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in memory of more than twenty years of collaboration

and friendship

First encounter in Cargèse 1970

1974-75 Teaching Quantum Field Theory in Orsay

and first paper on Ising model and the sine-Gordon theory

25 joint publications



Claude, the researcher
A career embracing a wide spectrum

From Particle Physics
(Thesis with Maurice Jacob on weak interactions 1967)

to Classical and Quantum Field Theory (translation of Akhiezer-

Berestetskii’s book from the Russian; Soft Quanta, eikonal approximation,

pair production in an e-m field, relativistic Balmer formula (with H. Abarbanel,

É. Brézin, J. Bros, Y. Frishman, I. Todorov, A. Voros, J. Zinn-Justin, ’65-70)

to Group Theory (with M. Nauenberg and with M. Bander, 1966)

to Statistical Mechanics (e.g. Ising model, a subject of many returns. . . )

to Mathematical Physics. . .
In the mid-seventies, with R. Balian and J.-M. Drouffe, Lattice Gauge
Theories, immediately after Wilson’s seminal paper : 3 important

papers and a Physics Reports

Large orders of perturbation theory of QED, after Lipatov’s, and
Brézin–Zinn-Justin’s works, with R. Balian, G.Parisi and JBZ, ’77-78



with André Morel



Matrix Integrals and Combinatorics (counting

of planar Feynman diagrams aka maps), (“BIPZ”,

Bessis-Itzykson-Z, “HC-IZ” formula, . . . 1978-80)

Lattice models (M. Peskin, J-M Luck, C. De Dominicis, H. Orland,. . . ),

Random Geometry, random interactions (with É. Brézin and D.

Gross; J.-M. Luck; B. Derrida; ). . .

1985-1995 Conformal Field Theory: Under his guidance and

leadership, Saclay’s group with a dozen of bright young re-

searchers, postdocs, students becomes one of the hot spots of

the field (D. Altschuler, M. Bauer, A. Cappelli, P. Di Francesco, H. Saleur,. . . )

Topological Field Theory, from matrix integrals to Combina-

torics and Algebraic Geometry (with M. Bauer and P. Di Francesco)



Les Houches 1982, with Michael Peskin



Claude, the lover of mathematics

From Group Theory (representations of SU(N) (w. Nauenberg),
symmetries of H atom (w. Bander), non compact groups, . . . )

to Combinatorics (matrix integrals and maps)

to Number Theory (billiards and affine algebras, (E. Aurell, J.-M.
Luck, P. Moussa), Les Houches 1989)

to Algebraic Geometry (Kontsevich integral and moduli spaces,
Grothendieck dessins d’enfants, . . . )

Unfinished work on permutation group applied to replica sym-
metry

Claude played an important rôle in bringing together mathemati-
cians and physicists (e.g. Les Houches 1989 Winter School on
number theory)



Saclay, 1994, with Louis Michel



Claude, the teacher and the pedagogue
Claude loved to understand new things and to teach them.

Many series of lectures in various institutions (École Polytech-

nique) and advanced courses and master classes (DEA Orsay

1974, 1976), EPFL Lausanne, Marseille, CERN, Japan, Cargèse,

Les Houches, Trieste, MIT, . . .

from which two influential books grew

“Quantum Field Theory” (1980)

“Statistical Field Theory” (1989) with J.-M. Drouffe

The mentor of many junior physicists . . .



Kyoto ? 1989



Claude, the man of ever open mind
and alert curiosity

A unique rôle of go-between in this lab, capable of interacting

with everybody, on every subject

A man of culture, not only in science, but also in literature,

history . . .

An elegant and witty personality, with a lot of charm and personal

charisma, and an influence lasting to this day. . .



with Cirano De Dominicis
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Counting doodles
with Robert Coquereaux (CPT Marseille)

ou Comptage de gribouillis. . .



By courtesy of Victor Zuber-Doumat



Counting doodles
with Robert Coquereaux (CPT Marseille)

doodle: an (open or) closed smooth curve with one component

and n self-crossings, drawn in the plane, on the sphere or on a

higher genus surface; only double points, with distinct tangents.

In more mathematical terms : image of an immersion of an

(oriented/unoriented) circle into a 2-dim (oriented/unoriented)

surface Σ, defined up to topological equivalence (by the diffeo-

morphism group Diff+(Σ), resp. Diff(Σ) ).

In this talk, mainly immersions into closed surfaces: sphere or

higher genus surface.



n = 2 Plane vs Sphere

5 immersions of the circle in the plane, 2 in the sphere



n = 2 Plane vs Sphere

5 immersions of the circle in the plane, 2 in the sphere

Higher genus ?
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an immersion of a circle into the torus



Oriented surface ?

Two immersions of an unoriented circle with n = 6 double

points. Distinct on an oriented sphere, but equivalent on an

unoriented sphere.



Oriented surface ?

Two immersions of an unoriented circle with n = 6 double

points. Distinct on an oriented sphere, but identical on an

unoriented sphere.

Oriented circle ?
~

Immersions of an oriented circle. Left : an n = 3 immersion

not equivalent to its reverse; in contrast, the trefoil is

equivalent to its reverse.



Problem: How to count and how to list such immersions?
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Problem: How to count and how to list such immersions?

Why is that interesting ?

– it’s fun !
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The 27 indecomposable irreducible immersions of an unoriented

circle into an unoriented sphere with n = 8 double points.
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Problem: How to count and how to list such immersions?

Why is that interesting ?

– it’s fun !

– statistics of random curves

– a mathematical challenge [Gauss, Arnold,. . . ]

– relevant for knot theory:

counting of (alternating) links X

(Sundberg & Thistlethwaite; P Zinn-Justin & JBZ) , but knots ??



Problem: How to count and how to list such immersions?
Why is that interesting ?
– it’s fun !
– statistics of random curves
– a mathematical challenge [Gauss, Arnold,. . . ]
– relevant for knot theory
– also a challenge for the theoretical physicist:

matrix integral techniques fail ! (n→ 0 limit of n replicas ?)
find a substitute ?

Previous works
Arnold; Gusein-Zade–Duzhin; Valette, reps. closed/open/closed
curves up to resp. n = 5,10,7
J. Jacobsen and P. Zinn-Justin: transfer matrix techniques, open
curves up to n = 19
G. Schaeffer and P. Zinn-Justin: asymptotics by random sam-
pling of “doodles” up to n = 224 !!



Problem: How to count and how to list such immersions?

The main idea

Regard the curve as a 4-valent map, (a graph embedded into a

surface, with faces homeomorphic to disks),

make use of permutations to encode the map (an old idea,

[Walsh-Lehman 1972, Drouffe 1980, . . . ]),

and look at orbits of these permutations under a certain

“reparametrization” group.

Diffeomorphism group 7→ finite group of permutations

Several options, hence several sets of permutations and sub-

groups of permutations. . .



Colored maps
A simple observation: any planar 4-valent map may be 2-coloured

(coloring of faces).

Equivalently, crossings may be drawn as alternatingly over- and

under- (“alternating knot”)

(a priori, two distinct colorings, sometimes equivalent.)



Make use of this property to encode a map by a pair (σ, τ) of

permutations of the 2n edge labels, thus σ, τ ∈ S2n

[? , P Zinn-Justin–JBZ 2003 ]
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Call ρ the involution at over-crossings: j = τ−1σ(i) =: ρ(i)

Interest: easy to impose constraints of

– “one-componentness” : σρσ−1ρ ∈ [n2]

– genus: 2− 2g = # faces− 2n+ n hence #cy(σ) + #cy(τ) = 2− 2g + n

– reduces the diffeomorphism group to a discrete group (subgroup of S2n)



Labeled maps ↔ pairs (σ, τ),

unlabeled ones: orbits of (σ, τ) under reparametrization/change

of labels:

(σ, τ) 7→ (γ σ γ−1, γ τ γ−1) γ ∈ S2n

May reduce the reparametrization freedom by imposing some

constraint

e.g. ρ ≡ ρ0 = (1,2)(3,4) · · · (2n− 1,2n)

This leaves σ as the single variable, while τ = σρ,

and restricts γ to the centralizer Cρ of ρ0 in S2n: γ ρ0 γ
−1 = ρ0.



A tighter “gauge fixing”
Can impose a further condition on σ, namely that along the
circuit, edges are labelled sequentially by 1,2,3, · · · ,2n − 1,2n
(with again pairs (2i− 1,2i) on over-crossings).
Call U ′ := {σ|σρσ−1ρ = (1,3,5, · · · ,2n− 1)(2,2n,2n− 2, · · · ,4)}
What is the group of reparametrization ? Dihedral group Dn,
or if one fixes an orientation, cyclic group Zn.

Note that U ′ is the left coset (1,2,3, · · · ,2n)Cρ : easy to generate!

It is nothing else than the set of open doodles (or rooted 4-valent
maps)!

Thus, orbits of U ′

– under Dn : bicolored immersions of an unoriented circle
– under Zn : bicolored immersions of an oriented circle.

A trivial consequence: the “symmetry factor”, i.e. the ratio
|Cρ|
`O

,
is a divisor of 2n (or n).



How to study orbits ?

– Brute force : construct all conjugates γ σ γ−1, σ ∈ Y ′ :=

{σ|σρσ−1ρ ∈ [n2]}, but |Cρ| = 2nn!, |Y ′| = 22n−1n!(n − 1)!, un-

practical for n ≥ 7;

– Variant: Random sampling of set Y ′: compute the orbit O

of σ ∈ Y ′ and its length `O, collect all such distinct orbits until∑
O `O = |Y ′|.

– Burnside lemma ? #Cρ−orbits in Y ′ =
∑
k |Y ′k|
|Cρ| , unpractical

– Y ′ union of left cosets of Cρ, U ′ left coset of Cρ . . .

– In some cases, orbits ↔ double cosets K\G/H ; Frobenius for-

mula on number of double cosets; make use of software Magma. . .

– Sort out orbits by genus.

Program carried out up to n = 8, 9 or 10.



In that way, we get

Number and list of bicolored immersions of an (un)oriented circle

in the oriented sphere or in a higher genus (oriented) surface Σ.

Can we dispose of the color? Is the immersion described by

some σ equivalent to (= in the same Dn- or Zn-orbit as) its dual

σd = σ−1ρ, in which the two colors have been swapped ?

Can we dispose of the orientation of Σ ? Is the immersion

described by some σ achiral or not, i.e., equivalent or not to its

mirror image σm = σρ?



Another family of immersions/curves

Relax bi-colorability assumption. In > 0 genus, it makes a differ-

ence !

For example,
4

3

.

.

2

1 is not bi-colorable.

Use a different parametrization of oriented curves by permutations of S2n,
     ))(l i)(/
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1, ..., n1, ..., n2i= a= 
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π, ρ ∈ S2n

Can fix again ρ = (1,2)(3,4) · · · (2n− 1,2n), compute the orbits of π’s under

the permutation group Sn

(the centralizer of ρ that respects the order 1 < 2,. . . ) etc.



Summary
We have been able to count and list all curves up to n=9 or 10

crossings for immersions of different types

OOc: bicolourable and bicolored oriented S1 into oriented Σ

UOc: bicolourable and bicolored unoriented S1 into oriented Σ

OOb: bicolourable uncolored oriented S1 into oriented Σ

OUb: bicolourable uncolored oriented S1 into unoriented Σ

UUc: bicolourable bicolored unoriented S1 into unoriented Σ

etc

Also, counting when bicolorability is relaxed. . .

Curious identities, e.g. for n even, # UOc = # OOb, etc



Counting of spherical immersions

n 1 2 3 4 5 6 7 8 9 10
OO 1 3 9 37 182 1143 7553 54 559 412 306 3 251 240

UO 1 2 6 21 99 588 3829 27 404 206 543 1 626 638

OU 1 2 6 21 97 579 3812 27 328 206 410 1 625 916

UU 1 2 6 19 76 376 2194 14 614 106 421 823 832

UOc 2 3 12 37 198 1143 7658 54 559 413 086 3 251 240

Counting of irreducible indecomposable spherical immersions
Results for n = 8 confirmed by independent analysis by Valette 2015

n 1 2 3 4 5 6 7 8 9 10
OO 0 0 1 1 2 6 17 73 290 1274
UO 0 0 1 1 2 4 12 41 161 658
OU 0 0 1 1 2 3 11 38 156 638
UU 0 0 1 1 2 3 10 27 101 364
UOc 0 0 2 1 4 6 24 73 322 1274



Conclusions and Questions
What we have obtained
– computations up to n = 10: numbers and lists of curves
– relations between numbers different types of curves,
for ex. for n even, # UOc = # OOb
– importance of bicolorability

What remains to do
– extend computations and improve algorithms
– general formulae ?
– asymptotic behavior for large n ?
on the basis of KPZ formula, expected to be (for fixed genus g)

# ∼ κnγ(1−g)−3 an

approached very slowly, with γ = −1−
√

13
6 (Schaeffer & Zinn-Justin)

– apply this orbit approach to other problems? . . .




