


What is
Quantum Space Time!

Overview

How to construct quantum geometry:

Topological Field Theory with (continuum limit of) defects

How to construct quantum space time!
Phase structure of quantum space time models

Consistent boundary formulation



Quantum geometry

v

Encoded in
combinatorics of
triangulation.
Path integral: sum over
weighted (equilateral)
triangulations

Encoded in
data assigned to a
triangulation.

Path integral: sum over
weighted
data

continuum
limit:
lattice constant
goes to zero

continuum
limit:
no lattice constant.
Expressed via consistent
boundary formulation.




Choosing amplitudes(data):

More freedom to design quantum geometries.

Vacuum state(amplitudes):

characterizes the quantum geometry encoded in the amplitudes



What is vacuum/?

vacuum
wvac\ w
sum over regularize
weighted by (fixed)

geometries discretization

in general problem:
-wave function depends on dizcretization

(Hartle-Hawking)
-breaking of diffeomorphism symmetry

no-boundary wave

function defined by:
path integral [2009: Bahr, BD]
with one
vanishing boundary But not if
weights

define a topological QFT
(by definition a discretization
independent theory)

General case:
continuum limit can be formulated via
consistent boundary formulation

[20012/2014: BD]



Topological QFT

local field theory with gauge symmetries (eg diffeomorphism) eliminating
kinematical degrees of freedom

* no propagating degrees of freedom

only one physical state (spherical topology): vacuum state

3D gravity is a topological QFT

4D gravity is not topological: need more (excited) states



One strategy: TQFT with defects

[2013: BD, Steinhaus]

Condensation of defects to
a new vacuum / phase transition
(leading to unitary inequivalent

Describe more general
wave functions as
perturbed vacuum, that is
as vacuum with

defects.

Why (only) defects? representation of observable

algebra)
Only framework so far that
allows (spatial)
diffeomorphism invariant 1 Defects generated

formulation. by observable (algebra)

Physically:

distances between defects do
not matter.

Reflects background
(geometry) independence.

» Approximating GR dynamics via (curvature) defects:  Regge 60’s, " Hooft'00s, ...

* a posteriori interpretation of Loop Quantum Gravity: (in Ashtekar Lewandowski rep.): geometry is a defect

* New representation of Loop Quantum Gravity: [BD, Geiller [4a,14b; Bahr, BD, Geiller 15] back to curvature defects



Quantum Geometry

My definition:

Construct Hilbert space
supporting diffeomorphism invariant excitations
and (geometric) operators to extract quantum geometry.

Examples: loop quantum gravity™ ,
(causal) dynamical triangulations, group field theories, ...

K approach which most explicitly constructs
such a Hilbert space and quantum geometry



Progress

® |990’s: Ashtekar, Isham, Lewandowski:

First construction of a spatially diffeomorphism invariant Hilbert space
supporting the (kinematical) observable algebra of general relativity and matter.

Based on a no-spatial-geometry vacuum.  2005: F-LOST uniqueness theorem.

Fleischhack - Lewandowski, Okolov, Sahlmann, Thiemann

® 2014:BD, Geiller (2015: Bahr, BD, Geiller):

Construction of an alternative spatially diffeomorphism invariant Hilbert space

based on a no-curvature vacuum.

e 2013:BD, Steinhaus:

Topological field theories (topological phases) give rise to

spatially diffeomorphism invariant Hilbert spaces.



Loop quantum gravity: Lattice theory
without a lattice

Using a lattice allows

(Canonical) . . _
formulation of non-perturbative physics.

Lattice gauge

theory variables:
Problem: breaks diffeomorphism symmetry.
Wilson loop
measures
curvature Key: use the same variables but
|- do not restrict to the lattice.
d Challenge: specifying a diffeomorphism
electric 8¢

flux through invariant vacuum state ‘everywhere’.

surface (in (3+1)D)



Quantum geometry operators

Ashtekar variables (1986)

(generalized to SU(2) Yang Mills).

Geometric variables (metric, curvature) can be encoded into variables of electro-magnetism

magnetic field observable:

Wilson loop operator associated to a
curve.

measures magnetic field
integrated over enclosed surface
generates an electrical flux line

J

gravity context:
measures (extrinsic) curvature,
generates ‘quanta of spatial geometry’

electric field observable:
Electric flux associated to a surface.

measures electric field flux through
surface

generates magnetic field

i) surf

gravity context:

measures (spatial) areas, angles, volumes
generates (extrinsic) curvature




Algebra of quantum geometry operators

[E surf h? = h ©

Curve] curve (T)j

!

Lie algebra generator

Only non-vanishing if holonomy curve
(electric flux line) cuts through surface.

Is of topological nature.
(Does not need background metric.)



Building quantum geometry states: version |

[Ashtekar-Lewandowski-Isham representation, 90’s]

the vacuum state:
all flux operators have vanishing
expectation values and vanishing
fluctuations

excited states: -
i i J1 J2 J3 L2
by applying Wilson loop Wit rvey Plirvey M3 ey |0)
operators, -
some fluxes get non-vanishing
e>9|§ectation values.

encode Sp?/tlai
geometry!

First rigorous realization of quantum geometry. (Technically:inductive limit of Hilbert spaces)

[Ashtekar-Lewandowski-Isham representation, 90’s]



Building quantum geometry states: version |

vacuum = state where spatial geometry is
totally degenerate

ESUI'
area, angles\

VOlnode

7

flux lines = defects away from
totally degenerate geometry

Quantum state determines quantum geometry
(in a spatial diffeomorphism invariant way).



Building quantum geometry states: version ||

[BD, Geiller 14a,14b; Bahr, BD, Geiller 15]

the vacuum state:
all curvature operators have
vanishing
expectation values and vanishing
fluctuations

excited states:
by applying flux operators,
some curvature pperators get discrete topology for group
non-vanlishing labels - due to (Bohr)

. compactification of
expectation values. p .
/ ontryagin dual

exp(QBiEsurfg) eXp(QZiEsurfg) eXp<0517:Esurf1> |0>

only exponentiated
fluxes exist as operators

curvature defects
along curves (in (3+1)D



Building quantum geometry states: version ||

[BD, Geiller 14a,14b; Bahr, BD, Geiller to appear |5]

vacuum peaked on vanishing curvature,
flux variables (spatial geometry) maximally
uncertain

o7
%

lines = curvature defects

state of
BF topological theory
with defects (= excitations)

Remark: Gives solution of
(2+1)D gravity
(with point particles).

Quantum state determines a (very different) quantum geometry
(in a spatial diffeomorphism invariant way).



Two vacua (and quantum-geometry representations)

[BD, Geiller 14a, 14b]

Ashtekar - Lewandowski - Isham vacuum (90’s) BF (topological) theory vacuum

wvac ( { hcurve } ) =1 wvac ( {hloops }) — Hloops 0 ( hloops)

peaked on degenerate (spatial) geometry peaked on vanishing
maximal uncertainty in (Ashtekar connection) curvature
(extrinsic) curvature maximal uncertainty in spatial geometry
excitations: excitations:
spin network states supported on graphs curvature defects on edge network
describing spatial geometry defects (triangulation)

.
S &




Why different (kinematical) vacua!?

In standard gft: needed to describe symmetry breaking / condensation processes.

In g-gravity: need states satisfying the quantum equations of motions (physical states).
This is like asking for the energy eigenstates of an interacting quantum field theory: solving the theory.
Such states will not be (normalizable) in the Hilbert space we started with (kinematical Hilbert space).

Nevertheless some kinematical vacua might give easier access to physical states than other
kinematical vacua.




Quantum space time:

dynamics of quantum geometry



What is a good vacuum (physical) state!?

Should be adjusted to the dynamics of the system.

Time-evolution = applying path integral.

Usually:

Vacuum state should be invariant under time evolution.

In diff-invariant systemes:
All physical states should be invariant under time
evolution.

Path integral is a projector onto physical states.

Need to construct the gravitational path integral.

Changing coupling constants
and thus adjusting the the
dynamics.



Discretization and spin foam models

sum over
geometries =
: sum over labels
+ + ... J .
L associated to the
triangulation

construction of amplitudes from GR action

spin foam model
[Reisenberger, Rovelli, Barrett,

Crane, Freidel, Krasnov, Livine, Speziale...]

However the projector property can be expected

to hold only in the refinement limit.
[Bahr, BD, Steinhaus 09 ...11]

Do we know states with ¥ = Py ?
® In 3D:yes, the BF vacuum state

® |n 4D: (apart from BF state) not yet for ‘gravitational’ spin foam models
® This is actually the key problem: equivalent to solving QG dynamics



How can we construct physical states!?

(version of)
. Hartle Hawking

no boundary wave function.

Is a physical state.

N

path integral

with one

vanishing boundary
(with kinematical
vacuum state)

Path integral over a disk gives

«— vacuum functional for boundary wave functions

Avac(wout) — <¢0ut ‘P ’ @>

encodes (continuum) dynamics.




Need to compute the path integral

in the refinement limit.

Problem: Extremely difficult for 4D (gravitational) spin foams.
® cannot apply Monte Carlo simulations, due to complex amplitudes

® additional difficulties: infinite summations and (emerging) divergencies due to
diffeomorphism symmetry

® 5o far no real space coarse graining method for 4D spin foam models available
[BD, Mizera, Steinhaus | 4]

® but now: tensor network method for 3D lattice gauge models is working
[BD, Delcamp wip]

Devised 2D ‘analogue models’ capturing key dynamical ingredients of spin foams.

® mimics a 2D-4D duality of lattice gauge theory to spin systems

.. [BD, Eckert, Martin-Benito, Schnetter,
® hope that phase structure is similar Steinhaus, | 1-13]

® path integral / refinement limit can be computed via tensor network

renormalization [Vidal, Levin-Nave, Gu-Wen, ...]



Phase diagram for spin foam analogues

® models are similar to anyonic spin chains [Feiguin et al 06]

® but can be also interpreted as particular spin foams describing the gluing of two

space time atoms
® changing certain parameters in initial model: changes how the atoms glue
(technically: changes implication of simplicity constraints)

® anyonic spin chains support very rich phase structure, classification in

[BD, Kaminski |3 and to appear]

green

blue

Positive indication for finding a

geometric phase in spin foams.

[BD, Martin-Benito, Schnetter NJP 13]

BD, Martin-Benito, Steinhaus PRD | 3]



Phase diagram for spin foams ?

® need to develop (tensor network) coarse graining algorithms for
spin foams = generalized lattice gauge theories
® first algorithm for 3D Abelian lattice gauge theories: decorated tensor networks

[BD, Mizera, Steinhaus 14]
® 3D Non-Abelian lattice gauge theories [Delcamp, BD wip]

Phases in lattice gauge theory

coupling
A
confining phase ‘no space’ phase
s /
deconfining phase BF topological phase
(topological phase) (gives 3D gravity!)

—



New phases give rise to new vacua

and new quantum geometry realizations .

phase

vacuum functional

= topological
underlying the Hilbert

(lattice) field

space representation

theory

continuum

defects of topological

Hilbert space

theory = excitations ‘. TR
inductive limit

construction:
allowing
arbitrary lattices

for excitations




Consistent boundary formulation for the
[BD NJP 12, 4]

continuum dynamics
Boundary Hilbert space

Boundary Hilbert space with high complexity
with low complexity L
wave funetic

embedding of embedding of

o boundary boundary
initial discrete  Hilbert spaces Hilbert spaces

theory gives

approximation
restricts to

to
d « | ) n ..
A ™ (Plow com)) me ) Avac " (Ymed com) At ™ (hpigh com)

vac

A (complete) family of consistent amplitudes defines a theory® of quantum gravity.

* Corresponds to a complete renormalization trajectory,

with scale given by complexity parameter.

Amplitudes can be computed iteratively in an approximation scheme.

Least effort necessary for low complexity = homogeneous ‘cosmology’ configurations.
[BD NJP 12, 14]



Summary

Quantum gravity
models
as many body system

refinement
* tensor network alg limit with tensor
* categorification network algos

|dentify phases
and transitions

* (modified) inducti
limit constructi

New quantum
geometry
realizations

continuum limit:
consistent family
of amplitudes

Quantum
Space Time




Many things to happen in the near future!

*Review:

Bianca Dittrich, The continuum limit of loop quantum gravity - a framework for solving the theory

arXiv:1409.1450




Tensor network renormalization

—

Amplitude of a disk region
with edges representing

boundary data.

o o

P g
R g

1
1
]
1

1
1

Path integral for a disk region

by gluing disks.

Iterate to find effective
amplitude

incorporating many ‘bare building
blocks’.

hhr —

[Levin-Nave, Gu-Wen, ...]

Neglect dependence on ‘finer
boundary data’ to find
effective amplitude.

Related to identifying vacuum.

[BD 12, BD I5]



Tensor network renormalization methods

(using local truncation method)

Coarse grain

bare/initial amplitude
depending on four variables

Contract initial amplitudes (sum over bulk variables).
Obtain “effective amplitude” with more boundary
variables.

Truncate /determine embedding map

l | l l
A A Jeeeeeees A AL

1A A_I |A AL

Find an approximation (embedding map) that would
minimize the error as compared to full summation
(dotted lines). For instance using singular value
decomposition, keeping only the largest ones.

Leads to field redefinition, and ordering of fields into
more and less relevant.

“Rescale” (apply embedding map)

A A

e g

| | new effective amplitude

Use embedding maps to define coarse grained
amplitude with the same (as initial) number of
boundary variables.



Path integral = sum over spacetime geometries

‘boundary states’ encode (actually 4D) quantum geometry

/]

2pow’f

‘'sum’ over quantum space

+ + . .

time geometries

win
need to define
quaPtum amplitude how to sum
(Yout Pltbin) = Pout(ourcont 1) exp(7-S(conf 1)) tin (dimcont 1) + bath integral

(0 matrix element

Yout (Oputconf 2) exp( = - S(conf?2)) i, (Oipconf2) +

Physical states: ¢ = Py



Path integral is a projector

sum over all space
time geometries with

arbitrary time
extension

I sum over all p— F

boundary

states '
. sum over all space
\

time geometries with
arbitrary time
extension

sum over all space
time geometries with
arbitrary time
extension

[Halliwell, Hartle 91]

PoP =P

projector
property



