

Neutrino physics

D.Duchesneau

- Research activities: present and foreseen
- Conclusions

Neutrinos:

Despite major experimental progress these last years, their properties are less well tested than for quarks and charged leptons and several unknown still exist.

still several fundamental questions to answer:

- what is the absolute mass scale?
- fundamental for cosmology and unification scheme of interactions
- are neutrinos their own antiparticles (Majorana) or not (Dirac) ?
- if Majorana => leptonic number violation, theoretical consequence (leptogenesis, GUT)
- Are there more than 3 mass eigenstates?
- Some experimental data prefer sterile neutrino(s) with mass close to 1 eV/ c^2

- Which is the mass hierarchy? <
- Essential for CP violation quest
- Is CP symmetry violated in the leptonic sector?

Challenging experimental program: Enigmass is an major actor

.nigmass

he enigma of n

Experimental activities in this framework:

STEREO project (2013-2017)

(ANR 'programme blanc' grant)

- Radioactive source calibration system
- Shieldings: mechanics, realisation
- Acquisition electronics $+ \mu$ veto
- Intallation and commissioning at ILL reactor
- Running and data analysis

Talk from V. Hélaine

SuperNEMO demonstrator (2013-2017)

- development of the double beta source foils
- development of the detector 'Slow control'
- Installation and commissioning at LSM
- Running and data analysis

Talk from A. Remoto

« technical participation» of LPSC: software for metadata management

Experimental activities in this framework:

Long baseline project with large volume LAr. On a longer term: (2014-2025)

- European Design Study Laguna-LBNO has ended (2012-2014)
- Detector R&D program on Liquid Argon TPC technology for long baseline neutrino beam => WA105 and the <u>CERN Neutrino Platform</u>

discussion with Enigmass labs foreseen to target additional participation for longer term project

- Anode deck suspension and position control system
- Participation to the photomultiplier electronic readout chain
- Simulation and study of the scintillation light production in liquid argon

Neutrino Pole in ENIGMASS

Collaboration: LAPP, LPSC, LSM et LAPTh

The scientific program covers most of the present fundamental research topics in neutrino physics

- Oscillation, mass hierarchy and CP violation
- Neutrino nature
- Sterile neutrinos

This program is in adequacy with the national and international roadmaps. It will be performed using close infrastructures : CERN, ILL, LSM

Potential support from theoretical groups of LAPTh and LPSC expected

Experimental teams:

- LAPP: I. De Bonis, D. Duchesneau, P. del Amo Sanchez, W. El Kanawati, T. Le Noblet (PhD), L. Manzanillas (PhD), H. Pessard, A. Remoto (postdoc Enigmass)
- LPSC: S. Kox, J. Lamblin, F. Montanet, J.S Réal, A. Stutz, V. Hélaine (postdoc Enigmass), T. Salagnac (PhD), S. Szlodos (PhD)
- LSM: P. Loaiza, L. Mosca, M. Zampaolo, G. Warot, F. Piquemal

About long baseline projects

Physics case: neutrino mass hierarchy and CP violation

Worldwide effort

Mass hierarchy:

- atmospheric (ex: Pingu, Orca...studies)
- Reactors (ex: JUNO, RENO-50 (20kton LSc, 60 km)
- Long baseline v beam (> 1000 km)
 - Europe => LBNO with liquid Argon detector
 - US => LBNE with liquid Argon detector

In the process of giving birth to ELBNF

CP Violation:

- Long baseline v beam (>100 km)
 - Europe => LBNO / liquid Argon detector / 2300 and 1300 km?
 - US => LBNE / liquid Argon detector / 1300 km
 - Japan => Water Cerenkov detector / 295 km

Both questions can be addressed with conventional accelerator neutrino beams by studying $\nu\mu \rightarrow \nu e$ and $\nu \mu \rightarrow \nu e$ oscillations

Enigmass

The enigma of mass

$$U_{PMNS} = U_{\theta_{23}} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} U_{\theta_{12}}$$

Latest developments on the international level:

Towards a new international collaboration exploiting Fermilab neutrino beam

LBNF:

US plan to propose to provide a facility with a neutrino beam from Fermilab + underground far site to the community.

Opportunities for developping an international collaboration based on the LBNO and LBNE expertise and projects for a LAr experiment.

Everybody interested in those future projects can manifest their support to the initiative=> LoI to be presented on Dec 5th and 12th

Goal: define a collaboration by 2015 and work on a CDR in 2015 $_{9}$

Conclusions and prospects:

- Neutrino physics is a very active and exciting field with several experimental challenges ahead
- □ The ENIGMASS Labex allows to develop a neutrino physics program covering key subjects with scientific output guaranteed in a medium term.
- □ We have an experimental activity with teams from the different laboratories along three main research paths for the coming years
 - Sterile neutrinos and anomalies (STEREO)
 - Double beta decay search (SuperNemo)
 - Neutrino oscillations: Neutrino beam experiments and future underground projects for neutrino oscillations and astrophysics (OPERA and LBNO)
- The long baseline neutrino project is a main item for the future of neutrino physics. A progressive involvement in this project starts now with detector R&D and prototyping.
- => We should follow closely the LBNF effort and be actor in the process.
- Discussion with the different Enigmass labs about interest in future neutrino projects should take place in the coming months.

The End

6 parameters to determine:

- 3 angles, 2 mass differences,
- 1 CP violation phase

Wide band beam and Liquid Argon detector allow to measure the L/E dependences and possibility to disentangle MH and CPV

Mass hierarchy:

Other investigation techniques:

Atmospheric neutrinos: looking at the effect of matter effect in the $\nu\mu$ rate

Mass hierarchy:

Long Baseline reactor with large detector

- 20-50 kton LS detector
- 2-3 % energy resolution •
- Rich physics possibilities •
 - ⇒Mass hierarchy
 - \Rightarrow Precision measurement of 4 mixing parameters
 - ⇒Supernovae neutrino
 - ⇒Geoneutrino
 - \Rightarrow Sterile neutrino
 - ⇒Atmospheric neutrinos
 - \Rightarrow Exotic searches

Accelerator: Nova, T2K

30

Large Underground Detectors: Rich physics program

- v properties(oscillation, mass hierarchy leptonic CP violation: beams, v atm..)
- \bullet Study of astrophysical phenomena linked to $\nu :$

➤ Gravitational star collapse (v from Supernovae)

 \succ Star formation at the beginning of the universe (SN v diffuse background)

Study of thermonuclear fusion process (solar v)

• Test of geophysical mode of the earth (Geo - ν , U, Th - $\nu)$

• Nucleon decay

LBNO baseline beam optimisation

- Conventional beam, horn focused
- Medium energy to cover at $E_v \approx 4$ GeV (1st max) and $E_v \approx 1.5$ GeV (2nd max)
- Wide band covering 1st and 2nd maximum
- Small tail at high energy
- Positive and negative focus (v and anti-v modes)
- High beam power (initially 700 kW then 2MW)
- Angle 10deg dip angle (distance = 2300km)
- Muon monitors
- Magnetised near neutrino detector

Future Long Baseline Projects CERN beam to Pyhäsalmi in Finland (2300 km)

high energy wide band beam (neutrinos >1 GeV) => 1st and 2nd maxima

•Available space for 2x50 kton LAr +

Design to be finalized within LAGUNA-

50 kton LSc

LBNO by 2014

•879000 m³ excavation

Prototyping is needed for the very large LAr detector

Principle: double phase Argon (liquid / gaz) readout after drift distances up to 20m

Several technical items have to be validated with a large scale prototype

- LNG tank construction technique
- Purity in non evacuated membrane tank
- Long electron drift distance
- ▶ High voltage system for the cage field 300-600 KV
- Double phase readout
- Cold front end electronic
- Interaction reconstruction in the TPC

6x6x6m3 active volume LAr TPC detector with double phase + charge

amplification + 2-D collection readout PCB anode.

Exposure to charged hadrons beam (1-20 GeV/c)

SPSC recommendation: "validate large scale" Clean room (indicative) in assembling phase and DAQ and control room (in normal running phase). Eventually used as support for cryocoolers and cryogenic liquid storage vessels

Large scale 300 t LAr Prototype at CERN

WA105 5 GeV π⁺ simulation in 6x6x6m³

Large scale 300 t LAr Prototype at CERN

WA105 LAGUNA LAr prototype

7680 readout channels, ICARUS T600 for a similar fiducial mass had 27000 channels