ENIGMASS HIGHER EDUCATION ACTIVITIES

Pablo DEL AMO SANCHEZ (LAPP)
on behalf of
GraSPA team (PdAS, Lucia DI CIACCIO, Gilles MAURIN, Loïc
ROLLAND, Pasquale SERPICO)
Laurent DEROME
Johann COLLOT

ENIGMASS HIGHER EDUCATION ACTIVITIES

- GraSPA 2014
- LPSC's Nuclear Physics Experiments Platform (Laurent DEROME from LPSC)
- ESIPAP (Johann COLLOT from LPSC)

Summer School in Particle and Astroparticle physics of Annecy-le-Vieux

21-25 July 2014

GRASPA 2014

Lucia DI CIACCIO, Pablo DEL AMO SANCHEZ, Loïc ROLLAND, Pasquale SERPICO, Gilles MAURIN

LAPP & LAPTH Université de Savoie Registration deadline: May 18th

http://lapp.in2p3.fr/GraSPA2014

Introductory courses aimed at advanced 3rd year and 4th year physics students

Topics: LHC Physics, Neutrinos, Heavy Flavors, Astroparticle Physics, Gravitational Waves and Computational Tools

Myson Myson coevas

WHY GRASPA?

- Decrease in number of students enrolling in Physics at university
 - ⇒ less and less students dream of doing a career in Physics!
- Inspire and help 3rd and 4th year physics students (before they choose a field) to pursue a career in Particle Physics/Astro/ Cosmo ⇒ Summer School!
- Limited offer of schools addressing this audience (CERN, DESY, GSI...)

HOW?

- I week-long School, 4h (theoretical & experimental)
 introductory courses on few topics: LHC physics, neutrinos,
 heavy flavours, astroparticles, gravitational waves,
 computational tools (ROOT), (cosmology)
- Highly subsidised: accommodation and lunches paid by School, travel funded by students or their institutions (travel grants for 2 students, a few paid by IDPASC institutes).
- Mostly local lecturers (see below)

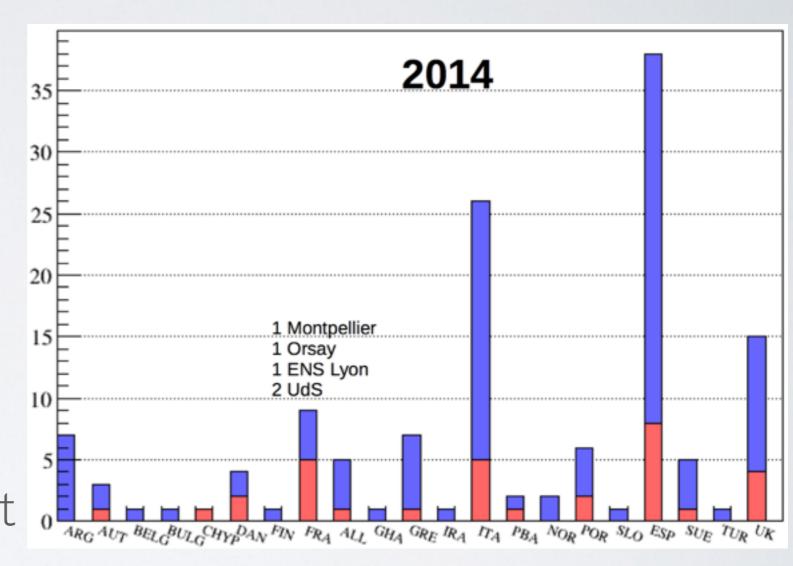
NEW IN 2014

- Larger Organizing Committee: 4 LAPP + 1 LAPTh (LPSC anyone?)
- · I day longer (shorter days, lectures less exhausting for students)
- CERN visit.
- Brief (Ih long) introduction to Cosmology
- Two travel grants

BUDGET

INCOME				
ENIGMASS Excellence Lab	7000			
LAPP	3000			
IN2P3	1500			
CPTGA	1000			
TOTAL	12 500 €			

Great support from ENIGMASS


Need to diversify sources!!!

EXPENSES				
Student accommodation	5261			
Lunches, social dinner, coffee breaks	4955			
CERN visit, transport from airport	786			
Travel grants	400			
Other	206			
TOTAL	11 608 €			

363 €/student

APPLICATIONS

- 137 candidates from21 countries
- 28 applications from IDPASC institutes
- 32 students kept
 (budgetary reasons, but good size for informal discussions)

 Half (15/32) of accepted students had applied to CERN School

LECTURERS

- Mostly local lecturers

 (4 external lecturers/13)
- Dates a problem to get external lecturers (end of July: conferences, Schools, holidays)

Lecturers:

Cédric DELAUNAY

Marco DELMASTRO

Pasquale SERPICO

Karol LANG

Fabrice PIQUEMAL

Diego GUADAGNOLI

Andreas GOUDELIS

Julien MASBOU

Thomas TRAM

Damir BUSKULIC

Loïc ROLLAND

Lucia DI CIACCIO

Pablo DEL AMO SANCHEZ

LHC Physics (Th.)

LHC Physics (Exp.)

Neutrinos (Th.)

Neutrinos (Exp.)

Neutrinos (Exp.)

Heavy Flavours

Astroparticle Physics (Th.)

Astroparticle Physics (Exp.)

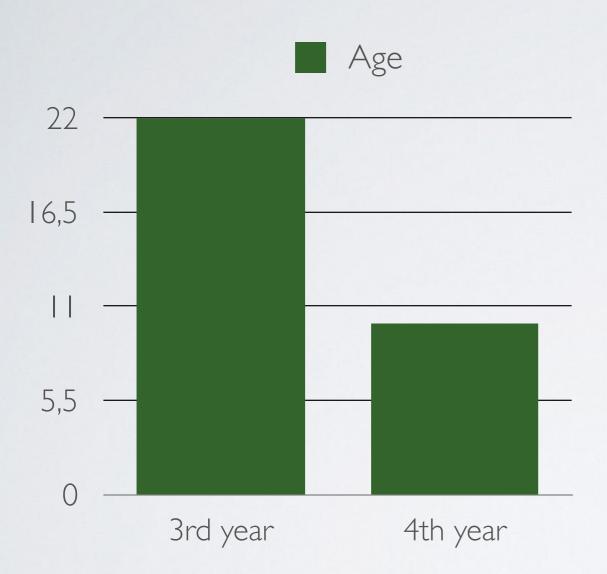
Cosmology

Gravitational Waves

Gravitational Waves

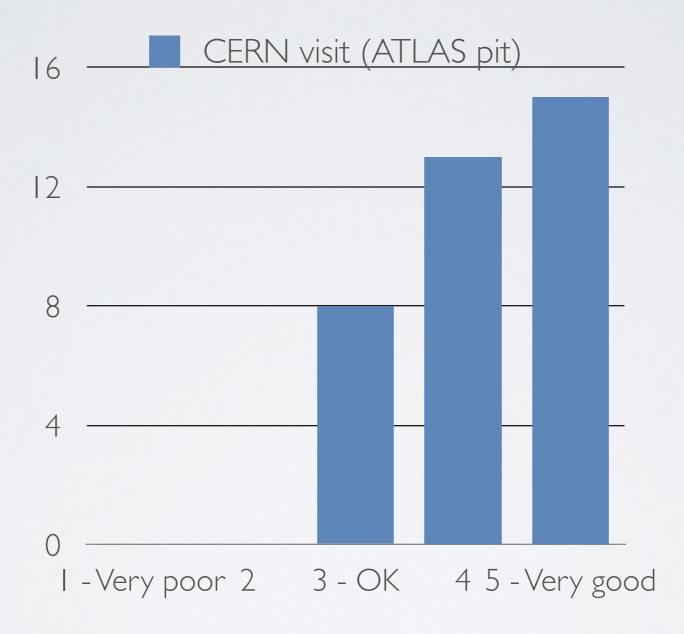
Computational Tools

Introduction to Particle Physics


TIMETABLE

Time	21nd July	22 nd July	23 nd July	24nd July	25nd July
8h30 - 9h30	Welcome/Intro	Neutrino th 1	Heavy Flavours 2	Astroparticles th 1	Astroparticles exp 1
9h30 - 10h00	Coffee break	Coffee break	Coffee break	Coffee break	Coffee break
10h00 - 11h00	LHC physics th 1	Gravitational waves 4	Cosmology	Neutrino exp 1	Neutrino exp 2
11h00 - 12h00	Gravitational waves 1	Neutrino th 2	Heavy Flavours 3	Astroparticles th 2	Astroparticles exp 2
Lunch					
14h00 - 15h00	LHC physics th 2	LHC exp 1	Computing		Computing
15h00 - 16h00	Gravitational waves 2	Heavy Flavours 1	Computing		Computing
16h00 - 16h30	Coffee break	Coffee break	Coffee break	CERN	Coffee break
16h30 - 17h30	Gravitational waves 3	LHC exp 2		CERIN	Closing speech
17h30-18h30	Laboratory visit				
18h30	Reception				
20h				Social dinner	

- 4h (theoretical & experimental) introductory courses on few topics: LHC physics, neutrinos, heavy flavours, astroparticles, gravitational waves, computational tools (ROOT), very brief intro to cosmology
- CERN visit


THE RESULT...

- 2/3rds 3rd year students (choice!)
- Courses difficulty ~well gauged

CERN visit, a great success and one of highlights

"5 out of 5"

"Keep it like this!"

"I would definitely recommend the School"

"Great to chat to academics and postdocs over lunch, breaks!"

"5 out of 5"

"Keep it like this!"

"I would definitely recommend the School"

"Great to chat to academics and postdocs over lunch, breaks!"

"More hands-on sessions"

"What I liked the least: lectures with too many plots and too few equations"

GRASPA CONCLUSIONS & OUTLOOK

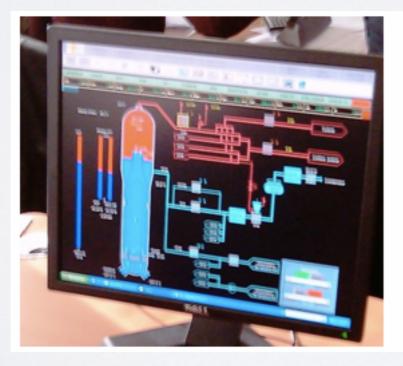
- Huge success (number of applications, level of students, student satisfaction)
- · And can improve: more hands-on sessions, more non-local, high-profile lecturers
- ENIGMASS key part in supporting and short-term sustainability of School
- Great opportunity for ENIGMASS: punching above our weight (CERN, DESY, GSI)!
- TRY AND SECURE LONG-TERM FUNDING

LPSC'S NUCLEAR PHYSICS EXPERIMENTS PLATFORM

Laurent DEROME

NUCLEAR PHYSICS TO EXPERIMENTAL PLATFORM TO THE PRIME PLATFORM TO THE PRIME PRIME PLATFORM TO THE PRIME PRIM

- Common platform for INPG and UJF from 2005 at LPSC.
- 7 rooms, ~200 m².
- 19 experiments


Usual lab experiments (γ and α interaction with matter, cosmic rays...)

More specialized topics (Neutronics, Activation, Medical Applications, Muon lifetime measurement...)

- Budget :
 - Investment : ~ 50-100 k€ /year (UJF + INPG on a project basis).
 - □ Operating costs: 5 k€ /year

NUCLEAR PHYSICS TON EXPERIMENTAL PLATFORM TO THE PLATFORM TO T

- 1 Computer room Data analysis (8 PCs)
- Pressurized Water Reactor Simulator Platform
 - □ 10 PCs SIREP CORYS-TESS licence
 - Sub-critical approach and divergence, search for nuclear heating threshold, physics trials at zero power, start and connection to electrical network.

NUCLEAR PHYSICS TO EXPERIMENTAL PLATFORM

- 15 different degrees/specializations profit from platform. Mainly:
 - Engineering School: Phelma and E3
 - Masters: ITDD / Physics / Physical Energetics / Medical

	Students	Student hours	Lecturer hours
INP students	299	5392	836
UJF students	223	4224	712
Total	522	9616	1616

- Almost 8 full time lecturers!
- Equipement crucial for all degrees concerned
- Platform in use ~ 80 % of time
- Often a bottleneck when increasing student numbers in degrees

ENIGMASS INVOLVEMENT, INTHE PLATFORM

- Use Labex money for long term investment in platform:
 - Create new experiments
 - Improve current experimental / instrumentation / radiationmatter interaction courses
- Items paid by ENIGMASS currently:
 - Modular and mobile experiments + lecture room equipment (video/screen)
 - New experiment: Measurement of orthopositronium lifetime in the vacuum (M2)
 - New experiment: 2x Beta radioactivity (M1, INPG)

in Particle & Astroparticle Physics

Johann COLLOT

ESIPAP MODEL

- 19/1/2 CO/(O)
- Hard for a single university to have sufficient students for a sustainable training programme in the very specific subject of particle and astroparticle physics instrumentation: TRY AND DO IT ON A EUROPEAN LEVEL
- Organization and management subcontracted to ESI, that already organizes JUAS & ESMP
- 1 director + Steering + Organizing committees
- 2 independent modules: 20 January to 15 March: 8 weeks (4 each)
- ~100 h / module
- Master students, Ph.D. students and continuing education trainees
- 15-20 students per year at European level (9 the first year)
- Students are evaluated 16 ECTS (2 x 8)
- Accommodation of students organized by ESI
- lab sessions organized at CERN (with the support of CERN)
- progressive involvement of European universities
- benefit of other European schools

PROGRAMME

Module 1:

Physics of particle & astroparticle detectors

- Introduction to experimental particle physics
- Introduction to experimental astroparticle physics and cosmology
- Interaction of particles with matter
- Probabiltiy, statistics and MV analysis
- Detector Simulation
- Calorimetry
- Tracking
- Muon detection
- Particle Identification
- Imaging & Cherenkov detectors
- Radioprotection
- Lab sessions at CERN
- Computing sessions at ESI

Module 2:

Technologies and applications

- Detector Technologies
- Advanced Electronics and signal processing
- Composite materials
- 3D printing and innovation.
- Magnets for particle detectors
- Triggering and Data acquisition
- Advanced computing : C++, python,GRID, data technologies
- Ultra cold neutron production and detection
- Medical applications
- Project management
- Specific aspects of space projects
- Lab sessions/exercices at CERN
- Computing sessions at ESI

MODULE 1: 106.5 HOURS OF LECTURES

Experimental particle physics (15 h): Marco Delmastro LAPP (ATLAS)

Experimental cosmology (9 h): Juan Macias-Perez LPSC (Planck)

Experimental astoparticle physics (6 h): François Montanet LPSC (Auger)

Interaction of particles with matter (6 h): Johann Collot LPSC (ATLAS)

C++ programming (6 h): Éric Chabert IPHC (CMS)

Reminder on probablity and statistics (3 h): Benoît Clément LPSC (GRANIT)

MVA Analysis & boosted decision trees (6 h): Yann Coadou CPPM (ATLAS)

Tracking (6 h): Jérôme Baudot IPHC (CMOS & ILC)

Calorimetry (6 h): Isabelle Wingerter LAPP (ATLAS)

Muon detection (6 h): Joerg Wotschack CERN (ATLAS)

Radioprotection (3 h): Helmut Vincke CERN (radioprotection group)

Imaging & Cerencov detectors (4.5 h): François Montanet LPSC (Auger)

Detector simulation (6 h): Alberto Ribon & Witold Pokorski CERN (G4 collab)

Particle identification (3 h): Guillaume Unal CERN (ATLAS)

Computing sessions (12 h): Éric Chabert & Éric Conte IPHC (CMS)

Lab sessions (9 h): 12 people from CERN! can't list them all, my apologies!

Exams (10 h)!

https://indico.cern.ch/event/294651

More than 30 lecturers!

Many thanks to all lecturers and lab tutors!

MODULE 2: 102.5 HOURS OF LECTURES

Detector technologies (7.5 h): Jean-Marie Brom IPHC (CMS)

-Working principles, gazeous detectors, semiconductor detectors, scintillation, cerenkov and transition radiation detectors

Noble liquid detectors (3 h): Johann Collot LPSC (ATLAS)

Low temperature detectors (1.5 h): Alain Benoît Néel Institute (PLANCK)

Electronics and signal processing (9 h): Daniel Dzahini LPSC (ATLAS)

Project management (6 h): Pierre Bonnal CERN (CERN porject office)

C++ programming (9 h): Sébastien Ponce CERN

TDAQ (9 h):

-VME bus: Markus Joos CERN

-Modular Electronics : Markus Joos CERN

-TDAQ software: Enrico Pascalucci (INFN Roma)

-FPGAs: Hannes Sakulin CERN

-Triggering: Francesca Pastore (Royal Holloway London)

Data technologies (6 h): Roberto Pace (CERN)

Composite materials (9 h): Jérôme Senmartin (Compositec)

Magnets for particle detectors (4.5 h): Herman Ten Kate CERN (ATLAS)

3D/additive printing (1.5 h): Marc Krauth IPHC **Python programming (3 h):** Jérôme Odier LPSC **Grid computing (3 h):** Catherine Biscarat LPSC

Ultra cold neutron production and detection (6 h): Guillaume Pignol LPSC (Granit)

Medical applications (7.5 h): Ziad El Bitar IPHC

Space projects (5 h): Jan Droz CNES (Ariane project manager for CNES)

Lab sessions (12 h): people from CERN (can't list them all, apologies)

Exams (8 h)

https://indico.cern.ch/event/301339

Many thanks to all lecturers and lab tutors!

MODULE I

MODULE 2

2 students (France and Germany)

ESIPAP SUMMARY

- (A))
 (O((0))
- ESIPAP initially foreseen for 5 years (hopefully more!)
- Annual budget: 70 k€ (50% ENIGMASS and 50% from ESI,
 Technopole of Archamps and Haute-Savoie council); (less in 2014)
- At the moment, participants are: Universities Grenoble-Alpes and Strasbourg, LPSC, LAPP, IPHC, CPPM and CERN
- Very positive feedback from students (9) and professors (>50)
- Increase student recruitment by proper/massive/alumni advertisement this year
- Seek partnership with more European universities, labs and other topical instrumentation schools (already the case with ISOTDAQ, CSC...)
- Hope ESIPAP will become a standard ref. in instrumentation training
- www.cern.ch/esipap

ENIGMASS HIGHER EDUCATION ACTIVITIES

ENIGMASS has given the opportunity to start Education activities that really leave a mark on the next generation of physicists through Education:

- GraSPA
- LPSC's Nuclear Physics Experiments Platform
- ESIPAP