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Some Classical Analysis

Consider Brownian motion (Xt) on the hyperbolic plane D = {|z | < 1}.

Almost surely Xt → X∞ ∈ ∂D.

If f is bounded harmonic on D then f (x) = Exg(X∞) for some
bounded g on ∂D.

For an invariant event A, Px(A) is bounded harmonic, so bounded
harmonic functions encode invariant events.
In D, all invariant events have the form {X∞ ∈ A} for some A ⊂ ∂D.



More classical facts

If M is any Riemann surface homeomorphic to D then either

Brownian motion on M is recurrent, M is conformally equivalent
to C, and all bounded harmonic functions are constant,

or

Brownian motion on M is transient, M is conformally equivalent
to D, and any bounded g on ∂D extends to M.



Circle packing

Let G be a finite simple planar graph.

The Circle Packing Theorem gives us a canonical way to draw G .

Theorem (Koebe 1936, Andreev 1970, Thurston 1985)

Every finite simple planar graph is the tangency graph of a circle packing.
If G is a triangulation, then the circle packing is unique up to Möbius
transformations and reflections.
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Circle packing definitions

A circle packing P = {Cv} is a set of circles in the plane with
disjoint interiors.

The tangency graph of P is a graph G (P) in which the vertex set is
the set of circles, and two circles are adjacent when they are tangent.

The carrier of P is the union of all the circles of the packing,
together with the curved triangular regions bounded between each
triplet of mutually tangent circles corresponding to a face.

We call a circle packing of an infinite triangulation a packing in the
disc if its carrier is the unit disc D, and in the plane if its carrier is C.
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Circle packing theorems

Theorem (Koebe-Andreev-Thurston)

Any finite planar graph G has a circle packing. If G is a sphere
triangulation, the circle packing is unique (up to Möbius).

Theorem (Rodin-Sullivan; Thurston’s conjecture)

Certain circle packings converge to conformal maps.

Theorem (He-Schramm ’95)

Any plane triangulation can be circle packed in (i.e., with carrier=) the
plane C or the unit disc D, but not both (CP parabolic vs. CP Hyperbolic).

Theorem (Schramm’s rigidity ’91)

The above circle packing is unique up to Möbius.
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Circle packing theorems

Theorem (Koebe-Andreev-Thurston)

Any finite planar graph G has a circle packing. If G is a sphere
triangulation, the circle packing is unique (up to Möbius).
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Examples

The 7-regular hyperbolic triangulation (CP hyperbolic) and the triangular
lattice (CP parabolic).



Circle packing also gives us a drawing of the graph with either straight
lines or hyperbolic geodesics depending on the type



In the bounded degree case, the type of the packing encapsulates a lot
probabilistic information: recurrence/transience of the random walk,
existence of non-trivial bounded harmonic functions, resistance estimates,
etc.

Theorem (He-Schramm ’95)

If G is bounded degree, CP parabolicity is equivalent to recurrence of the
simple random walk on G .
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A dichotomy for bounded degree plane triangulations

Theorem (Benjamini-Schramm ’96)

Let G be CP Hyperbolic with bounded degrees. Then Xn → X∞ ∈ ∂D.

If G has bounded degrees, CP Hyperbolic is equivalent to transience, so
the dichotomy holds: Either

Random walk on G is recurrent, G is CP parabolic and all
bounded harmonic functions are constant,

or

Random walk on G is transient, G is CP hyperbolic and any
bounded g on ∂D extends to G .

Are there any other harmonic functions on G?



A dichotomy for bounded degree plane triangulations

Theorem (Benjamini-Schramm ’96)

Let G be CP Hyperbolic with bounded degrees. Then Xn → X∞ ∈ ∂D.

If G has bounded degrees, CP Hyperbolic is equivalent to transience, so
the dichotomy holds: Either

Random walk on G is recurrent, G is CP parabolic and all
bounded harmonic functions are constant,

or

Random walk on G is transient, G is CP hyperbolic and any
bounded g on ∂D extends to G .

Are there any other harmonic functions on G?



Characterization of harmonic functions

Theorem (Angel, Barlow, Gurel-Gurevich, N. 13)

No.

For any bounded harmonic function h : V → R there exists a
measurable function g : ∂D→ R such that

h(x) = Exg(lim z(Xn)) .

In other words, ∂D is a realization of the Poisson-Furstenberg boundary.

Intuition: lim z(Xn) contains all the invariant information of the
random walk on G .

This is not the case if we would pack in other domains, say, a slit
domain.
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We wanted to rebuild the theory for random triangulations without a
bounded degree assumption. This required a new approach.

Question 1: Is there an analogue of the He-Schramm Theorem to
characterise the CP type of a random graph by probabilistic
properties?

Question 2: Can we easily determine the CP type of a given random
triangulation?

And, in the hyperbolic case,

Question 3: Does the walker converge to a point in the boundary of
the disc? Does the law of the limit have full support and no atoms
almost surely?

Question 4: Is the unit circle a realisation of the Poisson boundary?
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Example 1: Hyperbolic Poisson-Voronoi triangulation



Random Triangulations of the Sphere

Benjamini-Schramm convergence of graphs was introduced to study
questions of the following form

What does a typical triangulation of the sphere with a large
number of vertices looks like microscopically near a typical point?

Take a sequence of finite graphs Gn, and for each n choose a root vertex
ρn of Gn uniformly at random.

The Gn Benjamini-Schramm converge to a random rooted graph (G , ρ) if
for each fixed r , the balls of radius r converge in distribution:

Br (Gn, ρn)
d→ Br (G , ρ)
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Examples of Benjamini-Schramm convergence

Large tori Zd/nZd and large boxes [−n, n]d Benjamini-Schramm
converge to the lattice Zd .

Critical Erdös-Rényi random graphs G ( cn , n) converge to Poisson(c)
Galton-Watson trees.

The height n binary tree converges to...

the canopy tree.
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Theorem (Benjamini and Schramm ’01)

Every Benjamini-Schramm limit of finite simple triangulations is CP
parabolic.

Theorem (Angel and Schramm ’03)

Let Tn be a uniformly random triangulation of the sphere. The
Benjamini-Schramm limit of Tn as n→∞ exists. We call this limit the
UIPT – Uniform Infinite Plane Triangulation.

Theorem (Gurel-Gurevich, N. 2013)

The UIPT is almost surely recurrent.
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Example 2: hyperbolic triangulations with Markov property

The UIPT has a natural Markov property – if we explore the UIPT,
revealing more of it by peeling away at the boundary, the law of the part
we haven’t uncovered yet depends only on the length of the boundary of
the piece we’ve already revealed.

Are there any other triangulations with this property?

Theorem (Angel and Ray ’13, Curien ‘13)

Yes. The laws Markovian plane triangulations form a one-parameter
parameter family Tκ, κ ∈ (0, 2/27]. The endpoint κ = 2/27 is the UIPT,
all the others have ‘hyperbolic flavour’.

Conjecturally, the hyperbolic triangulations are Benjamini-Schramm limits
of uniform triangulations with n vertices of surfaces of genus cn.
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Random Hyperbolic Triangulations



Distributional limits of finite planar triangulations

A random rooted graph (G , ρ) is called unimodular if the mass transport
principle holds: for any automorphism invariant f : G∗∗ → R+,

E
∑
v

f (G , ρ, v) = E
∑
v

f (G , v , ρ).

That is, “expected mass out equals expected mass in.”

This is a property of the law of (G , ρ) (not of a particular graph)
Examples: Cayley graphs; Finite graphs with uniform root ρ; Distributional
limits of finite graphs (“sofic” graphs; are these all?)

Theorem (Angel, Hutchcroft, N., Ray 2014)

Let G be a unimodular plane triangulation. Then either

G is CP parabolic and Edeg(ρ) = 6, or

G is CP hyperbolic and Edeg(ρ) > 6.
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Corollary

Theorem (Benjamini, Schramm 1996)

Any distributional limit of finite planar triangulations is CP-parabolic.
Hence, if the degrees are bounded, the resulting graph is almost surely
recurrent for the simple random walk.

Our proof avoids the use of a powerful, yet rather technical, lemma of
Benjamini-Schramm known as the “magical lemma”.



Circle packing also gives us a drawing of the graph with either straight
lines or hyperbolic geodesics depending on the type



Proof: CP type and average degree (parabolic case)

For each corner, send α from x to each of x , y , z .

α

x

y

z

Mass out is 6π. Mass in is π deg(x).



Proof: CP type and average degree (hyperbolic case)

For each corner, send α from x to each of x , y , z .

α

x

y

z

Mass out is 6π. Mass in is less than π deg(x).



Non-amenability

Recall that the (edge) Cheeger constant of an infinite graph G is
defined to be

ιE (G ) = inf{|∂EW |
|W |

: W ⊂ V (G ) finite} ,

where |W | =
∑

v∈W deg(v).

G is said to be amenable if ιE (G ) = 0 and non-amenable otherwise.

Zd is amenable, but the 3-regular tree is non-amenable.

Theorem (Kesten ’59, Cheeger ’70, Dodziuk ’84): non-amenability is
equivalent to the exponential decay of the heat-kernel, i.e.,

Px(Xn = x) ≤ an for some a < 1 and all x ∈ G .

Are unimodular CP hyperbolic triangulations non-amenable?
No, the condition is too strong.
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Invariant non-amenability (Aldous-Lyons ’07)

A percolation on a unimodular random graph (G , ρ) is a random
subgraph ω of G such that (G , ρ, ω) is unimodular.

The component
Kω(ρ) of ω at ρ is the connected component of ω containing ρ. We
say ω is finite if all of its connected components are finite almost
surely.

The invariant Cheeger constant of (G , ρ) is defined to be

ιinv(G ) = inf
{
E

[
|∂EKω(ρ)|
|Kω(ρ)|

]
: ω a finite percolation

}
.

A unimodular graph (G , ρ) is said to be invariantly non-amenable iff

ιinv(G ) > 0.

Easy fact: ιinv(G ) = E deg(ρ)− α(G ) where

α(G ) = sup
{
E[degω(ρ)] : ω a finite percolation

}
.
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Invariant amenability: examples

Zd is invariantly amenable.

Take 3-regular tree and replace each edge e with a path of length Le
where {Le}e are i.i.d. unbounded random variables with ELe <∞.
This is invariantly non-amenable, but is a.s. amenable.

Critical Galton-Watson tree conditioned to survive is invariantly
amenable.

Fact (Aldous-Lyons ’07): If (G , ρ) is unimodular and is a.s. recurrent,
then it is invariantly amenable.
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CP Hyperbolic triangulations

By Euler’s formula the average degree of any finite planar triangulation is
at most 6. Hence,

Theorem (Angel, Hutchcroft, N., Ray 2014)

Let G be a unimodular plane triangulation. Then either

G is CP parabolic and Edeg(ρ) = 6 and is invariantly amenable, or

G is CP hyperbolic and Edeg(ρ) > 6 and is invariantly non-amenable.

This is good news because:

Theorem (Benjamini-Lyons-Schramm ’99)

Let (G , ρ) be an invariantly non-amenable ergodic unimodular random
rooted graph with E [deg(ρ)] <∞. Then G admits an ergodic percolation
ω so that ιE (ω) > 0 and all vertices in ω have uniformly bounded degrees
in G .
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Boundary theory

Theorem (Angel, Hutchcroft, N., Ray ‘14)

Let (G , ρ) be a CP hyperbolic unimodular random planar triangulation
with E[deg2(ρ)] <∞ and let C be a circle packing of G in the unit disc.
The following hold conditional on (G , ρ) almost surely:

1 The random walk almost surely has Xn → X∞ ∈ ∂D
2 The law of X∞ has full support and no atoms.

3 ∂D is a realisation of the Poisson-Furstenberg boundary of G .



Proof of convergence: Xn → X∞ ∈ ∂D

Assume G is really non-amenable and has degrees bounded by M.
Then for some a < 1 and any v

Pρ(Xn = v) ≤ M1/2an .

Since the total area of circles is at most π, there are at most (1/a)n/2

circles of radius ≥ an/4. So Pρ(radius(Xn) ≥ an/4) ≤ M1/2an/2 .

So Eρ[radius(Xn)] ≤ M1/2an/2 + an/4, and in particular Xn converges
since

Eρ
[∑

n

radius(Xn)
]
<∞ .

When G is only invariantly non-amenable, perform the same argument
on the “dense” non-amenable subgraph and argue that in the times
the random walker is not in this subgraph things cannot go very badly.
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Exponential decay of radii

This argument carries through to our setting with a little work, and in fact
more is true:

Theorem (Angel, Hutchcroft, N., Ray ’14)

Under the same setup as before, the Euclidean radii of the circles decay
exponentially, the walk has positive speed in the hyperbolic metric, and
the two rates agree:

lim
n→∞

dhyp(zh(ρ), zh(Xn))

n
= lim

n→∞

− log r(Xn)

n
> 0.

This is not something that is necessarily true in the deterministic bounded
degree case!
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Proof of non-atomic exit measure

Assume (G , ρ) is stationary (i.e., (G , ρ)
d
= (G ,X1)) (easy to obtain

from a unimodularity via degree biasing).

Let us first show that a.s. there are either no atoms or one atom with
mass 1.

For each atom ξ, let hξ(v) = Px(X∞ = ξ). Then hξ : G → [0, 1] is
harmonic, and by Levy’s 0-1 law

hξ(Xn)
a.s.−−−→

n→∞
1(X∞ = ξ)

Hence, define M(v) := maxξ hξ(v), so that a.s. limn M(Xn) ∈ {0, 1}.
But since (G , ρ) is stationary and by the CP rigidity, M(Xn) is also
stationary, hence M(ρ) ∈ {0, 1} a.s.
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Proof of non-atomic exit measure (continued)

Assume now that there is a single atom ξ in the exist measure with
mass 1.

This means that in some sense our graph is not really
hyperbolic. Formally:

Apply a Möbius transformation sending ξ →∞. This gives a circle
packing of G in the upper half plane that is unique up to translations
and scaling.

In particular, this drawing is determined by the graph and hence the
angles between straight line Euclidean geodesics are determined by
the graph. We deduce that E deg(ρ) = 6.
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Full support

Suppose the exit measure does not have full support.

We will define a mass transport on G in which each vertex sends a mass of
at most one, but some vertices receive infinite mass, contradicting the
mass transport principle.

The transport will be defined in terms of the hyperbolic geometry and the
support of the exit measure, so by Schramm’s rigidity, it will not depend on
the choice of the packing (and so it will be a legitimate mass transport).



The complement of the support of the exit measure may be written as a
union of disjoint open intervals (θi , φi ) in the circle. Let’s draw the
hyperbolic geodesic γi between the endpoints of each such interval.

φi

θi

Write Ai for the set of circles enclosed by the geodesic between θi and φi .



Transport mass one from each u in Ai to the first circle intersected by the
geodesic from the hyperbolic centre of u to θi that also intersects γi .

φi

θi

v

u

It might be that no such circle exists, in which case u sends no mass.



Consider the set of angles Bv ⊂ (θi , φi ) such that v is the first circle
intersected by the geodesic from θ to θi that also intersects γi . For each
v , this set is an interval.

φi

Bv

θi

v



The union of the Bv ’s over all v intersecting γi is an interval of positive
length, and hence, since there are only countably many circles, one of the
intervals Bv has positive length.

φi

Bv

θi

v

Such a vertex receives infinite mass, since it is sent mass by every vertex
with centres in some open neighbourhood of the boundary interval.



Thank you!


