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A CENSUS OF PLANAR TRIANGULATIONS 
W. T. TUTTE 

1. Triangulations. Let P be a closed region in the plane bounded by a 
simple closed curve, and let 5 be a simplicial dissection of P. We may say 
that 5 is a dissection of P into a finite number a of triangles so that no vertex 
of any one triangle is an interior point of an edge of another. The triangles 
are ''topological" triangles and their edges are closed arcs which need not be 
straight segments. No two distinct edges of the dissection join the same two 
vertices, and no two triangles have more than two vertices in common. 

There are k > 3 vertices of S in the boundary of P , and they subdivide 
this boundary into k edges of S. We call these edges external and the remaining 
edges of 5, if any, internal. If r is the number of internal edges we have 
(1.1) Sa = 2r + k, 
(1.2) r = k (mod 3). 

Let us call S a triangulation of P if it satisfies the following condition: no 
internal edge of S has both its ends in the boundary of P. We note that in the 
case k = 3 every simplicial dissection is a triangulation. 

Let T\ and T% be triangulations of P having the same external edges. We 
call them isomorphic if there is a 1 — 1 mapping / of the vertices of T\ onto 
those of T2 which satisfies the following conditions. 

(i) Each vertex in the boundary of P is mapped by f onto itself. 
(ii) Two distinct vertices v and w of 7\ are joined by an edge of 7\ if and 

only if f{v) and f(w) are joined by an edge of T2. 
(iii) Three distinct vertices u, v, and w of 7\ define a triangle of T\ if and 

only iff(u),f(y), andfiw) define a triangle of 7Y 
The triangulations of the polygon abed shown in Figures I A and I B are 

isomorphic, but those of Figures I B and I C are not. 
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FIGURE 3 

We write <£n,w for the number of simple triangulations with specified values 
of m and n. In § 7 we obtain an explicit expression for <j>n^. In § 8 we discuss 
the behaviour of ^n,o and 0WfO as n —> °°. 

I t can be shown that if T is a triangulation of a convex polygon, and if the 
vertices of T in the boundary are the vertices of the polygon, then T has an 
isomorphic triangulation in which every edge is a straight segment. This 
follows from (1), together with Hassler Whitney's theorem that a triply 
connected planar graph can be represented in the plane in essentially only 
one way (2). But we use general topological triangulations in this paper be-
cause the argument of § 3 requires us to consider triangulations of regions 
which are not convex. 

In § 9 we discuss the behaviour as n —> °° of the number of simplicial 
dissections of the 2-sphere into 2n triangles. 

2. Generating functions. In what follows we shall use the following 
formal power series: 

oo oo 

2.1 

2.2 

2.3 

2.4 

<A0, y) = Z) H ^n,mxnym, 
oo 

g(x) = X) &i,o*n» 
oo oo 

4>{x,y) = YJ 12 <t>n,mxnym, 

oo 

n=0 
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Two dimensions

I Tutte 1962
N0;1 � n�5=2cn

I Bender and Canfield 1986

Ng;b(n) � n5(g�1)=2+b�1cn

I No restriction on topology

N(n) =
1X

g=0

Ng;1(n) � (3n=2)!

I 1980s 2d simplicial gravity models: Ambjørn, Boulatov,
David, Durhuus, Kazakov, Kostov, Migdal etc. etc.
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3 dimensions

I Ambjørn, Durhuus, Jonsson 1991

SEH(T ) = �jT j+ �`1(T )

I In order for
Z =
X

T2T

e�SEH

to converge for some � we need

#fT 2 T : jT j = ng � Cn

for some constant C.
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Locally Constructible Triangulations

A 3d simplicial manifold M has a local construction if there is a
sequence of simplicial manifolds M1;M2; : : : ;Mk such that

(i) M1 is a tetrahedron

(ii) Mi+1 is obtained from Mi by either gluing a tetrahedron to
Mi along a triangle or by identifying two triangles in @Mi

which already share a triangle

(iii) Mk = M
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Fig. 1. After identifying the triangles A and A ~ the triangles B and D become nearest neighbours and the 
same applies to the triangles C and E. They may therefore be identified once .4 and A ~ have been glued 
together. 

Let us now assume that we have one of the tree-like simplicial manifolds described 
above made of N tetrahedra. Its surface consists of 2N + 2 triangles. We wish to 
estimate from above how many ways there are to close up this manifold by successively 
identifying nearest neighbour pairs of triangles. Suppose that in the beginning there are 
nl pairs of  nearest neighbour triangles that are to be identified. Once these identifications 
have been carried out the remaining unidentified triangles in general have new neighbours 
and there are n2 pairs of nearest neighbour triangles that are to be identified. We continue 
in this fashion, identifying ni pairs in the ith step until there are no triangles left after f 
steps. Clearly f ~< N + 1 because ni ) 1. 

The number of ways to choose the nl pairs of triangles that participate in the first 
round of identifications is bounded by 

2 N +  2~3nl"  (5) 
nl ] 

After carrying out these identifications there arise at most 2nl new pairs of  nearest 
neighbour triangles that might be identified, see Fig. 1. 

In the next step of the construction we choose n2 triangles out of the 4nl triangles 
that possibly may be identified with one of their neighbours and identify each of them 
with one of their neighbours. The number of ways this can be done is bounded by 

4 n ' )  3n2. (6) 
n2 

We continue in this fashion until there are no triangles left. Clearly 

/ 
2 Z n i  = 2 N + 2 ,  (7) 

i=1 

where 2nf  is the number of  triangles left before the final step in the identification 
process is carried out. 
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Results about LC triangulations

I Theorem (Durhuus and T.J. 1995) There is a C > 1 such
that the number of locally constructible triangulations of S3

of volume V is bounded by CV .

I There exists a simplicial 3-ball whose boundary triangles can
be identified pairwise such that no triangle is identified with
any of its neighbours but the resulting 3-manifold is simply
connected.

I Theorem (Bendetti and Ziegler 2011) Not all triangulations
of S3 are locally constructible.
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Causal Triangulations

I Ambjørn, Loll, Jurkiewicz, .... 1998, 2001

I A causal slice is a triangulation of [0; 1]� S2 such that all the
vertices lie on the boundary and every tetrahedron has at least
one vertex in each boundary component.

I A causal slice K has two boundary components �in and �out

each of which is a triangulation of S2.

I A causal triangulation K is a sequence of causal slices
K1; : : : ;Kn, @Ki = �i

in [ �i
out, which are disjoint except Kj

and Kj+1 intersect in �
j
out = �

j+1
in , j = 1; : : : ; n� 1. We

have @K = �1
in [ �n

out.
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Fig. 2 Example of G ∈ C3

Z is analytic in the disk |g| < 1
2 and has a critical point at gc = 1

2 . Rather than computing
Z directly it is more informative to study the disk amplitudes; these are computed from the
graphs Cn equipped with a marked point on the boundary. They are essentially the partition
function for a boundary of l edges at a height n and are given by [4]

Z(n; l) = ∑
G∈Cn: |Sn|=l

g1+∆(G), l = 1, . . . . (19)

This can be evaluated by noting that ∆(Σk) = |Sk| + |Sk+1|, and counting the graphs by
building G up successively from its slices {Σ0, . . . ,Σn−1}. The number of ways of connecting
lk+1 points in Sk+1 with lk points in Sk, one of which we know is marked, is

(lk+lk+1−1
lk−1

)
and

so, remembering the marked point on Sn, we find that

Z(n; l) = gln
n−1

∏
k=1

(
∞

∑
lk=1

(
lk + lk+1 −1

lk −1

))
g2(l1+...ln−1)+ln . (20)

Doing the sums gives

Z(n; l) = gl(g−1Xn)
l

n−1

∏
k=1

Xk

1−Xk
, (21)

where

Xk+1 =
g2

1−Xk
, X1 = g2. (22)

The recursion (22) is straightforward to solve and has the following properties:

Xn ↑ X∗ =
1−

√
1−4g2

2
as n ↑ ∞ for g <

1
2

;

Xn =
1
2

n
n+1

at g =
1
2
. (23)

It follows that Z(n; l) is analytic in the disk |g| < 1
2 . Using (21) we can calculate the average

boundary length for disks of height n and obtain

〈 l 〉n =
∑∞

l=1 lZ(n; l)
∑∞

l=1 Z(n; l)
=

1+g−1Xn

1−g−1Xn
<

1+2g√
1−4g2

(24)
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http://www.thephysicsmill.com/2013/10/13/causal-dynamical-triangulations/
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Main results
Work with B. Durhuus

I Theorem 1 The number N3(V ) of 3-dimensional causal
triangulations of volume V satisfies

N3(V ) � CV

for a suitable constant C.

I Theorem 2 All 3-dimensional causal triangulations have a
local construction.

I Theorem 3 If N(V;�in;�out) is the number of causal
triangulations with boundary components �in and �out and
volume V , then there is a constant C0 independent of �in

and �out such that

N(V;�in;�out) = C
V+o(V )
0
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The Structure of Causal Slices

I A realisation of a triangulation K (simplicial complex) is a
mapping of its vertex set K0

� : K0 7! Rn

such that �(�) is an affinely independent set for any simplex
� in K and

conv�(�) \ conv�(�0) = conv�(� \ �0)

for all simplicies �; �0 in K.

I A D-dimensional simplicial complex has a realisation for
n = 2D + 1.

I We will not distinguish between a causal slice and its
realisations all of which are equivalent.
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The Building Blocks

I Let K be a causal slice and colour the vertices in �in red and
the ones in �out blue.

I Then there are 3 types of tetrahedra in K:

I Types: (1; 3); (2; 2); (3; 1)
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The Hight Function

I Let x 2 K. Then x is contained in some tetrahedron in K
with red vertices ri and blue vertices bj . There is a unique
way of expressing x:

x =
X

i

�iri +
X

j

�jbj

�i; �j � 0,
P

i �i +
P

j �j = 1.

I Define the hight function h : K 7! [0; 1] by

h(x) =
X

j

�j

Then h(x) = 0 if and only if x 2 @Kred and h(x) = 0 if and
only if x 2 @Kblue.
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The Midsection

I The set SK = fx 2 K : h(x) = 1
2g is called the midsection.

I The intersection of a tetrahedron in K with the midsection is
a blue triangle, a red triangle or a square with opposite edges
of different colours:

I SK is a cell complex with coloured edges.
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Properties of The Midsection

I The midsection is homeomorphic to S2 and isomorphic causal
slices give rise to isomorphic midsections.

I Different causal slices give rise to different midsections.

I Not all coloured cell complexes, as we have described, can
arise as midsections:

A B
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Outline of The Proof of Theorem 1

I It is enough to bound the number of causal slices made up of
V tetrahedra.

I It is enough to bound the number of possible midsections
made up of V cells.

I Subdivide each square in the midsection into two triangles by
a new black edge.

I Then we get a triangulation of S2 with � 2V triangles and
each edge has 3 possible colours.

I The number of such triangulations is bounded by an
exponential function of V by Tutte’s 1962 result.
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Outline of The Proofs of Theorems 2 and 3

I The existence of the midsection and the fact that it
determines a causal slice uniquely gives rise to a local
construction of any causal slice.

I Local construction for causal slices gives a local construction
for any causal triangulation.

I For any �in and �out there is a constant V0 such that

N(V1;�in;�out)N(V2;�in;�out) � N(V1+V2+V0;�in;�out):

I By standard arguments it follows that

lim
V!1

logN(V;�in;�out)

V

exists and is independent of the boundary triangulations.
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Generalised Causal Triangulations

I A generalised causal slice is a simplicial 3-manifold K with
two boundary components @Kred and @Kblue such that all
mono-coloured simplicies belong to the boundary.

I The midsection of a generalised causal slice (defined as
before) is a closed simplicial 2-manifold homeomorphic to
both @Kred and @Kblue.

I The number N3;g(V ) of generalised causal triangulations with
volume V and midsection of genus g satisfies

N3;g(V ) � CV
g

for a suitable constant Cg.

I In case g = 0 generalised causal triangulations are the same as
causal triangulations.
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Generalisation to 4 dimensions
I One can generalise the definition of a causal triangulation to

any dimension.
I One can generalise the construction of a midsection to

4-dimensional causal slices.
I There are 4 types of 4-simplicies that arise: (1,4), (2,3), (3,2)

and (4,1).
I The midsection is a 3-dimensional cell complex made up of

coloured tetrahedra and prisms:
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I Let MD(V ) be the number of triangulations of SD made up
of V D-simplicies.

I Let ND(V ) be the number of D-dimensional causal
triangulations made up of V D-simplicies.

I Theorem 4 If M3(V ) � CV for some C then the exists a
constant ~C such that

N4(V ) � ~CV :

I The proof is similar to the 3-dimensional case.

I Conjecture If MD�1(V ) � CV
D , then there exists ~C such that

ND(V ) � ~CV :
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Final Remarks

I Proving that M3(V ) � CV is most likely a hard problem but
an important one.

I Recent work by Collet, Eckmann and Younan gives sufficient
conditions for the bound to hold

I Many interesting questions can be asked ....
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