FIXED-ENERGY HARMONIC FUNCTIONS
 or, TOTALLY REAL DESSINS D'ENFANTS

A. Abrams (Washington and Lee) R. Kenyon (Brown)

Can we adjust edge conductances so that all bulbs burn with the same brightness?

The Dirichlet problem

A graph $G=(V, E)$
$c: E \rightarrow \mathbb{R}_{>0}$ the edge conductances
$B \subset V$ boundary vertices
$u: B \rightarrow \mathbb{R}$ boundary values

Find $f: V \rightarrow \mathbb{R}$ harmonic on $V \backslash B$ and $\left.f\right|_{B}=u$.

$$
0=\Delta f(x)=\sum_{y \sim x} c_{e}(f(x)-f(y))
$$

f is the unique function minimizing the Dirichlet energy

$$
\mathcal{E}(f)=\sum_{e=x y} \underbrace{c_{e}(f(x)-f(y))^{2}}_{\text {edge energy }}
$$

A harmonic function induces an orientation of the edges:

Let Σ be the set of acyclic orientations compatible with u :
$\Sigma=\left\{\sigma \mid \exists f, f_{B}=u\right.$ and no interior extrema, where $\left.\operatorname{sgn}(d f)=\sigma\right\}$.

Let $\Psi:(0, \infty)^{E} \rightarrow[0, \infty)^{E}$ be the map from conductances to energies.

Theorem 1: For any $\sigma \in \Sigma$ and $\left\{\mathcal{E}_{e}\right\}$ there is a unique choice of conductances $\left\{c_{e}\right\}$ for which the associated harmonic function realizes this data.

Theorem 2: The rational map $\Psi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ has degree $|\Sigma|$.

Cor. For rational energies and u, the Galois group of $\mathbb{Q}^{t r}$ over \mathbb{Q} permutes the solutions.
(totally real alg. \#s)

Example

$$
\begin{gathered}
\Psi(a, b, c, d, e)=\left(\frac{a(b d+c d+c e+d e)^{2}}{(a b+a c+a e+b c+b d+c d+c e+d e)^{2}}, \frac{b(a e+c d+c e+d e)^{2}}{(a b+a c+a e+b c+b d+c d+c e+d e)^{2}},\right. \\
\frac{c(b d-a e)^{2}}{(a b+a c+a e+b c+b d+c d+c e+d e)^{2}}, \frac{d(a b+a c+a e+b c)^{2}}{(a b+a c+a e+b c+b d+c d+c e+d e)^{2}}, \\
\left.\frac{e(a b+a c+b c+b d)^{2}}{(a b+a c+a e+b c+b d+c d+c e+d e)^{2}}\right) \\
\begin{array}{c}
0= \\
\quad e_{1}\left(e_{1}^{2}+e_{3}^{2}+e_{4}^{2}\right)\left(e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}+e_{5}^{2}\right) \\
\quad-\left(2 e_{1}^{4}+2 e_{2}^{2} e_{1}^{2}+3 e_{3}^{2} e_{1}^{2}+2 e_{4}^{2} e_{1}^{2}+e_{5}^{2} e_{1}^{2}+e_{3}^{4}+e_{2}^{2} e_{3}^{2}+e_{2}^{2} e_{4}^{2}+e_{3}^{2} e_{4}^{2}+e_{3}^{2} e_{5}^{2}\right) \sqrt{a} \\
\quad+e_{1}\left(e_{1}^{2}+e_{2}^{2}+e_{3}^{2}\right) a
\end{array}
\end{gathered}
$$

Smith diagram of a planar network

 (with a harmonic function)

$$
\begin{aligned}
\text { voltage } & =y \text {-coordinate } \\
\text { edge } & =\text { rectangle } \\
\text { current } & =\text { width } \\
\text { conductance } & =\text { aspect ratio } \\
\text { energy } & =\text { area }
\end{aligned}
$$

This graph has 12 acyclic orientations with source at 1 and sink at 0 .

$$
(|\Sigma|=12 .)
$$

width(1) is the root of a polynomial:
$2315250000 z^{12}-107438625000 z^{11}+2230924692500 z^{10}-27361273241750 z^{9}+$ $220350695004825 z^{8}-1225394593409700 z^{7}+4817113876088640 z^{6}-13468300499707200 z^{5}+$ $26554002301384704 z^{4}-35985219877131264 z^{3}+31817913970765824 z^{2}-16489700865736704 z+$ $3791571715620864=0$

What is $|\Sigma|$?
[Bernardi:] If $B=\left\{v_{0}, v_{1}\right\}$ connected by an edge, then $|\Sigma|$ is the chromatic invariant.
$|\Sigma|=\left|\chi_{G}^{\prime}(1)\right|$, where χ is the chromatic polynomial. Equivalently, $|\Sigma|=T_{x}(0,0)$.

This is NP-hard to compute

Proof of Theorem 1:

$$
\begin{aligned}
0=\Delta h(x) & =\sum_{y \sim x} c_{e}(h(x)-h(y)) \\
& =\sum_{y \sim x} \frac{\mathcal{E}_{e}}{h(x)-h(y)}
\end{aligned}
$$

solutions of the enharmonic equation are critical points of the functional

$$
M(h)=\prod_{e}|h(x)-h(y)|^{\mathcal{E}_{e}} .
$$

Note $\log M(h)$ is strictly concave on each polytope $P_{\sigma}=\{h: \operatorname{sign}(d h)=\sigma\}$

Proof of Theorem 2:

We just need to show that all solutions to enharmonic equation are real.

Gauss-Lucas Theorem:
Roots of $p^{\prime}(z)$ are contained in the convex hull of roots of $p(z)$.

$$
0=\sum_{y \sim x} \frac{\mathcal{E}_{e}}{h(x)-h(y)}
$$

$h(x)$ is a root of $p^{\prime}(z)$, where $p(z)=\prod(z-h(y))^{\mathcal{E}_{e}}$
This implies $h(x)$ is in the convex hull of the neighboring values. Since boundary values are real, all values are real.

Example. Complete graph K_{n+2} with energy 2 on each edge.

Maximize $\prod_{i<j}\left(x_{i}-x_{j}\right)^{2}$

with $x_{i} \in[0,1]$, and $x_{1}=0, x_{n}=1$.
\Longrightarrow roots of Jacobi polynomial $P_{n}(x)$.

$$
n=20
$$

one of the gazillion area- 1 rectangulations based on the 40 X 40 grid

\mathbb{Z}^{2}, directed S\&W

The scaling limit of these mappings satisfy the "fixed-energy" Cauchy-Riemann equations

$$
\begin{aligned}
& u_{x} v_{y}=1 \\
& u_{y} v_{x}=-1
\end{aligned}
$$

Cauchy Riemann eqs
constant conductance:
constant energy:

$$
\begin{aligned}
& u_{x}=v_{y} \\
& u_{y}=-v_{x}
\end{aligned}
$$

$$
\begin{aligned}
& u_{x} v_{y}=1 \\
& u_{y} v_{x}=-1
\end{aligned}
$$

Associated laplacian:

$$
h_{x x}+h_{y y}=0
$$

$$
\frac{h_{x x}}{h_{x}^{2}}+\frac{h_{y y}}{h_{y}^{2}}=0
$$

What does a uniform random orientation look like?

Can we count bipolar orientations of \mathbb{Z}^{2} ?

A recurrence:

$$
X_{i+1, j}=X_{i, j}+\frac{1}{\frac{1}{X_{i, j}-X_{i, j+1}}+\frac{1}{X_{i, j}-X_{i, j-1}}+\frac{1}{X_{i, j}-X_{i-1, j+1}}}
$$

$\operatorname{deg}\left(X_{i, j}\right) \approx 4^{i}$

triangular dissections

given a triangular dissection of a triangle is there a combinatorially equivalent one with prescribed areas?

no, but...

(Monsky)
No dissection of a square into an odd number of equal-area triangles.
we can write an explicit rational map from "conductances" to areas

Two combinatorially equivalent solutions

triangulation and planar Markov chain

 (with two outgoing edges from each vertex)

$$
\begin{aligned}
& \text { triangle }=\text { vertex } \\
& y \text {-coord }=\text { harmonic function } \\
& 1 / \text { slope }=\text { winding number }
\end{aligned}
$$

width/height $=$ stationary msr on edges

$$
\text { area }=\text { energy }
$$

THANK YOU

