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» Peeling process of random surfaces introduced
in [Watabiki,'95] to study their geometry.

» Lead to the first (approximate) derivation of
the 2-point function of random triangulations.
[Ambjgrn, Watabiki, '95].

> Remark: Their 2-point function is not just an
approximation, it is exactly the “first-passage
time 2-point function” [Ambjgrn, TB,'14].

> Peeling was formalized in the setting of infinite
triangulations (UIPT) in [Angel, '03].

» Important tool to study properties of the UIPT
and UIPQ: distances, percolation, random
walks [Angel,'03'][Angel, Curien, '13] [Benjamini, Curien
"13]...

> Precise scaling limits have been obtained for
the perimeter and volume of the explored
region in the UIPT and UIPQ [Curien, Le Gall, '14]
This talk: extend their results to q-IBPM.
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Rooted planar map with faces of arbitrary degrees. % '
Let q = (q«)?2, be a weight sequence of non-negative reals, such '
that g, > 0 for at least one k > 3.

Define the pointed disk function

Wo(l) = Wo(l)(q) = Z H qdeg(f); (1)

me M) non-root faces f

. .

over rooted planar maps m with root face degree / and a marked
vertex.

Call q admissible if W.(’) < 0. Then the summands determine a
probability measure, which we call the g-BPM. [Miermont, '06]
If q admissible there exist ci € R such that for z > ¢y > c_,

1
Viz—c)z—c)

Notice universality: wi depends only on c4(q). Typically only
ratio is important r := —c_/c;.

If gx = 0 for all odd k, then the q-BPM is bipartite and r = 1.
Otherwise q non-bipartite and |r| < 1.

We(2) =Y Wz =
1=0
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» Start with a planar map with a .
distinguished outer face and a marked
vertex.

> A frontier separates the explored map
from the unexplored map.

» Choose peel edge and explore adjacent
face or prune frontier.

> After finite number of steps the
unexplored region contains only the
marked vertex.

» For a g¢-BPM, what is the law of the
perimeter (/;);>o, i-e. the length of the
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> It is a Markov process: given the =
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» Loop equations: W) = > o Gk A 22;20 wewi=r=2
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Read off: P(fy = I + k|l = /) = hijjg;;)k)y(k)

v

> In the limit / — oo this defines a random walk (X;)i>o with step
probabilities
K
=i i1 = Sy = ) D2 k>-1
v(k) = lim Py =1+ k|l =1) = {2W<—k_z)ci k< -2
» (/;); is obtained from (X;); by )

30

conditioning to hit 0 before hitting
Z<0. Analogous to [Curien, Le Gall, '14] 20

» Known as a Doob transform w.r.t.

hSO) = Wo(l) C;I 10 20 30 o
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Proposition (TB,'15)
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> Local topology: “Two rooted planar maps are close if they have i;\

identical geodesic balls of large radius around the root; the larger the
radius, the closer they are.”

3 <

Theorem (Stephenson, '14)

Let q be a critical weight sequence and m,, be rooted and pointed
gq-Boltzmann planar maps conditioned to have n vertices. Then there
exists a random infinite planar map m., (the q-IBPM) such that

mp E)+ Mo in the local topology as n — oo (along a subsequence of 7).

» The lazy peeling process extends naturally to the g-IBPM.

Theorem (TB, '15)

The perimeter process (I;)i>o of the q-IBPM is obtained from that of the
q-BPM by conditioning it to stay positive.

> In fact, (/})i>o is the Doob transform of (X;)i>o w.r.t. hﬁl):
WO (1 + k)

Plir =1+ klli=1)=
(+ | ) hfl)(/)

v(k).
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Properties of critical v

» Linear map: v(—k) = Y72, R.(k,v(l) (k>1)
Ro(k,1) = Y0 b (m — p) (hﬁ)(k +p—1)+rh(k+p— 2)).

> Since h" (k) ~ vk as k — oo, need S v(k)Vk < oo

» Distinguish different cases:

> Heavy-tailed: v(k) ~ k™71, a € [1/2,3/2]. See also [Le Gall,

Miermont, '11].

> Non-heavy-tailed: Lq = 5222, h®(k + 1)v(k) < cc.
(WP (k) ~ k*/?)  Asymptotics of R, (k, /) gives
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Taym
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Properties of critical v %
» Linear map: v(—k) = Y72, R.(k,v(l) (k>1) )
Ro(k,1) = Y0 b (m — p) (hﬁ)(k +p—1)+rh(k+p— 2)).

> Since h" (k) ~ vk as k — oo, need S v(k)Vk < oo =1

» Distinguish different cases: k5
> Heavy-tailed: v(k) ~ k™!, o € [1/2,3/2]. See also [Le Gall, & Jg - |
Miermont, '11]. %
> Non-heavy-tailed: Lq = 5222, h®(k + 1)v(k) < cc. ko
(WP (k) ~ k*/?)  Asymptotics of R, (k, /) gives Ja=312
3£ vV 1 + I’ —5/2 1 <%
v(=k) ~
TayT
> Regular critical: 332, v(k)C* < oo for some C > 1. -T
©
O
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» Tails and no drift imply (weak) convergence to
3/2-stable process with negative jumps
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Scaling limit for regular critical q

» Tails and no drift imply (weak) convergence to

3/2-stable process with negative jumps )
It (d)
Lnt] : ——— 5,(t) N\
(\/1 + rﬁqn) 0

> Invariance principle: same holds when
COﬂditiOﬂed.[Caravenna, Chaumont, '08][Curien, Le Gall, '14]

> Let (V;)i>0 be the number of explored vertices after i steps.
» Checking the details of the proof of Curien and Le Gall:

Theorem (TB '15 based on Curien, Le Gall, '14)

The perimeter (I;)i>o and volume (V;)i>o of a peeling of a regular critical
q-/1BPM converge jointly in distribution in the sense of Skorokhod to

( | nt) Vint) ) (d) ( (), Z(1)) Pg = (m£§)§/3
5 3/2 t>0 L
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» Assign random exp(1)-lengths to
dual edges.

» Associated peeling: choose peel
edge uniformly in frontier.

> Let (T;)i>0 be time at which the
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First-passage time and hop count

» Assign random exp(1)-lengths to
dual edges.

» Associated peeling: choose peel
edge uniformly in frontier.

> Let (T;)i>0 be time at which the
i"th peeling step occurs.

» Knowing (/;)i>0: T; ZJ 1T
where ¢; are independent exp(1 )
random variables.

> Let the hop count H; be # of edges explored of a shortest-time path to
some faraway vertex after i steps. Knowing (/;)i>o:

i 0 If (] < /j_l
=>i1bi b e{0,1}, P(b;=1)= {4-4-;1+1 >y
> (i, Ti, Hi)i>o is a Markov process. For regular critical q we have
Ho R Nimio0 Hi/ T;

B >
k+1 b/ (k+1;
Bt~ = g G = 6 000 BCTas=TH+OU )
k=0 =0
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>

Choose peel edge deterministically:
breadth first exploration.

Let d; be the average distance from
frontier to root face.

Frontier of the form: N,.(O) edges at
distance d followed by N,.(l) edges at
distance d+1, where d = | d;].
Write

d; = [di] +1/2+ (N = M)/ (21)
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Dual graph distance

>

Choose peel edge deterministically:
breadth first exploration.

Let d; be the average distance from
frontier to root face.

Frontier of the form: N,-(O) edges at

distance d followed by N,-(l) edges at
distance d+1, where d = |d;|.

Write
di = |di| +1/2+ (NP = N©)/(21)
If N© and N both large then

[1+Z(k+1

E(diy1—dj|}) =

K| +o(;?)

d+1



Dual graph distance

» Choose peel edge deterministically:
breadth first exploration.

» Let d; be the average distance from . 4
frontier to root face. , e

> Frontier of the form: N,-(O) edges at ame—
distance d followed by N,-(l) edges at .
distance d+1, where d = |d;]. , ; .—‘—‘—M b

> Write ' p— '
di=[di|+1/2+ NV =Ny 2) A -

» 1f N and N both large then AU A
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Dual graph distance

>

Choose peel edge deterministically:
breadth first exploration.

Let d; be the average distance from . 4

frontier to root face. p s
Frontier of the form: Nl-(o) edges at ey
distance d followed by N,-(l) edges at :

distance d+1, where d = |_d,-J_ . i ;H )

Write ' J—
di = [di|+1/2+ (NP = NO)/21) Y
If N© and N® both large then YT ¢ U
o 114 o,
E(dhn—dilh) = 5 [1+Z(k+1 K]+o(72) = [ HOU)
> Using E(Ti41 — ,\/,) = 1/I;, and assuming asymptotically linear

scaling, this suggests the asymptotic relation:

dgr+ ~ (T + H) for any regular critical g-IBPM
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Graph distance

» Can adapt peeling process to graph
distance: take peel edge to be frontier

edge closest to root vertex. V\L‘\ L\

» Precise scaling limits for UIPT and UIPQ
have been derived.[Curien, Le Gall, '14] \7\

» For general q the distances on the frontier /7
. )
are not so simple. Another route towards ‘ {\ ///

the scaling constants?

Theorem (Miermont, '06)

If q is regular critical and m,, is a q-BPM conditioned to have n vertices

and vy, v, are random vertices, then there exists a Cq > 0 and a

q-independent random variable d., s.t.
dm,(v1,v2) (9)

an1/4 n— o0 doo-
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Theorem (Miermont, '06)

If q is regular critical and m,, is a q-BPM conditioned to have n vertices
and vy, v, are random vertices, then there exists a Cq > 0 and a
q-independent random variable d., s.t.
dm,(vi,v2) (d) d
an1/4 n—oo 0

> Miermont also outlined an algorithm to compute Cq. With some
2 1/4
hard work one can show: Cq = (%(1 + r)3£q)

» Combining with previous results and some (so far) heuristic
arguments:

Conjecture

Let v be a random vertex at distance d,, from the root in a regular
g-IBPM, then we have the following limits in probability as dgx — oo for
its first-passage time T, hop count H, and dual graph distance dg;-:

H fo S . 1+Hq dy
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Theorem (Miermont, '06)

If q is regular critical and m,, is a q-BPM conditioned to have n vertices
and vy, v, are random vertices, then there exists a Cq > 0 and a
q-independent random variable d., s.t.
A, (v1,v2)  (9)
doo

an1/4 n—o00

> Miermont also outlined an algorithm to compute Cq. With some
2 1/4
hard work one can show: Cq = (%(1 + r)3£q)

» Combining with previous results and some (so far) heuristic
arguments:

Conjecture

Let v be a random vertex at distance d,, from the root in a regular
g-IBPM, then we have the following limits in probability as dgx — oo for
its first-passage time T, hop count H, and dual graph distance dg;-:

H fo S . 1+Hq dy

7 7 He 7 2 ' T

= Y1+ r)L,.

» Seems to be settled for the UIPT. [Curien, Le Gall, to appear]
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Example: Uniform infinite planar map (bivariate)

k

» Then necessarily v(k) = ao
k>-1.

» Now impose that h;

is a geometric sequence as well for

o |s V- harmonlc

«
1= h k—|—1
Z T l-opitre

3—r 1
> Zh (k+2)(k) =~ (=0>1)

3 > l—-a 2
§(5—2r+r) > A (k+3)v(k) = + =

2
=, o ct
» Can easily compute various constants:
= 30 -1 o

= k+ 1)v(k) = = h k v

o= S 00lh) = [T o= k) = 7
gy~ N 1+He = 2 vertices  (Hq +3)(H —1)
dyy (1+r)Lq Hq—1 faces 8Hq

> Notice UIPM is 0 = 2, Hq = 3, and duality: quil A qu—l'




More examples

| r | c, Lq Ca
Triangulations | 2v3—3 Ve+4v/3 |1 (1 + %) 1/3
Quadrangulations 1 V8 4/3 8/9
Pentangulations | 0.70878... 2.6098. .. 2.1704... 0.7683
- 4
2p-angulations 1 Ve ip-1) ip
Uniform planar maps 3/5 5/V3 5 16/9
Uniform planar maps (biv.) ;ﬁ;f % 3;“3 J(H2+1) g‘,ﬁi;
‘ % ‘ H/T = Hq T/dr oy /oy
Triangulations 1/2 14+ 2 2V/3 1+2V3
Quadrangulations 1 2 3/2 9/4
Pentangulations 3/2 2.3608. .. 1.0785. .. 1.8123...
2p-angulations p—1 i‘z;; 22p—1 2(%1) 3 (ﬁ + p%z‘,:z
Uniform planar maps 1 3 1/2 1
Uniform planar maps (biv.) % H ﬁ Hz,l
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Thanks for your attention!



