FIXED-ENERGY HARMONIC FUNCTIONS

OR, TOTALLY REAL DESSINS D'ENFANTS

A. Abrams (Washington and Lee)
R. Kenyon (Brown)

Can we adjust edge conductances so that all bulbs burn with the same brightness?

The Dirichlet problem

A graph G = (V, E)

 $c: E \to \mathbb{R}_{>0}$ the edge conductances

 $B \subset V$ boundary vertices

 $u: B \to \mathbb{R}$ boundary values

Find $f: V \to \mathbb{R}$ harmonic on $V \setminus B$ and $f|_B = u$.

$$0 = \Delta f(x) = \sum_{y \sim x} c_e(f(x) - f(y))$$

f is the unique function minimizing the Dirichlet energy

$$\mathcal{E}(f) = \sum_{e=xy} c_e (f(x) - f(y))^2$$
edge energy

A harmonic function induces an *orientation* of the edges:

Let Σ be the set of acyclic orientations compatible with u:

 $\Sigma = \{ \sigma \mid \exists f, f_B = u \text{ and no interior extrema, where } \operatorname{sgn}(df) = \sigma \}.$

Let $\Psi:(0,\infty)^E\to[0,\infty)^E$ be the map from conductances to energies.

Theorem 1: For any $\sigma \in \Sigma$ and $\{\mathcal{E}_e\}$ there is a unique choice of conductances $\{c_e\}$ for which the associated harmonic function realizes this data.

Theorem 2: The rational map $\Psi: \mathbb{C}^n \to \mathbb{C}^n$ has degree $|\Sigma|$.

Cor. For rational energies and u, the Galois group of \mathbb{Q}^{tr} over \mathbb{Q} permutes the solutions. (totally real alg. #s)

Example

$$\Psi(a,b,c,d,e) = \left(\frac{a(bd+cd+ce+de)^2}{(ab+ac+ae+bc+bd+cd+ce+de)^2}, \frac{b(ae+cd+ce+de)^2}{(ab+ac+ae+bc+bd+cd+ce+de)^2}, \frac{b(ae+cd+ce+de)^2}{(ab+ac+ae+bc+bd+cd+ce+de)^2}, \frac{b(ae+cd+ce+de)^2}{(ab+ac+ae+bc+de)^2}, \frac{b(ae+cd+ce+de)^2}{(ab+ac+ae+de)^2}, \frac{b(ae+cd+ce+de)^2}{(ab+ac+ae+de)^2}, \frac{b(ae+cd+ce+de)^2}{(ab+ac+ae+de)^2}, \frac{b(ae+cd+ce+de)^2}{(ab+ac+ae+de)^2}, \frac{b(ae+cd+ce+de)^2}{(ab+ac+ae+de)^2}$$

$$\frac{c(bd - ae)^2}{(ab + ac + ae + bc + bd + cd + ce + de)^2}, \frac{d(ab + ac + ae + bc)^2}{(ab + ac + ae + bc + bd + cd + ce + de)^2},$$

$$\frac{e(ab+ac+bc+bd)^2}{(ab+ac+ae+bc+bd+cd+ce+de)^2}$$

$$0 = e_1 \left(e_1^2 + e_3^2 + e_4^2 \right) \left(e_1^2 + e_2^2 + e_3^2 + e_4^2 + e_5^2 \right)$$

$$- \left(2e_1^4 + 2e_2^2 e_1^2 + 3e_3^2 e_1^2 + 2e_4^2 e_1^2 + e_5^2 e_1^2 + e_3^4 + e_2^2 e_3^2 + e_2^2 e_4^2 + e_3^2 e_4^2 + e_3^2 e_5^2 \right) \sqrt{a}$$

$$+ e_1 \left(e_1^2 + e_2^2 + e_3^2 \right) a$$

Smith diagram of a planar network

(with a harmonic function)

voltage = y-coordinate

edge = rectangle

current = width

conductance = aspect ratio

energy = area

This graph has 12 acyclic orientations with source at 1 and sink at 0.

$$(|\Sigma| = 12.)$$

width(1) is the root of a polynomial:

 $2315250000z^{12} - 107438625000z^{11} + 2230924692500z^{10} - 27361273241750z^9 + \\220350695004825z^8 - 1225394593409700z^7 + 4817113876088640z^6 - 13468300499707200z^5 + \\26554002301384704z^4 - 35985219877131264z^3 + 31817913970765824z^2 - 16489700865736704z + \\3791571715620864 = 0$

What is $|\Sigma|$?

[Bernardi:] If $B = \{v_0, v_1\}$ connected by an edge, then $|\Sigma|$ is the **chromatic invariant**. $|\Sigma| = |\chi'_G(1)|$, where χ is the chromatic polynomial. Equivalently, $|\Sigma| = T_x(0, 0)$.

This is NP-hard to compute

Proof of Theorem 1:

$$0 = \Delta h(x) = \sum_{y \sim x} c_e(h(x) - h(y))$$

$$= \sum_{y \sim x} \frac{\mathcal{E}_e}{h(x) - h(y)}$$
 the **enharmonic equation**
"energy - harmonic"

solutions of the enharmonic equation are critical points of the functional

$$M(h) = \prod_{e} |h(x) - h(y)|^{\mathcal{E}_e}.$$

Note $\log M(h)$ is strictly concave on each polytope $P_{\sigma} = \{h : \text{sign}(dh) = \sigma\}$

Thursday, June 11, 15

Proof of Theorem 2:

We just need to show that all solutions to enharmonic equation are real.

Gauss-Lucas Theorem:

Roots of p'(z) are contained in the convex hull of roots of p(z).

$$0 = \sum_{y \sim x} \frac{\mathcal{E}_e}{h(x) - h(y)}$$

$$h(x)$$
 is a root of $p'(z)$, where $p(z) = \prod (z - h(y))^{\mathcal{E}_e}$

This implies h(x) is in the convex hull of the neighboring values.

Since boundary values are real, all values are real.

Example. Complete graph K_{n+2} with energy 2 on each edge.

Maximize
$$\prod_{i < j} (x_i - x_j)^2$$

with $x_i \in [0, 1]$, and $x_1 = 0, x_n = 1$.

 \implies roots of Jacobi polynomial $P_n(x)$.

one of the gazillion area-1 rectangulations based on the 40X40 grid

 \mathbb{Z}^2 , directed S&W

The scaling limit of these mappings satisfy the "fixed-energy" Cauchy-Riemann equations

$$u_x v_y = 1$$

$$u_x v_y = 1$$
$$u_y v_x = -1.$$

Cauchy Riemann eqs

constant conductance:

$$u_x = v_y$$
$$u_y = -v_x$$

constant energy:

$$u_x v_y = 1$$
$$u_y v_x = -1$$

Associated laplacian:

$$h_{xx} + h_{yy} = 0$$

$$\frac{h_{xx}}{h_x^2} + \frac{h_{yy}}{h_y^2} = 0.$$

What does a uniform random orientation look like?

Can we count bipolar orientations of \mathbb{Z}^2 ?

A recurrence:

$$X_{i+1,j} = X_{i,j} + \frac{1}{\frac{1}{X_{i,j} - X_{i,j+1}} + \frac{1}{X_{i,j} - X_{i,j-1}} + \frac{1}{X_{i,j} - X_{i-1,j+1}}}$$

$$\deg(X_{i,j}) \approx 4^i$$

triangular dissections

given a triangular dissection of a triangle is there a combinatorially equivalent one with prescribed areas?

no, but...

(Monsky)

No dissection of a square into an odd number of equal-area triangles.

we can write an explicit rational map from "conductances" to areas

Two combinatorially equivalent solutions

triangulation and planar Markov chain (with two outgoing edges from each vertex)

triangle = vertex

y-coord = harmonic function

1/slope = winding number

width/height = stationary msr on edges

area = energy

THANK YOU