

Li TAO

AMS - LAPP

Enigmass @ LAPP November 2014

- **Geomagnetic field**
- **Atmosphere**

Goals of AMS

- Measure cosmic rays in the space (ISS)
 - Indirect search of evidence of dark matter and primordial antimatter
 - Refinement of the propagation models
 - Indentification of astrophysical sources

- Challenges for positron measurement:
 - Statistical precision at high energy
 - proton rejection power greater than 10⁵
 - Good control of charge confusion

DAQ Since May 2011

More than 50 billion events have been collected in the past 3 years.

Trigger Rate (Hz) DAQ efficiency latitude / deg 80 0.9 60 0.8 40 0.7 0.620 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 150 -50 50 n 100 -150 -100 -50 50 100 O longitude / deg ISS Latitude (deg)

The trigger rates vary from 200 to 2000 Hz per orbit

-40 -60 -80 -150 -100 DAQ efficiency reaches 90% (South Atlantic Anomaly excluded)

ISS Longitude (deg)

80E

60

40

20

0

-20

4500 원

Hate 0004

3500 මු

3000

2500

2000

1500

1000

500

n

150

Overview of the AMS detector

Proton Rejection

6

Positron number count

- Number of leptons and positrons extracted from fitting data with electron and proton templates
- Templates obtained from data

 $\chi^2/d.f. = 0.60$

positrons

0.5

0.6

80

70

60

50

40

30

20

10

Events

Electron and proton templates well separated using ECAL and TRD estimators

Data on ISS

Positron

Proton

Fit

0.8

0.9 Positrons 173-206 GeV

leptons

Charge Confusion

Estimator (BDT) developped using tracker information

- Other estimators such as Energy_{ECAL}/Momentum_{Tracker}
- Charge confusion obtained by simultaneously fitting with electron/proton estimator

Positron Fraction (PRL 2014)

Flux Measurement Procedure

Isotropic flux: $\Phi(E, E + \Delta E) = \frac{N_{signal}}{A_{geo} * \varepsilon_{sel.} * \varepsilon_{trig.} * T_{expo}(E) * \Delta E}$

Electron and positron fluxes (PRL 2014)

Combined e⁺+e⁻ Flux (PRL 2014)

Combined flux after 1 TeV

Conclusion

- AMS has been performing smoothly for more than 3 years. 30 months of data have been analyzed.
 - 11 million positrons and electrons collected
- The combination of TRD and ECAL achieves a proton rejection power greater than 10⁵.
- Latest AMS results are presented:
 - Positron fraction up to 500 GeV
 - Phys. Rev. Lett. 113, 121101 (2014)
 - Positron flux up to 500 GeV
 - Phys. Rev. Lett. 113, 121102 (2014)
 - Electron flux up to 700 GeV
 - Phys. Rev. Lett. 113, 121102 (2014)
 - Combined positron and electron flux up to 1 TeV
 - Phys.Rev.Lett. 113, 221102 (2014)
- More results are yet to come
 - Protons, helium, antiprotons, Boron/Carbon, etc

ECAL Resolution

DM origin of positron fraction rise

17

Pulsar origin of the positron fraction rise

$$\gamma = 2.50$$
, Ec = 1.0 [TeV], $\chi^2_{d.o.f} = 0.88$

 $fW0_{J1745-3040} = 2.89e51 [GeV], fW0_{Monogem} = 2.18e51 [GeV], fW0_{Vela} = 3.80e49 [GeV]$

18

Positron and Electron Anisotropy

- Additional source of cosmic ray positrons and electrons may induce some degree of anisotropy on their arrival direction
- AMS measures the level of anisotropy for positrons and electrons independently

Source term: Spherical harmonic expansion

• Arrival direction of electrons, positrons are compared with Exposure map (A*T)

Data on ISS, Electrons, E>25GeV

Exposure map for E>25GeV

A fit is done obtaining coefficient of spherical harmonic expansion for the source term

Upper Limit on Positron, Electron Flux Anisotropy

AMS-02

- The fit amplitudes are found to be consistent with the hypothesis of isotropy at all energies and angular scales.
- Dipole anisotropy:

$$\delta = \sqrt{\frac{3}{4\pi}} \sqrt{(a_{1-1}^2 + a_{10}^2 + a_{11}^2)}$$

- For positron above 16GeV
 - Delta upper limit: <0.03
- In 10 years, the projected sensitivity of AMS to a positron dipole anisotropy is
- 2 sigma for delta = 0.010
- 3 sigma for delta = 0.014

Positron fraction

Diffuse power law and source terms are used to describe the behaviour of positron fraction

Electron Identification

Electron event @ 1.03TeV

Flux Measurement Procedure

Trigger Efficiency

Exposure Time

 R_{cutoff} is the geomagnetic cutoff value, f the safety factor