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Short history of peeling
I Peeling process of random surfaces introduced

in [Watabiki,’95] to study their geometry.

I Lead to the first (approximate) derivation of
the 2-point function of random triangulations.
[Ambjørn, Watabiki, ’95].

I Remark: Their 2-point function is not just an

approximation, it is exactly the “first-passage

time 2-point function” [Ambjørn,TB,’14].

I Peeling was formalized in the setting of infinite
triangulations (UIPT) in [Angel, ’03].

I Important tool to study properties of the UIPT
and UIPQ: distances, percolation, random
walks [Angel,’03’][Angel, Curien, ’13] [Benjamini, Curien

’13]...

I Precise scaling limits have been obtained for
the perimeter and volume of the explored
region in the UIPT and UIPQ [Curien, Le Gall, ’14]

This talk: extend their results to q-IBPM.



Short history of peeling
I Peeling process of random surfaces introduced

in [Watabiki,’95] to study their geometry.

I Lead to the first (approximate) derivation of
the 2-point function of random triangulations.
[Ambjørn, Watabiki, ’95].

I Remark: Their 2-point function is not just an

approximation, it is exactly the “first-passage

time 2-point function” [Ambjørn,TB,’14].

I Peeling was formalized in the setting of infinite
triangulations (UIPT) in [Angel, ’03].

I Important tool to study properties of the UIPT
and UIPQ: distances, percolation, random
walks [Angel,’03’][Angel, Curien, ’13] [Benjamini, Curien

’13]...

I Precise scaling limits have been obtained for
the perimeter and volume of the explored
region in the UIPT and UIPQ [Curien, Le Gall, ’14]

This talk: extend their results to q-IBPM.



Short history of peeling
I Peeling process of random surfaces introduced

in [Watabiki,’95] to study their geometry.

I Lead to the first (approximate) derivation of
the 2-point function of random triangulations.
[Ambjørn, Watabiki, ’95].

I Remark: Their 2-point function is not just an

approximation, it is exactly the “first-passage

time 2-point function” [Ambjørn,TB,’14].

I Peeling was formalized in the setting of infinite
triangulations (UIPT) in [Angel, ’03].

I Important tool to study properties of the UIPT
and UIPQ: distances, percolation, random
walks [Angel,’03’][Angel, Curien, ’13] [Benjamini, Curien

’13]...

I Precise scaling limits have been obtained for
the perimeter and volume of the explored
region in the UIPT and UIPQ [Curien, Le Gall, ’14]

This talk: extend their results to q-IBPM.



Short history of peeling
I Peeling process of random surfaces introduced

in [Watabiki,’95] to study their geometry.

I Lead to the first (approximate) derivation of
the 2-point function of random triangulations.
[Ambjørn, Watabiki, ’95].

I Remark: Their 2-point function is not just an

approximation, it is exactly the “first-passage

time 2-point function” [Ambjørn,TB,’14].

I Peeling was formalized in the setting of infinite
triangulations (UIPT) in [Angel, ’03].

I Important tool to study properties of the UIPT
and UIPQ: distances, percolation, random
walks [Angel,’03’][Angel, Curien, ’13] [Benjamini, Curien

’13]...

I Precise scaling limits have been obtained for
the perimeter and volume of the explored
region in the UIPT and UIPQ [Curien, Le Gall, ’14]

This talk: extend their results to q-IBPM.



Short history of peeling
I Peeling process of random surfaces introduced

in [Watabiki,’95] to study their geometry.

I Lead to the first (approximate) derivation of
the 2-point function of random triangulations.
[Ambjørn, Watabiki, ’95].

I Remark: Their 2-point function is not just an

approximation, it is exactly the “first-passage

time 2-point function” [Ambjørn,TB,’14].

I Peeling was formalized in the setting of infinite
triangulations (UIPT) in [Angel, ’03].

I Important tool to study properties of the UIPT
and UIPQ: distances, percolation, random
walks [Angel,’03’][Angel, Curien, ’13] [Benjamini, Curien

’13]...

I Precise scaling limits have been obtained for
the perimeter and volume of the explored
region in the UIPT and UIPQ [Curien, Le Gall, ’14]

This talk: extend their results to q-IBPM.



Short history of peeling
I Peeling process of random surfaces introduced

in [Watabiki,’95] to study their geometry.

I Lead to the first (approximate) derivation of
the 2-point function of random triangulations.
[Ambjørn, Watabiki, ’95].

I Remark: Their 2-point function is not just an

approximation, it is exactly the “first-passage

time 2-point function” [Ambjørn,TB,’14].

I Peeling was formalized in the setting of infinite
triangulations (UIPT) in [Angel, ’03].

I Important tool to study properties of the UIPT
and UIPQ: distances, percolation, random
walks [Angel,’03’][Angel, Curien, ’13] [Benjamini, Curien

’13]...

I Precise scaling limits have been obtained for
the perimeter and volume of the explored
region in the UIPT and UIPQ [Curien, Le Gall, ’14]

This talk: extend their results to q-IBPM.



Short history of peeling
I Peeling process of random surfaces introduced

in [Watabiki,’95] to study their geometry.

I Lead to the first (approximate) derivation of
the 2-point function of random triangulations.
[Ambjørn, Watabiki, ’95].

I Remark: Their 2-point function is not just an

approximation, it is exactly the “first-passage

time 2-point function” [Ambjørn,TB,’14].

I Peeling was formalized in the setting of infinite
triangulations (UIPT) in [Angel, ’03].

I Important tool to study properties of the UIPT
and UIPQ: distances, percolation, random
walks [Angel,’03’][Angel, Curien, ’13] [Benjamini, Curien

’13]...

I Precise scaling limits have been obtained for
the perimeter and volume of the explored
region in the UIPT and UIPQ [Curien, Le Gall, ’14]

This talk: extend their results to q-IBPM.



Boltzmann planar maps
I Rooted planar map with faces of arbitrary degrees.

I Let q = (qk)∞k=1 be a weight sequence of non-negative reals, such
that qk > 0 for at least one k ≥ 3.

I Define the disk function
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I If qk = 0 for all odd k, then the q-BPM is bipartite and r = 1.

Otherwise q non-bipartite and |r | < 1.
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Lazy peeling of a pointed planar map

I Start with a planar map with a
distinguished outer face and a marked
vertex.

I A frontier separates the explored map
from the unexplored map.

I Choose peel edge and explore adjacent
face or prune frontier.

I After finite number of steps the
unexplored region contains only the
marked vertex.

I For a q-BPM, what is the law of the
perimeter (li )i≥0, i.e. the length of the
frontier after i steps?

I It is a Markov process: given the
explored map after ith step, the
unexplored map only depends on li .

I (li )i≥0 independent of peel algorithm.
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The perimeter process
I Loop equations: W

(l)
• =

∑∞
k=0 qkW

(l+k−2)
• + 2

∑l−2
p=0 W (p)W

(l−p−2)
•

I Read off: P(li+1 = l + k|li = l) = W
(l+k)
•

W
(l)
•
×

{
qk+2 k ≥ −1

2W (−k−2) k ≤ −2
I In the limit l →∞ this defines a random walk (Xi )i≥0 with step

probabilities

ν(k) := lim
l→∞

P(li+1 = l + k|li = l) =

{
qk+2ck

+ k ≥ −1

2W (−k−2)ck
+ k ≤ −2

I (li )i is obtained from (Xi )i by
conditioning to hit 0 before hitting
Z<0. Analogous to [Curien, Le Gall, ’14]

I Known as a Doob transform w.r.t.

h(0)
r := W

(l)
• c−l+
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I What properties does ν satisfy (when q admissible)?

I Does not drift to ∞: P(Xk > 0 for all k) = 0.
I h

(0)
r is ν-harmonic on Z>0:

∞∑
k=−∞

h(0)
r (l + k)ν(k) = h(0)

r (l) for all l > 0.

I Using Miermont’s criteria for admissibility & criticality: [Miermont,’06]

Proposition (TB,’15)

The relation qk = (ν(−2)/2)(k−2)/2ν(k − 2) determines a bijection

{admissible q} ↔
{

(ν, r) :
h

(0)
r is ν-harmonic on Z>0

and does not drift to ∞

}
.

{critical q} ↔
{

(ν, r) :
h

(0)
r is ν-harmonic on Z>0

and does not drift to ±∞

}
.

I Here h
(0)
r : Z→ R for r ∈ (−1, 1] is given by

h(0)
r (l) = [y−l−1]

1√
(y − 1)(y + r)

∼ l−1/2.
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Infinite Boltzmann planar maps (q-IBPM)
I Local topology: “Two rooted planar maps are close if they have

identical geodesic balls of large radius around the root; the larger the
radius, the closer they are.”

Theorem (Stephenson, ’14)

Let q be a critical weight sequence and mn be rooted and pointed
q-Boltzmann planar maps conditioned to have n vertices. Then there
exists a random infinite planar map m∞ (the q-IBPM) such that

mn
(d)−−→ m∞ in the local topology as n→∞ (along a subsequence of Z).

I The lazy peeling process extends naturally to the q-IBPM.

Theorem (TB, ’15)

The perimeter process (li )i≥0 of the q-IBPM is obtained from that of the
q-BPM by conditioning it to stay positive.

I In fact, (li )i≥0 is the Doob transform of (Xi )i≥0 w.r.t. h
(1)
r :

P(li+1 = l + k|li = l) =
h

(1)
r (l + k)

h
(1)
r (l)

ν(k).
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Properties of critical ν
I Linear map: ν(−k) =

∑∞
l=1Rr (k , l)ν(l) (k ≥ 1)

Rr (k , l) :=
∑l−1

p=0 h
(1)
r (m − p)

(
h

(−2)
r (k + p − 1) + r h

(−2)
r (k + p − 2)

)
.

I Since h
(1)
r (k) ∼

√
k as k →∞, need

∑∞
k=1 ν(k)

√
k <∞.

I Distinguish different cases:

I Heavy-tailed: ν(k) ∼ k−α−1, α ∈ [1/2, 3/2]. See also [Le Gall,

Miermont, ’11].
I Non-heavy-tailed: Lq :=

∑∞
k=1 h

(2)
r (k + 1)ν(k) <∞.

(h
(2)
r (k) ∼ k3/2) Asymptotics of Rr (k, l) gives

ν(−k) ∼ 3Lq

√
1 + r

4
√
π

k−5/2

I Regular critical:
∑∞

k=1 ν(k)C k <∞ for some C > 1.
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Scaling limit for regular critical q

I Tails and no drift imply (weak) convergence to
3/2-stable process with negative jumps Xbntc(√

1 + rLqn
) 2

3


t≥0

(d)−−−→
n→∞

S

+

3/2(t)

I Invariance principle: same holds when
conditioned.[Caravenna, Chaumont, ’08][Curien, Le Gall, ’14]

I Let (Vi )i≥0 be the number of explored vertices after i steps.

I Checking the details of the proof of Curien and Le Gall:

Theorem (TB ’15 based on Curien, Le Gall, ’14)
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First-passage time and hop count

I Assign random exp(1)-lengths to
dual edges.

I Associated peeling: choose peel
edge uniformly in frontier.

I Let (Ti )i≥0 be time at which the
i ’th peeling step occurs.

I Knowing (li )i≥0: Ti =
∑i

j=1
ej
lj−1

,

where ej are independent exp(1)
random variables.

I Let the hop count Hi be # of edges explored of a shortest-time path to
some faraway vertex after i steps.

Knowing (li )i≥0:

Hi =
∑i

j=1 bj , bj ∈ {0, 1}, P(bj = 1) =

{
0 if lj < lj−1
lj−lj−1+1

lj
if lj ≥ lj−1

.

I (li ,Ti ,Hi )i≥0 is a Markov process.

For regular critical q we have

E(Hi+1−Hi |li )=
∞∑
k=0

k +1

k +li

h
(1)
r (k +li )

h
(1)
r (li )

ν(k)

=

Hq ≈ limi→∞ Hi/Ti︷ ︸︸ ︷

∞∑
k=0

(k + 1)ν(k) E(Ti+1−Ti |li )+O(l−1
i )
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Dual graph distance
I Choose peel edge deterministically:

breadth first exploration.

I Let di be the average distance from
frontier to root face.

I Frontier of the form: N
(0)
i edges at

distance d followed by N
(1)
i edges at

distance d +1, where d = bdic.
I Write

di = bdic+ 1/2 + (N
(1)
i −N

(0)
i )/(2li )

I If N
(0)
i and N

(1)
i both large then

E(di+1−di |li ) =
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2li
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(k+1)ν(k)
]
+O(l−2

i )

=
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li

1 +Hq

2
+O(l−2

i )

I Using E(Ti+1 − Ti |li ) = 1/li , and assuming asymptotically linear
scaling, this suggests the asymptotic relation:

dgr∗ ≈ 1
2 (T + H) for any regular critical q-IBPM
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Graph distance

I Can adapt peeling process to graph
distance: take peel edge to be frontier
edge closest to root vertex.

I Precise scaling limits for UIPT and UIPQ
have been derived.[Curien, Le Gall, ’14]

I For general q the distances on the frontier
are not so simple. Another route towards
the scaling constants?

Theorem (Miermont, ’06)

If q is regular critical and mn is a q-BPM conditioned to have n vertices
and v1, v2 are random vertices, then there exists a Cq > 0 and a
q-independent random variable d∞ s.t.

dmn(v1, v2)

Cqn1/4

(d)−−−→
n→∞

d∞.
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Theorem (Miermont, ’06)

If q is regular critical and mn is a q-BPM conditioned to have n vertices
and v1, v2 are random vertices, then there exists a Cq > 0 and a
q-independent random variable d∞ s.t.

dmn(v1, v2)

Cqn1/4

(d)−−−→
n→∞

d∞.

I Miermont also outlined an algorithm to compute Cq.

With some

hard work one can show: Cq =
(

c2
+

96 (1 + r)3Lq

)1/4

I Combining with previous results and some (so far) heuristic
arguments:

Conjecture

Let v be a random vertex at distance dgr from the root in a regular
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4 (1 + r)Lq.

I Seems to be settled for the UIPT. [Curien, Le Gall, to appear]
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Example: Uniform infinite planar map (bivariate)
I Local limit of uniform random planar maps with fixed # vertices and

faces.

Both the primal and dual map are q-IBPM’s with q a
geometric sequence.

I Then necessarily ν(k) = ασk is a geometric sequence as well for
k ≥ −1.
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Example: Uniform infinite planar map (bivariate)
I Then necessarily ν(k) = ασk is a geometric sequence as well for

k ≥ −1.

I Now impose that h
(1)
r is ν-harmonic:

h(1)
r (1) =

∞∑
k=0

h(1)
r (k +1)ν(k)

=
α

(1− σ)3/2
√

1 + rσ

h(1)
r (2) =

∞∑
k=−1

h(1)
r (k +2)ν(k)

=
1

σ

α

(1− σ)3/2
√

1 + rσ

h(1)
r (3) =

∞∑
k=−2

h(1)
r (k +3)ν(k)

=
1− α
σ2

+ ν(−2)

I Can easily compute various constants:

Hq :=
∞∑
k=0

(k + 1)ν(k) =

√
3σ − 1

1− σ
, Lq :=

∞∑
k=1

h(2)
r (k +1)ν(k) =

σ

1− σ
,

dgr∗

dgr
→ 2

1 +Hq

(1 + r)Lq
=

2

Hq − 1
,

vertices

faces
=

(Hq + 3)(Hq − 1)

8Hq
.

I Notice UIPM is σ = 5
6 , Hq = 3, and duality:

Hq−1
2 ↔ 2

Hq−1 .
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More examples

r c+ Lq C4
q

Triangulations 2
√

3− 3
√

6 + 4
√

3 1
2

(
1 + 1√

3

)
1/3

Quadrangulations 1
√

8 4/3 8/9
Pentangulations 0.70878 . . . 2.6098 . . . 2.1704 . . . 0.7683 . . .

2p-angulations 1
√

4p
p−1

4
3 (p − 1) 4

9 p

Uniform planar maps 3/5 5/
√

3 5 16/9

Uniform planar maps (biv.) H2−3
H2+1

(H−1)3/2
√
H+3

2(H2+3)
1
2 (H2 + 1) (H+1)3

6(H+1)

vertices
faces H/T = Hq T/dgr dgr∗/dgr

Triangulations 1/2 1 + 1√
3

2
√

3 1 + 2
√

3

Quadrangulations 1 2 3/2 9/4
Pentangulations 3/2 2.3608 . . . 1.0785 . . . 1.8123 . . .

2p-angulations p − 1 2p−1

p(2p
p )

22p−1 3
2(p−1)

3
4

(
1

p−1 + 22p−2

p(2p−2
p )

)
Uniform planar maps 1 3 1/2 1

Uniform planar maps (biv.) (H+3)(H−1)2

8H H 4
H2−1

2
H−1



What’s next? / Open problems

I Can the scaling constant Cq associated to the graph distance be
derived from a peeling process?

I For q-IBPM’s we have conjectured a universal asymptotic relation
between the passage-time, hop count, and dual graph distance:
dgr∗ ≈ (H + T )/2. Does it hold more generally?

I On a 2d lattice the relative fluctuations of dgr∗ and T are conjecture
to be described by the Kardar–Parisi–Zhang universality class. Can
we start to say something about the situation on random graphs?

I Study the heavy-tailed case ν(k) ∼ k−α−1, α ∈ [ 1
2 ,

3
2 ].

I The q-BPM converges w.r.t. dgr to a stable map with Hausdorff
dimension 2α + 1. [Le Gall, Miermont, ’11] How about dgr∗ and T?

I The relation between the perimeter process and random walks
extends naturally to O(n) models: condition to stay positive is
replaced by certain reflecting boundary conditions. Consequences?

Thanks for your attention!
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to be described by the Kardar–Parisi–Zhang universality class. Can
we start to say something about the situation on random graphs?

I Study the heavy-tailed case ν(k) ∼ k−α−1, α ∈ [ 1
2 ,

3
2 ].

I The q-BPM converges w.r.t. dgr to a stable map with Hausdorff
dimension 2α + 1. [Le Gall, Miermont, ’11] How about dgr∗ and T?

I The relation between the perimeter process and random walks
extends naturally to O(n) models: condition to stay positive is
replaced by certain reflecting boundary conditions. Consequences?
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