Exponential Bounds on the Number of 3-dimensional Causal Triangulations

Thordur Jonsson, University of Iceland

$$
\text { June } 102014
$$

20th Itzykson Conference
Random Surfaces and Random Geometry IPhT Saclay

Outline

- The 2-dimensional case
- Locally constructible 3-dimensional triangulations
- 3-dimensional causal triangulations
- Generalisations to higher dimensions

A CENSUS OF PLANAR TRIANGULATIONS

W. T. TUTTE

1. Triangulations. Let P be a closed region in the plane bounded by a simple closed curve, and let S be a simplicial dissection of P. We may say that S is a dissection of P into a finite number α of triangles so that no vertex of any one triangle is an interior point of an edge of another. The triangles are "topological" triangles and their edges are closed arcs which need not be straight segments. No two distinct edges of the dissection join the same two vertices, and no two triangles have more than two vertices in common.

There are $k \geqslant 3$ vertices of S in the boundary of P, and they subdivide this boundary into k edges of S. We call these edges external and the remaining edges of S, if any, internal. If r is the number of internal edges we have

$$
\begin{align*}
3 \alpha & =2 \mathrm{r}+k \tag{1.1}\\
r & \equiv k(\bmod 3) . \tag{1.2}
\end{align*}
$$

Figure 3

Two dimensions

- Tutte 1962

$$
N_{0,1} \sim n^{-5 / 2} c^{n}
$$

- Bender and Canfield 1986

$$
N_{g, b}(n) \sim n^{5(g-1) / 2+b-1} c^{n}
$$

- No restriction on topology

$$
N(n)=\sum_{g=0}^{\infty} N_{g, 1}(n) \sim(3 n / 2)!
$$

- 1980s 2d simplicial gravity models: Ambjørn, Boulatov, David, Durhuus, Kazakov, Kostov, Migdal etc. etc.

3 dimensions

- Ambjørn, Durhuus, Jonsson 1991

$$
S_{E H}(T)=\kappa|T|+\lambda \ell_{1}(T)
$$

- In order for

$$
Z=\sum_{T \in \mathcal{T}} e^{-S_{E H}}
$$

to converge for some κ we need

$$
\#\{T \in \mathcal{T}:|T|=n\} \leq C^{n}
$$

for some constant C.

Locally Constructible Triangulations

A 3d simplicial manifold M has a local construction if there is a sequence of simplicial manifolds $M_{1}, M_{2}, \ldots, M_{k}$ such that
(i) M_{1} is a tetrahedron
(ii) M_{i+1} is obtained from M_{i} by either gluing a tetrahedron to M_{i} along a triangle or by identifying two triangles in ∂M_{i} which already share a triangle
(iii) $M_{k}=M$

Fig. 1. After identifying the triangles A and A^{\prime} the triangles B and D become nearest neighbours and the same applies to the triangles C and E. They may therefore be identified once A and A^{\prime} have been glued together.

Results about LC triangulations

- Theorem (Durhuus and T.J. 1995) There is a $C>1$ such that the number of locally constructible triangulations of S^{3} of volume V is bounded by C^{V}.
- There exists a simplicial 3-ball whose boundary triangles can be identified pairwise such that no triangle is identified with any of its neighbours but the resulting 3-manifold is simply connected.
- Theorem (Bendetti and Ziegler 2011) Not all triangulations of S^{3} are locally constructible.

Causal Triangulations

- Ambjørn, Loll, Jurkiewicz, 1998, 2001
- A causal slice is a triangulation of $[0,1] \times S^{2}$ such that all the vertices lie on the boundary and every tetrahedron has at least one vertex in each boundary component.
- A causal slice K has two boundary components $\Sigma_{\text {in }}$ and $\Sigma_{\text {out }}$ each of which is a triangulation of S^{2}.
- A causal triangulation K is a sequence of causal slices $K_{1}, \ldots, K_{n}, \partial K_{i}=\Sigma_{i n}^{i} \cup \Sigma_{\text {out }}^{i}$, which are disjoint except K_{j} and K_{j+1} intersect in $\Sigma_{\text {out }}^{j}=\Sigma_{i n}^{j+1}, j=1, \ldots, n-1$. We have $\partial K=\Sigma_{\text {in }}^{1} \cup \Sigma_{\text {out }}^{n}$.

http://www.thephysicsmill.com/2013/10/13/causal-dynamical-triangulations/

Main results

Work with B. Durhuus

- Theorem 1 The number $N_{3}(V)$ of 3-dimensional causal triangulations of volume V satisfies

$$
N_{3}(V) \leq C^{V}
$$

for a suitable constant C.

- Theorem 2 All 3-dimensional causal triangulations have a local construction.
- Theorem 3 If $N\left(V, \Sigma_{i n}, \Sigma_{\text {out }}\right)$ is the number of causal triangulations with boundary components $\Sigma_{i n}$ and $\Sigma_{\text {out }}$ and volume V, then there is a constant C_{0} independent of $\Sigma_{\text {in }}$ and $\Sigma_{\text {out }}$ such that

$$
N\left(V, \Sigma_{i n}, \Sigma_{o u t}\right)=C_{0}^{V+o(V)}
$$

The Structure of Causal Slices

- A realisation of a triangulation K (simplicial complex) is a mapping of its vertex set K^{0}

$$
\phi: K^{0} \mapsto \mathbf{R}^{n}
$$

such that $\phi(\sigma)$ is an affinely independent set for any simplex σ in K and

$$
\operatorname{conv} \phi(\sigma) \cap \operatorname{conv} \phi\left(\sigma^{\prime}\right)=\operatorname{conv} \phi\left(\sigma \cap \sigma^{\prime}\right)
$$

for all simplicies σ, σ^{\prime} in K.

- A D-dimensional simplicial complex has a realisation for $n=2 D+1$.
- We will not distinguish between a causal slice and its realisations all of which are equivalent.

The Building Blocks

- Let K be a causal slice and colour the vertices in $\Sigma_{i n}$ red and the ones in $\Sigma_{\text {out }}$ blue.
- Then there are 3 types of tetrahedra in K :

- Types: $(1,3),(2,2),(3,1)$

The Hight Function

- Let $x \in K$. Then x is contained in some tetrahedron in K with red vertices r_{i} and blue vertices b_{j}. There is a unique way of expressing x :

$$
x=\sum_{i} \mu_{i} r_{i}+\sum_{j} \lambda_{j} b_{j}
$$

$\mu_{i}, \lambda_{j} \geq 0, \sum_{i} \mu_{i}+\sum_{j} \lambda_{j}=1$.

- Define the hight function $h: K \mapsto[0,1]$ by

$$
h(x)=\sum_{j} \lambda_{j}
$$

Then $h(x)=0$ if and only if $x \in \partial K_{\text {red }}$ and $h(x)=0$ if and only if $x \in \partial K_{\text {blue }}$.

The Midsection

- The set $S_{K}=\left\{x \in K: h(x)=\frac{1}{2}\right\}$ is called the midsection.
- The intersection of a tetrahedron in K with the midsection is a blue triangle, a red triangle or a square with opposite edges of different colours:

- S_{K} is a cell complex with coloured edges.

Properties of The Midsection

- The midsection is homeomorphic to S^{2} and isomorphic causal slices give rise to isomorphic midsections.
- Different causal slices give rise to different midsections.
- Not all coloured cell complexes, as we have described, can arise as midsections:

Outline of The Proof of Theorem 1

- It is enough to bound the number of causal slices made up of V tetrahedra.
- It is enough to bound the number of possible midsections made up of V cells.
- Subdivide each square in the midsection into two triangles by a new black edge.
- Then we get a triangulation of S^{2} with $\leq 2 V$ triangles and each edge has 3 possible colours.
- The number of such triangulations is bounded by an exponential function of V by Tutte's 1962 result.

Outline of The Proofs of Theorems 2 and 3

- The existence of the midsection and the fact that it determines a causal slice uniquely gives rise to a local construction of any causal slice.
- Local construction for causal slices gives a local construction for any causal triangulation.
- For any $\Sigma_{\text {in }}$ and $\Sigma_{\text {out }}$ there is a constant V_{0} such that $N\left(V_{1}, \Sigma_{\text {in }}, \Sigma_{\text {out }}\right) N\left(V_{2}, \Sigma_{\text {in }}, \Sigma_{\text {out }}\right) \leq N\left(V_{1}+V_{2}+V_{0}, \Sigma_{\text {in }}, \Sigma_{\text {out }}\right)$.
- By standard arguments it follows that

$$
\lim _{V \rightarrow \infty} \frac{\log N\left(V, \Sigma_{\text {in }}, \Sigma_{\text {out }}\right)}{V}
$$

exists and is independent of the boundary triangulations.

Generalised Causal Triangulations

- A generalised causal slice is a simplicial 3-manifold K with two boundary components $\partial K_{\text {red }}$ and $\partial K_{\text {blue }}$ such that all mono-coloured simplicies belong to the boundary.
- The midsection of a generalised causal slice (defined as before) is a closed simplicial 2-manifold homeomorphic to both $\partial K_{\text {red }}$ and $\partial K_{\text {blue }}$.
- The number $N_{3, g}(V)$ of generalised causal triangulations with volume V and midsection of genus g satisfies

$$
N_{3, g}(V) \leq C_{g}^{V}
$$

for a suitable constant C_{g}.

- In case $g=0$ generalised causal triangulations are the same as causal triangulations.

Generalisation to 4 dimensions

- One can generalise the definition of a causal triangulation to any dimension.
- One can generalise the construction of a midsection to 4-dimensional causal slices.
- There are 4 types of 4 -simplicies that arise: $(1,4),(2,3),(3,2)$ and (4,1).
- The midsection is a 3-dimensional cell complex made up of coloured tetrahedra and prisms:

- Let $M_{D}(V)$ be the number of triangulations of S^{D} made up of $V D$-simplicies.
- Let $N_{D}(V)$ be the number of D-dimensional causal triangulations made up of $V D$-simplicies.
- Theorem 4 If $M_{3}(V) \leq C^{V}$ for some C then the exists a constant \tilde{C} such that

$$
N_{4}(V) \leq \tilde{C}^{V}
$$

- The proof is similar to the 3-dimensional case.
- Conjecture If $M_{D-1}(V) \leq C_{D}^{V}$, then there exists \tilde{C} such that

$$
N_{D}(V) \leq \tilde{C}^{V}
$$

Final Remarks

- Proving that $M_{3}(V) \leq C^{V}$ is most likely a hard problem but an important one.
- Recent work by Collet, Eckmann and Younan gives sufficient conditions for the bound to hold
- Many interesting questions can be asked

