What's up in Dark Matter detection

Quentin Riffard November 28th 2014

How many & Where ? Universe composition measurement

What is it ? Dark matter candidates

WIMP (Weakly Interacting Massive Particle)

- Massive: $GeV/c^2 TeV/c^2$
- Fermion
- Stable
- No electric charge & No color
- Gravitational & weak interaction

One WIMP candidate from particle physics (SUSY): Neutralino $~\chi$

Axions

• Very low mass:
$$\mu eV/c^2 - meV/c^2$$

- Stable
- No electric charge
- Gravitational + weak and strong interaction (low coupling)

Sterile neutrino

- $\bullet\, \text{Low mass: } eV/c^2 keV/c^2$
- Stable
- No gauge interaction: Only gravitation

Constrain Dark Matter properties — Detection

Dark Matter interactions

LSM

LSM,LPSC

Collider searches: Effective field theories

ATLAS (LAPP, LPSC, LAPTh)

ATLAS Collaboration, JHEP 1304 (2013) 075

Collider searches

Indirect Dark Matter detection

Indirect Dark Matter detection

Indirect Dark Matter detection: Gamma-rays

Abramowski *et al*, arXiv:1410.2589

H.E.S.S.-II: Several source observations (Dwarf galaxies)

Conclusions:

- Good way to constrain DM
- Significant constraints on $\langle \sigma v
 angle$
- Limits depend on DM density profile
- Be careful with discovery

Standard astrophysical sources may be misunderstood

DM annihilation constraints

Direct Dark Matter detection

Galactic Dark Matter & direct detection

Direct detection: experimental results

WIMP detection candidate: real WIMP event of Neutron?

Directional Detection


```
MIMAC (LPSC)
```

MIMAC experiment

3D nuclear recoil tracks from Radon progeny

Detector gas pollution from 222 Rn progeny (sources: material)

R [day¹.keVee¹

α decay:

Daughter recoil migration to the cathode

Surface event:

- α -particle: $E_{\alpha}^{kin} \sim 5 \,\mathrm{MeV}$ saturation daughter: $E_{NR}^{kin} \sim 100 \,\mathrm{keV}$ detectable

Parent	Daughter	E_{recoil}^{kin} [keV]	E_{recoil}^{ioni} [keV]
222 Rn	²¹⁸ Po	100.8	38.23
218 Po	$^{214}\mathrm{Pb}$	112.3	43.90
214 Po	$^{210}\mathrm{Pb}$	146.5	58.78
Simulation (SRIM)			

Mesure: $\begin{cases} E_{ioni}(^{214}\text{Pb}) = 32.90 \pm 0.16 \text{ keVee} \\ E_{ioni}(^{210}\text{Pb}) = 45.60 \pm 0.29 \text{ keVee} \end{cases}$

First measurement of 3D nuclear-recoil tracks coming from radon progeny

MIMAC detection strategy validation

Short term perspectives

CMB constraints on $p_{ann} = \langle \sigma v \rangle / m_{\chi}$ Dark Matter (PLANCK, December 1st 2015 @ FERRARA)

LHC run @ 14 TeV:

- New constraints on exotic physic
- Supersymmetry ?
- Mono-photon/jet limits improvement

Press release from INSU

http://www.insu.cnrs.fr/node/5033

Surabondance de matière noire dans le voisinage solaire

Bienaymé et al., arXiv:1406.6896

Vendredi, 14 Novembre 2014

Réalisée par une équipe de chercheurs de l'Observatoire Astronomique de Strasbourg (CNRS/Université de Strasbourg) dans le cadre d'une coopération internationale, une étude récente et plus précise du

le voisinage solaire. Cette étude révèle deux fois plus de matière noire que ce qui était admis jusqu'à présent et devrait encourager les expériences cherchant à détecter directement les particules élémentaires susceptibles de composer cette matière noire.

> « devrait encourager les expériences cherchant à détecter directement les particules élémentaires susceptibles de composer cette matière noire. »

Mean term perspectives

Directional Dark matter demonstrator (m³ scale)

- 16 bi-chamber modules with 35x35 detector
- Competitive with actual project

Thank you for your attention !

