20th Itzykson Conference, IPhT, Saclay, 12-06-2015

Peeling of infinite Boltzmann planar maps

Timothy Budd

Based on arXiv:1506.01590 and work in progress.
Niels Bohr Institute, University of Copenhagen budd@nbi.dk, http://www.nbi.dk/~budd/

Motivation 1: Wireless sensor networks

Motivation 1: Wireless sensor networks

Motivation 1：Wireless sensor networks

Motivation 1: Wireless sensor networks

Motivation 1: Wireless sensor networks

Motivation 2: Geometry of non-generic scaling limits

[Le Gall, Miermont, '11] [Borot, Bouttier, Guitter, '12]

Motivation 2: Geometry of non-generic scaling limits

[Le Gall, Miermont, '11] [Borot, Bouttier, Guitter, '12]

Motivation 2: Geometry of non-generic scaling limits

[Le Gall, Miermont, '11] [Borot, Bouttier, Guitter, '12]

Motivation 2: Geometry of non-generic scaling limits

[Le Gall, Miermont, '11] [Borot, Bouttier, Guitter, '12]

Outline

- Introduction
- q-Boltzmann planar maps
- Lazy peeling process
- Perimeter and volume processes
- Description in terms of biased random walks
- Infinite q-Boltzmann planar maps
- Scaling limit
- Scaling constants from peeling:
- First-passage time
- Hop count
- Dual graph distance
- Miermont's scaling constant for the graph distance
- Example: uniform infinite planar map.
- Outlook

Short history of peeling

- Peeling process of random surfaces introduced in [Watabiki, '95] to study their geometry.

Short history of peeling

- Peeling process of random surfaces introduced in [Watabiki,'95] to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].

Short history of peeling

- Peeling process of random surfaces introduced in [Watabiki,'95] to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].
- Remark: Their 2-point function is not just an approximation, it is exactly the "first-passage time 2-point function" [Ambjørn,TB,'14].

Short history of peeling

- Peeling process of random surfaces introduced in [Watabiki,'95] to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].
- Remark: Their 2-point function is not just an approximation, it is exactly the "first-passage time 2-point function" [Ambjørn,TB,'14].
- Peeling was formalized in the setting of infinite triangulations (UIPT) in [Angel, '03].

Short history of peeling

- Peeling process of random surfaces introduced in [Watabiki, ${ }^{25]}$ to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].
- Remark: Their 2-point function is not just an approximation, it is exactly the "first-passage time 2-point function" [Ambjørn,TB,'14].
- Peeling was formalized in the setting of infinite triangulations (UIPT) in [Angel, '03].
- Important tool to study properties of the UIPT and UIPQ: distances, percolation, random walks [Angel, '03'][Angel, Curien, '13] [Benjamini, Curien '13]...

Short history of peeling

- Peeling process of random surfaces introduced in [Watabiki, ${ }^{25]}$ to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].
- Remark: Their 2-point function is not just an approximation, it is exactly the "first-passage time 2-point function" [Ambjørn,TB,'14].
- Peeling was formalized in the setting of infinite triangulations (UIPT) in [Angel, '03].
- Important tool to study properties of the UIPT and UIPQ: distances, percolation, random walks [Angel,'03'][Angel, Curien, '13] [Benjamini, Curien '13]...

- Precise scaling limits have been obtained for the perimeter and volume of the explored region in the UIPT and UIPQ [Curien, Le Gall, '14]

Short history of peeling

- Peeling process of random surfaces introduced in [Watabiki, ${ }^{25}$] to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].
- Remark: Their 2-point function is not just an approximation, it is exactly the "first-passage time 2-point function" [Ambjørn,TB,'14].
- Peeling was formalized in the setting of infinite triangulations (UIPT) in [Angel, '03].
- Important tool to study properties of the UIPT and UIPQ: distances, percolation, random walks [Angel,'03'][Angel, Curien, '13] [Benjamini, Curien '13]...

- Precise scaling limits have been obtained for the perimeter and volume of the explored region in the UIPT and UIPQ [Curien, Le Gall, '14] This talk: extend their results to \mathbf{q}-IBPM.

Boltzmann planar maps

- Rooted planar map with faces of arbitrary degrees.

Boltzmann planar maps

- Rooted planar map with faces of arbitrary degrees.
- Let $\mathbf{q}=\left(q_{k}\right)_{k=1}^{\infty}$ be a weight sequence of non-negative reals, such that $q_{k}>0$ for at least one $k \geq 3$.

Boltzmann planar maps

- Rooted planar map with faces of arbitrary degrees.
- Let $\mathbf{q}=\left(q_{k}\right)_{k=1}^{\infty}$ be a weight sequence of non-negative reals, such that $q_{k}>0$ for at least one $k \geq 3$.
- Define the disk function

$$
\begin{equation*}
W^{(I)}=W^{(I)}(\mathbf{q}):=\sum_{m \in \mathcal{M}^{(l)} \text { non-root faces } f} q_{\operatorname{deg}(f)}, \tag{1}
\end{equation*}
$$

over rooted planar maps m with root face degree I

Boltzmann planar maps

- Rooted planar map with faces of arbitrary degrees.
- Let $\mathbf{q}=\left(q_{k}\right)_{k=1}^{\infty}$ be a weight sequence of non-negative reals, such that $q_{k}>0$ for at least one $k \geq 3$.
- Define the pointed disk function

$$
\begin{equation*}
W_{\bullet}^{(I)}=W_{\bullet}^{(I)}(\mathbf{q}):=\sum_{m \in \mathcal{M}_{!}^{(l)}} \prod_{\text {non-root faces } f} q_{\operatorname{deg}(f)}, \tag{1}
\end{equation*}
$$

over rooted planar maps m with root face degree I and a marked vertex.

Boltzmann planar maps

- Rooted planar map with faces of arbitrary degrees.
- Let $\mathbf{q}=\left(q_{k}\right)_{k=1}^{\infty}$ be a weight sequence of non-negative reals, such that $q_{k}>0$ for at least one $k \geq 3$.
- Define the pointed disk function

$$
W_{\bullet}^{(I)}=W_{\bullet}^{(I)}(\mathbf{q}):=\sum_{m \in \mathcal{M}_{!}^{(I)} \text { non-root faces } f} q_{\operatorname{deg}(f)}
$$

over rooted planar maps m with root face degree / and a marked vertex.

- Call \mathbf{q} admissible if $W_{\bullet}^{(I)}<\infty$. Then the summands determine a probability measure, which we call the \mathbf{q}-BPM. [Miermont, '06]

Boltzmann planar maps

- Rooted planar map with faces of arbitrary degrees.
- Let $\mathbf{q}=\left(q_{k}\right)_{k=1}^{\infty}$ be a weight sequence of non-negative reals, such that $q_{k}>0$ for at least one $k \geq 3$.
- Define the pointed disk function

$$
\begin{equation*}
W_{\bullet}^{(I)}=W_{\bullet}^{(I)}(\mathbf{q}):=\sum \prod_{\operatorname{deg}(f)}, \tag{1}
\end{equation*}
$$

over rooted planar maps m with root face degree $/$ and a marked vertex.

- Call \mathbf{q} admissible if $W_{\bullet}^{(I)}<\infty$. Then the summands determine a probability measure, which we call the \mathbf{q}-BPM. [Miermont, '06]
- If \mathbf{q} admissible there exist $c_{ \pm} \in \mathbb{R}$ such that for $z>c_{+}>c_{-}$,

$$
W_{\bullet}(z):=\sum_{l=0}^{\infty} W_{\bullet}^{(I)} z^{-l-1}=\frac{1}{\sqrt{\left(z-c_{+}\right)\left(z-c_{-}\right)}}
$$

Boltzmann planar maps

- Rooted planar map with faces of arbitrary degrees.
- Let $\mathbf{q}=\left(q_{k}\right)_{k=1}^{\infty}$ be a weight sequence of non-negative reals, such that $q_{k}>0$ for at least one $k \geq 3$.
- Define the pointed disk function

$$
\begin{equation*}
W_{\bullet}^{(I)}=W_{\bullet}^{(I)}(\mathbf{q}):=\sum_{m \in \mathcal{M}_{\bullet}^{(l)} \text { non-root faces } f} q_{\operatorname{deg}(f)}, \tag{1}
\end{equation*}
$$

over rooted planar maps m with root face degree / and a marked vertex.

- Call \mathbf{q} admissible if $W_{\bullet}^{(I)}<\infty$. Then the summands determine a probability measure, which we call the \mathbf{q}-BPM. [Miermont, '06]
- If \mathbf{q} admissible there exist $c_{ \pm} \in \mathbb{R}$ such that for $z>c_{+}>c_{-}$,

$$
W_{\bullet}(z):=\sum_{l=0}^{\infty} W_{\bullet}^{(l)} z^{-l-1}=\frac{1}{\sqrt{\left(z-c_{+}\right)\left(z-c_{-}\right)}}
$$

- Notice universality: $W_{\bullet}^{(I)}$ depends only on $c_{ \pm}(\mathbf{q})$. Typically only ratio is important $r:=-c_{-} / c_{+}$.

Boltzmann planar maps

- Rooted planar map with faces of arbitrary degrees.
- Let $\mathbf{q}=\left(q_{k}\right)_{k=1}^{\infty}$ be a weight sequence of non-negative reals, such that $q_{k}>0$ for at least one $k \geq 3$.
- Define the pointed disk function

$$
\begin{equation*}
W_{\bullet}^{(I)}=W_{\bullet}^{(I)}(\mathbf{q}):=\sum_{m \in \mathcal{M}_{\bullet}^{(l)} \text { non-root faces } f} q_{\operatorname{deg}(f)}, \tag{1}
\end{equation*}
$$

over rooted planar maps m with root face degree $/$ and a marked vertex.

- Call \mathbf{q} admissible if $W_{\bullet}^{(I)}<\infty$. Then the summands determine a probability measure, which we call the \mathbf{q}-BPM. [Miermont, '06]
- If \mathbf{q} admissible there exist $c_{ \pm} \in \mathbb{R}$ such that for $z>c_{+}>c_{-}$,

$$
W_{\bullet}(z):=\sum_{l=0}^{\infty} W_{\bullet}^{(l)} z^{-l-1}=\frac{1}{\sqrt{\left(z-c_{+}\right)\left(z-c_{-}\right)}}
$$

- Notice universality: $W_{\bullet}^{(I)}$ depends only on $c_{ \pm}(\mathbf{q})$. Typically only ratio is important $r:=-c_{-} / c_{+}$.
- If $q_{k}=0$ for all odd k, then the $\mathbf{q - B P M}$ is bipartite and $r=1$. Otherwise q non-bipartite and $|r|<1$.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.
- After finite number of steps the unexplored region contains only the marked vertex.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.
- After finite number of steps the unexplored region contains only the marked vertex.
- For a q-BPM, what is the law of the perimeter $\left(I_{i}\right)_{i \geq 0}$, i.e. the length of the frontier after i steps?

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.
- After finite number of steps the unexplored region contains only the marked vertex.
- For a q-BPM, what is the law of the perimeter $\left(I_{i}\right)_{i \geq 0}$, i.e. the length of the
 frontier after i steps?
- It is a Markov process: given the explored map after ith step, the unexplored map only depends on I_{i}.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.
- After finite number of steps the unexplored region contains only the marked vertex.
- For a q-BPM, what is the law of the perimeter $\left(I_{i}\right)_{i \geq 0}$, i.e. the length of the frontier after i steps?
- It is a Markov process: given the explored map after ith step, the unexplored map only depends on I_{i}.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.
- After finite number of steps the unexplored region contains only the marked vertex.
- For a q-BPM, what is the law of the perimeter $\left(I_{i}\right)_{i \geq 0}$, i.e. the length of the frontier after i steps?
- It is a Markov process: given the explored map after ith step, the unexplored map only depends on I_{i}.

Lazy peeling of a pointed planar map

- Start with a planar map with a distinguished outer face and a marked vertex.
- A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.
- After finite number of steps the unexplored region contains only the marked vertex.
- For a q-BPM, what is the law of the perimeter $\left(I_{i}\right)_{i \geq 0}$, i.e. the length of the frontier after i steps?
- It is a Markov process: given the explored map after ith step, the unexplored map only depends on I_{i}.
- $\left(I_{i}\right)_{i \geq 0}$ independent of peel algorithm.

The perimeter process

- Loop equations: $W_{\bullet}^{(I)}=\sum_{k=0}^{\infty} q_{k} W_{\bullet}^{(I+k-2)}+2 \sum_{p=0}^{I-2} W^{(p)} W_{\bullet}^{(I-p-2)}$

The perimeter process

- Loop equations: $W_{\bullet}^{(I)}=\sum_{k=0}^{\infty} q_{k} W_{\bullet}^{(I+k-2)}+2 \sum_{p=0}^{I-2} W^{(p)} W_{\bullet}^{(I-p-2)}$

- Read off: $\mathbb{P}\left(l_{i+1}=I+k \mid l_{i}=I\right)=\frac{w_{0}^{(1+k)}}{w_{\bullet}^{(I)}} \times \begin{cases}q_{k+2} & k \geq-1 \\ 2 W^{(-k-2)} & k \leq-2\end{cases}$

The perimeter process

Loop equations: $W_{\bullet}^{(I)}=\sum_{k=0}^{\infty} q_{k} W_{\bullet}^{(I+k-2)}+2 \sum_{p=0}^{I-2} W^{(p)} W_{\bullet}^{(I-p-2)}$

- Read off: $\mathbb{P}\left(l_{i+1}=I+k \mid l_{i}=I\right)=\frac{w_{\bullet}^{(I+k)}}{w_{\bullet}^{(I)}} \times \begin{cases}q_{k+2} & k \geq-1 \\ 2 W^{(-k-2)} & k \leq-2\end{cases}$
- In the limit $I \rightarrow \infty$ this defines a random walk $\left(X_{i}\right)_{i \geq 0}$ with step probabilities

$$
\nu(k):=\lim _{I \rightarrow \infty} \mathbb{P}\left(l_{i+1}=I+k \mid l_{i}=I\right)= \begin{cases}q_{k+2} c_{+}^{k} & k \geq-1 \\ 2 W^{(-k-2)} c_{+}^{k} & k \leq-2\end{cases}
$$

The perimeter process

- Loop equations: $W_{\bullet}^{(I)}=\sum_{k=0}^{\infty} q_{k} W_{\bullet}^{(I+k-2)}+2 \sum_{p=0}^{I-2} W^{(p)} W_{\bullet}^{(I-p-2)}$

- Read off: $\mathbb{P}\left(l_{i+1}=I+k \mid l_{i}=I\right)=\frac{w_{\bullet}^{(I+k)}}{w_{\bullet}^{(I)}} \times \begin{cases}q_{k+2} & k \geq-1 \\ 2 W^{(-k-2)} & k \leq-2\end{cases}$
- In the limit $I \rightarrow \infty$ this defines a random walk $\left(X_{i}\right)_{i \geq 0}$ with step probabilities

$$
\nu(k):=\lim _{I \rightarrow \infty} \mathbb{P}\left(l_{i+1}=I+k \mid l_{i}=I\right)= \begin{cases}q_{k+2} c_{+}^{k} & k \geq-1 \\ 2 W^{(-k-2)} c_{+}^{k} & k \leq-2\end{cases}
$$

- $\left(I_{i}\right)_{i}$ is obtained from $\left(X_{i}\right)_{i}$ by conditioning to hit 0 before hitting $\mathbb{Z}_{<0}$. Analogous to [Curien, Le Gall, '14]

The perimeter process

- Loop equations: $W_{\bullet}^{(I)}=\sum_{k=0}^{\infty} q_{k} W_{\bullet}^{(I+k-2)}+2 \sum_{p=0}^{I-2} W^{(p)} W_{\bullet}^{(I-p-2)}$

- Read off: $\mathbb{P}\left(l_{i+1}=I+k \mid l_{i}=I\right)=\frac{h_{r}^{(0)}(I+k)}{h_{r}^{(0)}(I)} \nu(k)$
- In the limit $I \rightarrow \infty$ this defines a random walk $\left(X_{i}\right)_{i \geq 0}$ with step probabilities

$$
\nu(k):=\lim _{I \rightarrow \infty} \mathbb{P}\left(l_{i+1}=I+k \mid l_{i}=I\right)= \begin{cases}q_{k+2} c_{+}^{k} & k \geq-1 \\ 2 W^{(-k-2)} c_{+}^{k} & k \leq-2\end{cases}
$$

- $\left(I_{i}\right)_{i}$ is obtained from $\left(X_{i}\right)_{i}$ by conditioning to hit 0 before hitting $\mathbb{Z}_{<0}$. Analogous to [Curien, Le Gall, '14]
- Known as a Doob transform w.r.t.

$$
h_{r}^{(0)}:=W_{\bullet}^{(I)} c_{+}^{-1}
$$

- What properties does ν satisfy (when \mathbf{q} admissible)?
- What properties does ν satisfy (when \mathbf{q} admissible)?
- Does not drift to $\infty: \mathbb{P}\left(X_{k}>0\right.$ for all $\left.k\right)=0$.
- What properties does ν satisfy (when \mathbf{q} admissible)?
- Does not drift to $\infty: \mathbb{P}\left(X_{k}>0\right.$ for all $\left.k\right)=0$.
- $h_{r}^{(0)}$ is ν-harmonic on $\mathbb{Z}_{>0}$:

$$
\sum_{k=-\infty}^{\infty} h_{r}^{(0)}(I+k) \nu(k)=h_{r}^{(0)}(I) \quad \text { for all } I>0
$$

- Here $h_{r}^{(0)}: \mathbb{Z} \rightarrow \mathbb{R}$ for $r \in(-1,1]$ is given by

$$
h_{r}^{(0)}(I)=\left[y^{-I-1}\right] \frac{1}{\sqrt{(y-1)(y+r)}} \quad \sim I^{-1 / 2} .
$$

- What properties does ν satisfy (when \mathbf{q} admissible)?
- Does not drift to $\infty: \mathbb{P}\left(X_{k}>0\right.$ for all $\left.k\right)=0$.
- $h_{r}^{(0)}$ is ν-harmonic on $\mathbb{Z}_{>0}$:

$$
\sum_{k=-\infty}^{\infty} h_{r}^{(0)}(I+k) \nu(k)=h_{r}^{(0)}(I) \quad \text { for all } I>0
$$

- Using Miermont's criteria for admissibility \& criticality: [Miermont,'06]

Proposition (TB,'15)

The relation $q_{k}=(\nu(-2) / 2)^{(k-2) / 2} \nu(k-2)$ determines a bijection $\{$ admissible $\mathbf{q}\} \leftrightarrow\left\{(\nu, r)\right.$: $\left.\begin{array}{l}h_{r}^{(0)} \text { is } \nu \text {-harmonic on } \mathbb{Z}_{>0} \\ \text { and does not drift to } \infty\end{array}\right\}$.

- Here $h_{r}^{(0)}: \mathbb{Z} \rightarrow \mathbb{R}$ for $r \in(-1,1]$ is given by

$$
h_{r}^{(0)}(I)=\left[y^{-I-1}\right] \frac{1}{\sqrt{(y-1)(y+r)}} \quad \sim I^{-1 / 2} .
$$

- What properties does ν satisfy (when \mathbf{q} admissible)?
- Does not drift to $\infty: \mathbb{P}\left(X_{k}>0\right.$ for all $\left.k\right)=0$.
- $h_{r}^{(0)}$ is ν-harmonic on $\mathbb{Z}_{>0}$:

$$
\sum_{k=-\infty}^{\infty} h_{r}^{(0)}(I+k) \nu(k)=h_{r}^{(0)}(I) \quad \text { for all } I>0
$$

- Using Miermont's criteria for admissibility \& criticality: [Miermont,'06]

Proposition (TB,'15)

The relation $q_{k}=(\nu(-2) / 2)^{(k-2) / 2} \nu(k-2)$ determines a bijection

$$
\begin{aligned}
\{\text { admissible } \mathbf{q}\} & \leftrightarrow\left\{(\nu, r): \begin{array}{l}
h_{r}^{(0)} \text { is } \nu \text {-harmonic on } \mathbb{Z}_{>0} \\
\text { and does not drift to } \infty
\end{array}\right\} \\
\{\text { critical } \mathbf{q}\} & \leftrightarrow\left\{(\nu, r): \begin{array}{l}
h_{r}^{(0)} \text { is } \nu \text {-harmonic on } \mathbb{Z}_{>0} \\
\text { and does not drift to } \pm \infty
\end{array}\right\}
\end{aligned}
$$

- Here $h_{r}^{(0)}: \mathbb{Z} \rightarrow \mathbb{R}$ for $r \in(-1,1]$ is given by

$$
h_{r}^{(0)}(I)=\left[y^{-I-1}\right] \frac{1}{\sqrt{(y-1)(y+r)}} \quad \sim I^{-1 / 2}
$$

- What properties does ν satisfy (when \mathbf{q} admissible)?
- Does not drift to $\infty: \mathbb{P}\left(X_{k}>0\right.$ for all $\left.k\right)=0$.
- $h_{r}^{(0)}$ is ν-harmonic on $\mathbb{Z}_{>0}$:

$$
\sum_{k=-\infty}^{\infty} h_{r}^{(0)}(I+k) \nu(k)=h_{r}^{(0)}(I) \quad \text { for all } I>0 .
$$

- Using Miermont's criteria for admissibility \& criticality: [Miermont,'06]

Proposition (TB,'15)

The relation $q_{k}=(\nu(-2) / 2)^{(k-2) / 2} \nu(k-2)$ determines a bijection

$$
\begin{aligned}
&\{\text { admissible } \mathbf{q}\} \leftrightarrow\{(\nu, r): \\
&\left\{\begin{array}{l}
h_{r}^{(0)} \text { is } \nu \text {-harmonic on } \mathbb{Z}_{>0} \\
\text { and } \sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k) \leq 1
\end{array}\right\} . \\
&\{\text { critical } \mathbf{q}\} \leftrightarrow\left\{(\nu, r): \begin{array}{l}
h_{r}^{(0)} \text { is } \nu \text {-harmonic on } \mathbb{Z}_{>0} \\
\text { and } \sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=1
\end{array}\right\} .
\end{aligned}
$$

- Here $h_{r}^{(k)}: \mathbb{Z} \rightarrow \mathbb{R}$ for $r \in(-1,1]$ is given by

$$
h_{r}^{(k)}(I)=\left[y^{-I-1}\right] \frac{1}{(y-1)^{k+1 / 2} \sqrt{y+r}} \quad \sim I^{k-1 / 2}
$$

- What properties does ν satisfy (when \mathbf{q} admissible)?
- Does not drift to $\infty: \mathbb{P}\left(X_{k}>0\right.$ for all $\left.k\right)=0$.
- $h_{r}^{(0)}$ is ν-harmonic on $\mathbb{Z}_{>0}$:

$$
\sum_{k=-\infty}^{\infty} h_{r}^{(0)}(I+k) \nu(k)=h_{r}^{(0)}(I) \quad \text { for all } I>0
$$

- Using Miermont's criteria for admissibility \& criticality: [Miermont,'06]

Proposition (TB,'15)

The relation $q_{k}=(\nu(-2) / 2)^{(k-2) / 2} \nu(k-2)$ determines a bijection

$$
\begin{aligned}
\{\text { admissible } \mathbf{q}\} & \leftrightarrow\left\{(\nu, r): \begin{array}{l}
h_{r}^{(0)} \text { is } \nu \text {-harmonic on } \mathbb{Z}_{>0} \\
\text { and } \sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k) \leq 1
\end{array}\right\} . \\
\{\text { critical } \mathbf{q}\} & \leftrightarrow\left\{(\nu, r): h_{r}^{(1)} \text { is } \nu \text {-harmonic on } \mathbb{Z}_{>0}\right\} .
\end{aligned}
$$

- Here $h_{r}^{(k)}: \mathbb{Z} \rightarrow \mathbb{R}$ for $r \in(-1,1]$ is given by

$$
h_{r}^{(k)}(I)=\left[y^{-I-1}\right] \frac{1}{(y-1)^{k+1 / 2} \sqrt{y+r}} \quad \sim I^{k-1 / 2}
$$

Infinite Boltzmann planar maps (q-IBPM)

- Local topology: "Two rooted planar maps are close if they have identical geodesic balls of large radius around the root; the larger the radius, the closer they are."

Infinite Boltzmann planar maps (q-IBPM)

- Local topology: "Two rooted planar maps are close if they have identical geodesic balls of large radius around the root; the larger the radius, the closer they are."

Theorem (Stephenson, '14)

Let \mathbf{q} be a critical weight sequence and m_{n} be rooted and pointed \mathbf{q}-Boltzmann planar maps conditioned to have n vertices. Then there exists a random infinite planar map m_{∞} (the q-IBPM) such that $m_{n} \xrightarrow{(d)} m_{\infty}$ in the local topology as $n \rightarrow \infty$ (along a subsequence of \mathbb{Z}).

Infinite Boltzmann planar maps (q-IBPM)

- Local topology: "Two rooted planar maps are close if they have identical geodesic balls of large radius around the root; the larger the radius, the closer they are."

Theorem (Stephenson, '14)

Let \mathbf{q} be a critical weight sequence and m_{n} be rooted and pointed \mathbf{q}-Boltzmann planar maps conditioned to have n vertices. Then there exists a random infinite planar map m_{∞} (the \mathbf{q}-IBPM) such that $m_{n} \xrightarrow{(d)} m_{\infty}$ in the local topology as $n \rightarrow \infty$ (along a subsequence of \mathbb{Z}).

- The lazy peeling process extends naturally to the $\mathbf{q - I B P M}$.

Infinite Boltzmann planar maps (q-IBPM)

- Local topology: "Two rooted planar maps are close if they have identical geodesic balls of large radius around the root; the larger the radius, the closer they are."

Theorem (Stephenson, '14)

Let \mathbf{q} be a critical weight sequence and m_{n} be rooted and pointed \mathbf{q}-Boltzmann planar maps conditioned to have n vertices. Then there exists a random infinite planar map m_{∞} (the \mathbf{q}-IBPM) such that $m_{n} \xrightarrow{(d)} m_{\infty}$ in the local topology as $n \rightarrow \infty$ (along a subsequence of \mathbb{Z}).

- The lazy peeling process extends naturally to the \mathbf{q}-IBPM.

Theorem (TB, '15)

The perimeter process $\left(l_{i}\right)_{i \geq 0}$ of the $\mathbf{q}-I B P M$ is obtained from that of the $\mathbf{q}-B P M$ by conditioning it to stay positive.

Infinite Boltzmann planar maps (q-IBPM)

- Local topology: "Two rooted planar maps are close if they have identical geodesic balls of large radius around the root; the larger the radius, the closer they are."

Theorem (Stephenson, '14)

Let \mathbf{q} be a critical weight sequence and m_{n} be rooted and pointed \mathbf{q}-Boltzmann planar maps conditioned to have n vertices. Then there exists a random infinite planar map m_{∞} (the \mathbf{q}-IBPM) such that $m_{n} \xrightarrow{(d)} m_{\infty}$ in the local topology as $n \rightarrow \infty$ (along a subsequence of \mathbb{Z}).

- The lazy peeling process extends naturally to the \mathbf{q}-IBPM.

Theorem (TB, '15)

The perimeter process $\left(l_{i}\right)_{i>0}$ of the $\mathbf{q}-I B P M$ is obtained from that of the $\mathbf{q}-B P M$ by conditioning it to stay positive.

- In fact, $\left(I_{i}\right)_{i \geq 0}$ is the Doob transform of $\left(X_{i}\right)_{i \geq 0}$ w.r.t. $h_{r}^{(1)}$:

$$
\mathbb{P}\left(l_{i+1}=I+k \mid I_{i}=I\right)=\frac{h_{r}^{(1)}(I+k)}{h_{r}^{(1)}(I)} \nu(k) .
$$

Properties of critical ν

- Linear map: $\nu(-k)=\sum_{l=1}^{\infty} \mathcal{R}_{r}(k, l) \nu(l) \quad(k \geq 1)$

$$
\mathcal{R}_{r}(k, l):=\sum_{p=0}^{l-1} h_{r}^{(1)}(m-p)\left(h_{r}^{(-2)}(k+p-1)+r h_{r}^{(-2)}(k+p-2)\right) .
$$

Properties of critical ν

- Linear map: $\nu(-k)=\sum_{l=1}^{\infty} \mathcal{R}_{r}(k, l) \nu(l) \quad(k \geq 1)$

$$
\mathcal{R}_{r}(k, l):=\sum_{p=0}^{l-1} h_{r}^{(1)}(m-p)\left(h_{r}^{(-2)}(k+p-1)+r h_{r}^{(-2)}(k+p-2)\right) .
$$

Properties of critical ν

- Linear map: $\nu(-k)=\sum_{l=1}^{\infty} \mathcal{R}_{r}(k, l) \nu(l) \quad(k \geq 1)$

$$
\mathcal{R}_{r}(k, l):=\sum_{p=0}^{l-1} h_{r}^{(1)}(m-p)\left(h_{r}^{(-2)}(k+p-1)+r h_{r}^{(-2)}(k+p-2)\right) .
$$

- Since $h_{r}^{(1)}(k) \sim \sqrt{k}$ as $k \rightarrow \infty$, need $\sum_{k=1}^{\infty} \nu(k) \sqrt{k}<\infty$.

Properties of critical ν

- Linear map: $\nu(-k)=\sum_{l=1}^{\infty} \mathcal{R}_{r}(k, l) \nu(I) \quad(k \geq 1)$

$$
\mathcal{R}_{r}(k, l):=\sum_{p=0}^{l-1} h_{r}^{(1)}(m-p)\left(h_{r}^{(-2)}(k+p-1)+r h_{r}^{(-2)}(k+p-2)\right) .
$$

- Since $h_{r}^{(1)}(k) \sim \sqrt{k}$ as $k \rightarrow \infty$, need $\sum_{k=1}^{\infty} \nu(k) \sqrt{k}<\infty$.
- Distinguish different cases:

Properties of critical ν

- Linear map: $\nu(-k)=\sum_{l=1}^{\infty} \mathcal{R}_{r}(k, l) \nu(I) \quad(k \geq 1)$

$$
\mathcal{R}_{r}(k, l):=\sum_{p=0}^{l-1} h_{r}^{(1)}(m-p)\left(h_{r}^{(-2)}(k+p-1)+r h_{r}^{(-2)}(k+p-2)\right) .
$$

- Since $h_{r}^{(1)}(k) \sim \sqrt{k}$ as $k \rightarrow \infty$, need $\sum_{k=1}^{\infty} \nu(k) \sqrt{k}<\infty$.
- Distinguish different cases:
- Heavy-tailed: $\nu(k) \sim k^{-\alpha-1}, \alpha \in[1 / 2,3 / 2]$. See also [Le Gall, Miermont, '11].

Properties of critical ν

- Linear map: $\nu(-k)=\sum_{l=1}^{\infty} \mathcal{R}_{r}(k, l) \nu(I) \quad(k \geq 1)$ $\mathcal{R}_{r}(k, l):=\sum_{p=0}^{l-1} h_{r}^{(1)}(m-p)\left(h_{r}^{(-2)}(k+p-1)+r h_{r}^{(-2)}(k+p-2)\right)$.
- Since $h_{r}^{(1)}(k) \sim \sqrt{k}$ as $k \rightarrow \infty$, need $\sum_{k=1}^{\infty} \nu(k) \sqrt{k}<\infty$.
- Distinguish different cases:
- Heavy-tailed: $\nu(k) \sim k^{-\alpha-1}, \alpha \in[1 / 2,3 / 2]$. See also [Le Gall, Miermont, '11].
- Non-heavy-tailed: $\mathcal{L}_{\mathbf{q}}:=\sum_{k=1}^{\infty} h_{r}^{(2)}(k+1) \nu(k)<\infty$. $\left(h_{r}^{(2)}(k) \sim k^{3 / 2}\right) \quad$ Asymptotics of $\mathcal{R}_{r}(k, l)$ gives

$$
\nu(-k) \sim \frac{3 \mathcal{L}_{\mathbf{q}} \sqrt{1+r}}{4 \sqrt{\pi}} k^{-5 / 2}
$$

Properties of critical ν

- Linear map: $\nu(-k)=\sum_{l=1}^{\infty} \mathcal{R}_{r}(k, l) \nu(l) \quad(k \geq 1)$ $\mathcal{R}_{r}(k, l):=\sum_{p=0}^{l-1} h_{r}^{(1)}(m-p)\left(h_{r}^{(-2)}(k+p-1)+r h_{r}^{(-2)}(k+p-2)\right)$.
- Since $h_{r}^{(1)}(k) \sim \sqrt{k}$ as $k \rightarrow \infty$, need $\sum_{k=1}^{\infty} \nu(k) \sqrt{k}<\infty$.
- Distinguish different cases:
- Heavy-tailed: $\nu(k) \sim k^{-\alpha-1}, \alpha \in[1 / 2,3 / 2]$. See also [Le Gall, Miermont, '11].
- Non-heavy-tailed: $\mathcal{L}_{\mathbf{q}}:=\sum_{k=1}^{\infty} h_{r}^{(2)}(k+1) \nu(k)<\infty$. $\left(h_{r}^{(2)}(k) \sim k^{3 / 2}\right) \quad$ Asymptotics of $\mathcal{R}_{r}(k, l)$ gives

$$
\nu(-k) \sim \frac{3 \mathcal{L}_{\mathbf{q}} \sqrt{1+r}}{4 \sqrt{\pi}} k^{-5 / 2}
$$

- Regular critical: $\sum_{k=1}^{\infty} \nu(k) C^{k}<\infty$ for some $C>1$.

Scaling limit for regular critical \mathbf{q}

- Tails and no drift imply (weak) convergence to 3/2-stable process with negative jumps

$$
\left(\frac{X_{\lfloor n t\rfloor}}{\left(\sqrt{1+r} \mathcal{L}_{\mathbf{q}} n\right)^{\frac{2}{3}}}\right)_{t \geq 0} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} S_{3 / 2}(t)
$$

Scaling limit for regular critical \mathbf{q}

- Tails and no drift imply (weak) convergence to 3/2-stable process with negative jumps

$$
\left(\frac{l_{\lfloor n t\rfloor}}{\left(\sqrt{1+r} \mathcal{L}_{\mathbf{q}} n\right)^{\frac{2}{3}}}\right)_{t \geq 0} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} S_{3 / 2}^{+}(t)
$$

- Invariance principle: same holds when conditioned.[Caravenna, Chaumont, '08][Curien, Le Gall, '14]

Scaling limit for regular critical \mathbf{q}

- Tails and no drift imply (weak) convergence to 3/2-stable process with negative jumps

$$
\left(\frac{l_{\lfloor n t\rfloor}}{\left(\sqrt{1+r} \mathcal{L}_{\mathbf{q}} n\right)^{\frac{2}{3}}}\right) \underset{t \geq 0}{\stackrel{(\mathrm{~d})}{\longrightarrow \rightarrow \infty}} S_{3 / 2}^{+}(t)
$$

- Invariance principle: same holds when conditioned.[Caravenna, Chaumont, '08][Curien, Le Gall, '14]

- Let $\left(V_{i}\right)_{i \geq 0}$ be the number of explored vertices after i steps.

Scaling limit for regular critical \mathbf{q}

- Tails and no drift imply (weak) convergence to 3/2-stable process with negative jumps

$$
\left(\frac{l_{\lfloor n t\rfloor}}{\left(\sqrt{1+r} \mathcal{L}_{\mathbf{q}} n\right)^{\frac{2}{3}}}\right)_{t \geq 0} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} S_{3 / 2}^{+}(t)
$$

- Invariance principle: same holds when conditioned.[Caravenna, Chaumont, '08][Curien, Le Gall, '14]

- Let $\left(V_{i}\right)_{i \geq 0}$ be the number of explored vertices after i steps.
- Checking the details of the proof of Curien and Le Gall:

Theorem (TB '15 based on Curien, Le Gall, '14)

The perimeter $\left(I_{i}\right)_{i \geq 0}$ and volume $\left(V_{i}\right)_{i \geq 0}$ of a peeling of a regular critical \mathbf{q}-IBPM converge jointly in distribution in the sense of Skorokhod to

$$
\left(\frac{l_{\lfloor n t\rfloor}}{\mathbf{p}_{\mathbf{q}}^{\ell} n^{2 / 3}}, \frac{V_{\lfloor n t\rfloor}}{\mathbf{v}_{\mathbf{q}}^{\ell} n^{4 / 3}}\right)_{t \geq 0} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})}\left(S_{3 / 2}^{+}(t), Z(t)\right)_{t \geq 0} \quad \begin{array}{ll}
\mathbf{p}_{\mathbf{q}}^{\ell}=\left(\sqrt{1+r} \mathcal{L}_{\mathbf{q}}\right)^{2 / 3} \\
\mathbf{v}_{\mathbf{q}}^{\ell}=\frac{8}{3 c_{+}^{2}}\left(\frac{\mathcal{L}_{\mathbf{q}}}{1+r}\right)^{1 / 3}
\end{array}
$$

First-passage time and hop count

First-passage time and hop count

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let $\left(T_{i}\right)_{i \geq 0}$ be time at which the i 'th peeling step occurs.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let $\left(T_{i}\right)_{i \geq 0}$ be time at which the i 'th peeling step occurs.
- Knowing $\left(l_{i}\right)_{i \geq 0}: T_{i}=\sum_{j=1}^{i} \frac{\varepsilon_{j}}{l_{j-1}}$, where \mathfrak{e}_{j} are independent $\exp (1)$ random variables.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let $\left(T_{i}\right)_{i \geq 0}$ be time at which the i 'th peeling step occurs.
- Knowing $\left(l_{i}\right)_{i \geq 0}: T_{i}=\sum_{j=1}^{i} \frac{\varepsilon_{j}}{l_{j-1}}$, where \mathfrak{e}_{j} are independent $\exp (1)$ random variables.

- Let the hop count H_{i} be \# of edges explored of a shortest-time path to some faraway vertex after i steps.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let $\left(T_{i}\right)_{i \geq 0}$ be time at which the i 'th peeling step occurs.
- Knowing $\left(l_{i}\right)_{i \geq 0}: T_{i}=\sum_{j=1}^{i} \frac{\varepsilon_{j}}{l_{j-1}}$, where \mathfrak{e}_{j} are independent $\exp (1)$ random variables.

- Let the hop count H_{i} be \# of edges explored of a shortest-time path to some faraway vertex after i steps.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let $\left(T_{i}\right)_{i \geq 0}$ be time at which the i 'th peeling step occurs.
- Knowing $\left(I_{i}\right)_{i \geq 0}: T_{i}=\sum_{j=1}^{i} \frac{c_{j}}{l_{j-1}}$, where \mathfrak{e}_{j} are independent $\exp (1)$ random variables.

- Let the hop count H_{i} be \# of edges explored of a shortest-time path to some faraway vertex after i steps. Knowing $\left(I_{i}\right)_{i \geq 0}$:

$$
H_{i}=\sum_{j=1}^{i} \mathfrak{b}_{j}, \quad \mathfrak{b}_{j} \in\{0,1\}, \quad \mathbb{P}\left(\mathfrak{b}_{j}=1\right)=\left\{\begin{array}{ll}
0 & \text { if } I_{j}<l_{j-1} \\
\frac{l_{j}-l_{j-1}+1}{l_{j}} & \text { if } I_{j} \geq I_{j-1}
\end{array} .\right.
$$

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let $\left(T_{i}\right)_{i \geq 0}$ be time at which the i 'th peeling step occurs.
- Knowing $\left(I_{i}\right)_{i \geq 0}: T_{i}=\sum_{j=1}^{i} \frac{c_{j}}{l_{j-1}}$, where \mathfrak{e}_{j} are independent $\exp (1)$ random variables.

- Let the hop count H_{i} be \# of edges explored of a shortest-time path to some faraway vertex after i steps. Knowing $\left(I_{i}\right)_{i \geq 0}$:

$$
H_{i}=\sum_{j=1}^{i} \mathfrak{b}_{j}, \quad \mathfrak{b}_{j} \in\{0,1\}, \quad \mathbb{P}\left(\mathfrak{b}_{j}=1\right)=\left\{\begin{array}{ll}
0 & \text { if } I_{j}<l_{j-1} \\
\frac{l_{j}-l_{j-1}+1}{l_{j}} & \text { if } l_{j} \geq l_{j-1}
\end{array} .\right.
$$

- $\left(I_{i}, T_{i}, H_{i}\right)_{i \geq 0}$ is a Markov process.

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let $\left(T_{i}\right)_{i \geq 0}$ be time at which the i 'th peeling step occurs.
- Knowing $\left(I_{i}\right)_{i \geq 0}: T_{i}=\sum_{j=1}^{i} \frac{c_{j}}{l_{j-1}}$, where \mathfrak{e}_{j} are independent $\exp (1)$ random variables.

- Let the hop count H_{i} be \# of edges explored of a shortest-time path to some faraway vertex after i steps. Knowing $\left(I_{i}\right)_{i \geq 0}$:

$$
H_{i}=\sum_{j=1}^{i} \mathfrak{b}_{j}, \quad \mathfrak{b}_{j} \in\{0,1\}, \quad \mathbb{P}\left(\mathfrak{b}_{j}=1\right)=\left\{\begin{array}{ll}
0 & \text { if } I_{j}<I_{j-1} \\
\frac{l_{j}-l_{j-1}+1}{J_{j}} & \text { if } I_{j} \geq I_{j-1}
\end{array} .\right.
$$

- $\left(I_{i}, T_{i}, H_{i}\right)_{i \geq 0}$ is a Markov process. For regular critical \mathbf{q} we have
$\mathbb{E}\left(H_{i+1}-H_{i} \mid l_{i}\right)=\sum_{k=0}^{\infty} \frac{k+1}{k+l_{i}} \frac{h_{r}^{(1)}\left(k+l_{i}\right)}{h_{r}^{(1)}\left(l_{i}\right)} \nu(k)$

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let $\left(T_{i}\right)_{i \geq 0}$ be time at which the i 'th peeling step occurs.
- Knowing $\left(I_{i}\right)_{i \geq 0}: T_{i}=\sum_{j=1}^{i} \frac{c_{j}}{l_{j-1}}$, where \mathfrak{e}_{j} are independent $\exp (1)$ random variables.

- Let the hop count H_{i} be \# of edges explored of a shortest-time path to some faraway vertex after i steps. Knowing $\left(I_{i}\right)_{i \geq 0}$:

$$
H_{i}=\sum_{j=1}^{i} \mathfrak{b}_{j}, \quad \mathfrak{b}_{j} \in\{0,1\}, \quad \mathbb{P}\left(\mathfrak{b}_{j}=1\right)=\left\{\begin{array}{ll}
0 & \text { if } I_{j}<I_{j-1} \\
\frac{l_{j}-l_{j-1}+1}{l_{j}} & \text { if } I_{j} \geq I_{j-1}
\end{array} .\right.
$$

- $\left(I_{i}, T_{i}, H_{i}\right)_{i \geq 0}$ is a Markov process. For regular critical \mathbf{q} we have

$$
\mathbb{E}\left(H_{i+1}-H_{i} \mid l_{i}\right)=\sum_{k=0}^{\infty} \frac{k+1}{k+l_{i}} \frac{h_{r}^{(1)}\left(k+l_{i}\right)}{h_{r}^{(1)}\left(l_{i}\right)} \nu(k)=\sum_{k=0}^{\infty}(k+1) \nu(k) \mathbb{E}\left(T_{i+1}-T_{i} \mid l_{i}\right)+\mathcal{O}\left(l_{i}^{-1}\right)
$$

First-passage time and hop count

- Assign random $\exp (1)$-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let $\left(T_{i}\right)_{i \geq 0}$ be time at which the i 'th peeling step occurs.
- Knowing $\left(I_{i}\right)_{i \geq 0}: T_{i}=\sum_{j=1}^{i} \frac{c_{j}}{l_{j-1}}$, where \mathfrak{e}_{j} are independent $\exp (1)$ random variables.

- Let the hop count H_{i} be \# of edges explored of a shortest-time path to some faraway vertex after i steps. Knowing $\left(I_{i}\right)_{i \geq 0}$:

$$
H_{i}=\sum_{j=1}^{i} \mathfrak{b}_{j}, \quad \mathfrak{b}_{j} \in\{0,1\}, \quad \mathbb{P}\left(\mathfrak{b}_{j}=1\right)=\left\{\begin{array}{ll}
0 & \text { if } I_{j}<I_{j-1} \\
\frac{l_{j}-l_{j-1}}{l_{j}} & \text { if } l_{j} \geq I_{j-1}
\end{array} .\right.
$$

- $\left(I_{i}, T_{i}, H_{i}\right)_{i \geq 0}$ is a Markov process. For regular critical \mathbf{q} we have

$$
\mathcal{H}_{\mathrm{G}} \approx \lim _{i \rightarrow \infty} H_{i} / T_{i}
$$

$\mathbb{E}\left(H_{i+1}-H_{i} \mid l_{i}\right)=\sum_{k=0}^{\infty} \frac{k+1}{k+l_{i}} \frac{h_{r}^{(1)}\left(k+l_{i}\right)}{h_{r}^{(1)}\left(l_{i}\right)} \nu(k)=\overbrace{\sum_{k=0}^{\infty}(k+1) \nu(k)} \mathbb{E}\left(T_{i+1}-T_{i} \mid I_{i}\right)+\mathcal{O}\left(l_{i}^{-1}\right)$

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Let d_{i} be the average distance from frontier to root face.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Let d_{i} be the average distance from frontier to root face.
- Frontier of the form: $N_{i}^{(0)}$ edges at distance d followed by $N_{i}^{(1)}$ edges at distance $d+1$, where $d=\left\lfloor d_{i}\right\rfloor$.

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Let d_{i} be the average distance from frontier to root face.

- Frontier of the form: $N_{i}^{(0)}$ edges at distance d followed by $N_{i}^{(1)}$ edges at distance $d+1$, where $d=\left\lfloor d_{i}\right\rfloor$.
- Write
$d_{i}=\left\lfloor d_{i}\right\rfloor+1 / 2+\left(N_{i}^{(1)}-N_{i}^{(0)}\right) /\left(2 l_{i}\right)$

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Let d_{i} be the average distance from frontier to root face.

- Frontier of the form: $N_{i}^{(0)}$ edges at distance d followed by $N_{i}^{(1)}$ edges at distance $d+1$, where $d=\left\lfloor d_{i}\right\rfloor$.
- Write
$d_{i}=\left\lfloor d_{i}\right\rfloor+1 / 2+\left(N_{i}^{(1)}-N_{i}^{(0)}\right) /\left(2 l_{i}\right)$

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Let d_{i} be the average distance from frontier to root face.
- Frontier of the form: $N_{i}^{(0)}$ edges at distance d followed by $N_{i}^{(1)}$ edges at distance $d+1$, where $d=\left\lfloor d_{i}\right\rfloor$.

- Write
$d_{i}=\left\lfloor d_{i}\right\rfloor+1 / 2+\left(N_{i}^{(1)}-N_{i}^{(0)}\right) /\left(2 l_{i}\right)$

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Let d_{i} be the average distance from frontier to root face.
- Frontier of the form: $N_{i}^{(0)}$ edges at distance d followed by $N_{i}^{(1)}$ edges at distance $d+1$, where $d=\left\lfloor d_{i}\right\rfloor$.

- Write
$d_{i}=\left\lfloor d_{i}\right\rfloor+1 / 2+\left(N_{i}^{(1)}-N_{i}^{(0)}\right) /\left(2 l_{i}\right)$

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Let d_{i} be the average distance from frontier to root face.
- Frontier of the form: $N_{i}^{(0)}$ edges at distance d followed by $N_{i}^{(1)}$ edges at distance $d+1$, where $d=\left\lfloor d_{i}\right\rfloor$.

- Write
$d_{i}=\left\lfloor d_{i}\right\rfloor+1 / 2+\left(N_{i}^{(1)}-N_{i}^{(0)}\right) /\left(2 l_{i}\right)$
- If $N_{i}^{(0)}$ and $N_{i}^{(1)}$ both large then

$\mathbb{E}\left(d_{i+1}-d_{i} \mid l_{i}\right)=\frac{1}{2 l_{i}}\left[1+\sum_{k=0}^{\infty}(k+1) \nu(k)\right]+\mathcal{O}\left(l_{i}^{-2}\right)$

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Let d_{i} be the average distance from frontier to root face.
- Frontier of the form: $N_{i}^{(0)}$ edges at distance d followed by $N_{i}^{(1)}$ edges at distance $d+1$, where $d=\left\lfloor d_{i}\right\rfloor$.

- Write
$d_{i}=\left\lfloor d_{i}\right\rfloor+1 / 2+\left(N_{i}^{(1)}-N_{i}^{(0)}\right) /\left(2 l_{i}\right)$
- If $N_{i}^{(0)}$ and $N_{i}^{(1)}$ both large then

$\mathbb{E}\left(d_{i+1}-d_{i} \mid l_{i}\right)=\frac{1}{2 l_{i}}\left[1+\sum_{k=0}^{\infty}(k+1) \nu(k)\right]+\mathcal{O}\left(l_{i}^{-2}\right)=\frac{1}{l_{i}} \frac{1+\mathcal{H}_{\mathbf{q}}}{2}+\mathcal{O}\left(l_{i}^{-2}\right)$

Dual graph distance

- Choose peel edge deterministically: breadth first exploration.
- Let d_{i} be the average distance from frontier to root face.
- Frontier of the form: $N_{i}^{(0)}$ edges at distance d followed by $N_{i}^{(1)}$ edges at distance $d+1$, where $d=\left\lfloor d_{i}\right\rfloor$.

- Write

$$
d_{i}=\left\lfloor d_{i}\right\rfloor+1 / 2+\left(N_{i}^{(1)}-N_{i}^{(0)}\right) /\left(2 l_{i}\right)
$$

- If $N_{i}^{(0)}$ and $N_{i}^{(1)}$ both large then

$\mathbb{E}\left(d_{i+1}-d_{i} \mid l_{i}\right)=\frac{1}{2 l_{i}}\left[1+\sum_{k=0}^{\infty}(k+1) \nu(k)\right]+\mathcal{O}\left(l_{i}^{-2}\right)=\frac{1}{l_{i}} \frac{1+\mathcal{H}_{\mathbf{q}}}{2}+\mathcal{O}\left(l_{i}^{-2}\right)$
- Using $\mathbb{E}\left(T_{i+1}-T_{i} \mid l_{i}\right)=1 / I_{i}$, and assuming asymptotically linear scaling, this suggests the asymptotic relation:

$$
d_{\mathrm{gr}^{*}} \approx \frac{1}{2}(T+H) \text { for any regular critical } \mathbf{q} \text {-IBPM }
$$

Graph distance

- Can adapt peeling process to graph distance: take peel edge to be frontier edge closest to root vertex.

Graph distance

- Can adapt peeling process to graph distance: take peel edge to be frontier edge closest to root vertex.
- Precise scaling limits for UIPT and UIPQ have been derived.[Curien, Le Gall, '14]

Graph distance

- Can adapt peeling process to graph distance: take peel edge to be frontier edge closest to root vertex.
- Precise scaling limits for UIPT and UIPQ have been derived.[Curien, Le Gall, '14]
- For general \mathbf{q} the distances on the frontier are not so simple. Another route towards the scaling constants?

Graph distance

- Can adapt peeling process to graph distance: take peel edge to be frontier edge closest to root vertex.
- Precise scaling limits for UIPT and UIPQ have been derived.[Curien, Le Gall, '14]
- For general \mathbf{q} the distances on the frontier are not so simple. Another route towards the scaling constants?

Theorem (Miermont, '06)

If \mathbf{q} is regular critical and m_{n} is a $\mathbf{q}-B P M$ conditioned to have n vertices and v_{1}, v_{2} are random vertices, then there exists a $\mathcal{C}_{\mathbf{q}}>0$ and a \mathbf{q}-independent random variable d_{∞} s.t.

$$
\frac{d_{m_{n}}\left(v_{1}, v_{2}\right)}{\mathcal{C}_{\mathbf{q}} n^{1 / 4}} \xrightarrow[n \rightarrow \infty]{(d)} d_{\infty}
$$

Theorem (Miermont, '06)

If \mathbf{q} is regular critical and m_{n} is a $\mathbf{q}-B P M$ conditioned to have n vertices and v_{1}, v_{2} are random vertices, then there exists a $\mathcal{C}_{\mathbf{q}}>0$ and a \mathbf{q}-independent random variable d_{∞} s.t.

$$
\frac{d_{m_{n}}\left(v_{1}, v_{2}\right)}{\mathcal{C}_{\mathbf{q}} n^{1 / 4}} \xrightarrow[n \rightarrow \infty]{(d)} d_{\infty}
$$

- Miermont also outlined an algorithm to compute $\mathcal{C}_{\mathbf{q}}$.

Theorem (Miermont, '06)

If \mathbf{q} is regular critical and m_{n} is a $\mathbf{q}-B P M$ conditioned to have n vertices and v_{1}, v_{2} are random vertices, then there exists a $\mathcal{C}_{\mathbf{q}}>0$ and a \mathbf{q}-independent random variable d_{∞} s.t.

$$
\frac{d_{m_{n}}\left(v_{1}, v_{2}\right)}{\mathcal{C}_{\mathbf{q}} n^{1 / 4}} \xrightarrow[n \rightarrow \infty]{(d)} d_{\infty} .
$$

- Miermont also outlined an algorithm to compute $\mathcal{C}_{\mathbf{q}}$. With some hard work one can show: $\mathcal{C}_{\mathbf{q}}=\left(\frac{c_{+}^{2}}{96}(1+r)^{3} \mathcal{L}_{\mathbf{q}}\right)^{1 / 4}$

Theorem (Miermont, '06)

If \mathbf{q} is regular critical and m_{n} is a $\mathbf{q}-B P M$ conditioned to have n vertices and v_{1}, v_{2} are random vertices, then there exists a $\mathcal{C}_{\mathbf{q}}>0$ and a \mathbf{q}-independent random variable d_{∞} s.t.

$$
\frac{d_{m_{n}}\left(v_{1}, v_{2}\right)}{\mathcal{C}_{\mathbf{q}} n^{1 / 4}} \xrightarrow[n \rightarrow \infty]{(d)} d_{\infty}
$$

- Miermont also outlined an algorithm to compute $\mathcal{C}_{\mathbf{q}}$. With some hard work one can show: $\mathcal{C}_{\mathbf{q}}=\left(\frac{c_{+}^{2}}{96}(1+r)^{3} \mathcal{L}_{\mathbf{q}}\right)^{1 / 4}$
- Combining with previous results and some (so far) heuristic arguments:

Conjecture

Let v be a random vertex at distance d_{gr} from the root in a regular q-IBPM, then we have the following limits in probability as $d_{\mathrm{gr}} \rightarrow \infty$ for its first-passage time T, hop count H, and dual graph distance $d_{\mathrm{gr}^{*}}$:

$$
\frac{H}{T} \rightarrow \mathcal{H}_{\mathbf{q}}, \quad \frac{d_{\mathrm{gr}^{*}}}{T} \rightarrow \frac{1+\mathcal{H}_{\mathbf{q}}}{2}, \quad \frac{d_{\mathrm{gr}}}{T} \rightarrow \frac{1}{4}(1+r) \mathcal{L}_{\mathbf{q}} .
$$

Theorem (Miermont, '06)

If \mathbf{q} is regular critical and m_{n} is a $\mathbf{q}-B P M$ conditioned to have n vertices and v_{1}, v_{2} are random vertices, then there exists a $\mathcal{C}_{\mathbf{q}}>0$ and a \mathbf{q}-independent random variable d_{∞} s.t.

$$
\frac{d_{m_{n}}\left(v_{1}, v_{2}\right)}{\mathcal{C}_{\mathbf{q}} n^{1 / 4}} \xrightarrow[n \rightarrow \infty]{(d)} d_{\infty}
$$

- Miermont also outlined an algorithm to compute $\mathcal{C}_{\mathbf{q}}$. With some hard work one can show: $\mathcal{C}_{\mathbf{q}}=\left(\frac{c_{+}^{2}}{96}(1+r)^{3} \mathcal{L}_{\mathbf{q}}\right)^{1 / 4}$
- Combining with previous results and some (so far) heuristic arguments:

Conjecture

Let v be a random vertex at distance d_{gr} from the root in a regular q-IBPM, then we have the following limits in probability as $d_{\mathrm{gr}} \rightarrow \infty$ for its first-passage time T, hop count H, and dual graph distance $d_{\mathrm{gr}^{*}}$:

$$
\frac{H}{T} \rightarrow \mathcal{H}_{\mathbf{q}}, \quad \frac{d_{\mathrm{gr}^{*}}}{T} \rightarrow \frac{1+\mathcal{H}_{\mathbf{q}}}{2}, \quad \frac{d_{\mathrm{gr}}}{T} \rightarrow \frac{1}{4}(1+r) \mathcal{L}_{\mathbf{q}} .
$$

- Seems to be settled for the UIPT. [Curien, Le Gall, to appear]

Example: Uniform infinite planar map (bivariate)

- Local limit of uniform random planar maps with fixed \# vertices and faces.

Example: Uniform infinite planar map (bivariate)

- Local limit of uniform random planar maps with fixed \# vertices and faces.

Example: Uniform infinite planar map (bivariate)

- Local limit of uniform random planar maps with fixed \# vertices and faces. Both the primal and dual map are q-IBPM's with \mathbf{q} a geometric sequence.

Example: Uniform infinite planar map (bivariate)

- Local limit of uniform random planar maps with fixed \# vertices and faces. Both the primal and dual map are q-IBPM's with \mathbf{q} a geometric sequence.
- Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$.

Example: Uniform infinite planar map (bivariate)

- Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
& h_{r}^{(1)}(1)=\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k) \\
& h_{r}^{(1)}(2)=\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k) \\
& h_{r}^{(1)}(3)=\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k) \\
h_{r}^{(1)}(2) & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k) \\
h_{r}^{(1)}(3) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
h_{r}^{(1)}(2) & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k) \\
h_{r}^{(1)}(3) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
\frac{3-r}{2} & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k) \\
h_{r}^{(1)}(3) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
\frac{3-r}{2} & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
h_{r}^{(1)}(3) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
\frac{3-r}{2} & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \\
h_{r}^{(1)}(3) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
\frac{3-r}{2} & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \quad\left(\Rightarrow \sigma>\frac{1}{2}\right) \\
h_{r}^{(1)}(3) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
\frac{3-r}{2} & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \quad\left(\Rightarrow \sigma>\frac{1}{2}\right) \\
\frac{3}{8}\left(5-2 r+r^{2}\right) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
\frac{3-r}{2} & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \quad\left(\Rightarrow \sigma>\frac{1}{2}\right) \\
\frac{3}{8}\left(5-2 r+r^{2}\right) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)=\frac{1-\alpha}{\sigma^{2}}+\nu(-2)
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
\frac{3-r}{2} & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \quad\left(\Rightarrow \sigma>\frac{1}{2}\right) \\
\frac{3}{8}\left(5-2 r+r^{2}\right) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)=\frac{1-\alpha}{\sigma^{2}}+\frac{2}{c_{+}^{2}}
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
\frac{3-r}{2} & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \quad\left(\Rightarrow \sigma>\frac{1}{2}\right) \\
\frac{3}{8}\left(5-2 r+r^{2}\right) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)=\frac{1-\alpha}{\sigma^{2}}+\frac{2}{c_{+}^{2}}
\end{aligned}
$$

- Can easily compute various constants:

$$
\begin{aligned}
& \mathcal{H}_{\mathbf{q}}:=\sum_{k=0}^{\infty}(k+1) \nu(k)=\sqrt{\frac{3 \sigma-1}{1-\sigma}}, \quad \mathcal{L}_{\mathbf{q}}:=\sum_{k=1}^{\infty} h_{r}^{(2)}(k+1) \nu(k)=\frac{\sigma}{1-\sigma}, \\
& \quad \frac{d_{\mathrm{gr}^{*}}}{d_{\mathrm{gr}^{2}}} \rightarrow 2 \frac{1+\mathcal{H}_{\mathbf{q}}}{(1+r) \mathcal{L}_{\mathbf{q}}}=\frac{2}{\mathcal{H}_{\mathbf{q}}-1}, \quad \begin{array}{l}
\text { vertices } \\
\text { faces }
\end{array}=\frac{\left(\mathcal{H}_{\mathbf{q}}+3\right)\left(\mathcal{H}_{\mathbf{q}}-1\right)}{8 \mathcal{H}_{\mathbf{q}}} .
\end{aligned}
$$

Example: Uniform infinite planar map (bivariate)

- Then necessarily $\nu(k)=\alpha \sigma^{k}$ is a geometric sequence as well for $k \geq-1$.
- Now impose that $h_{r}^{(1)}$ is ν-harmonic:

$$
\begin{aligned}
1 & =\sum_{k=0}^{\infty} h_{r}^{(1)}(k+1) \nu(k)=\frac{\alpha}{(1-\sigma)^{3 / 2} \sqrt{1+r \sigma}} \\
\frac{3-r}{2} & =\sum_{k=-1}^{\infty} h_{r}^{(1)}(k+2) \nu(k)=\frac{1}{\sigma} \quad\left(\Rightarrow \sigma>\frac{1}{2}\right) \\
\frac{3}{8}\left(5-2 r+r^{2}\right) & =\sum_{k=-2}^{\infty} h_{r}^{(1)}(k+3) \nu(k)=\frac{1-\alpha}{\sigma^{2}}+\frac{2}{c_{+}^{2}}
\end{aligned}
$$

- Can easily compute various constants:

$$
\begin{aligned}
\mathcal{H}_{\mathbf{q}} & :=\sum_{k=0}^{\infty}(k+1) \nu(k)=\sqrt{\frac{3 \sigma-1}{1-\sigma}}, \quad \mathcal{L}_{\mathbf{q}}:=\sum_{k=1}^{\infty} h_{r}^{(2)}(k+1) \nu(k)=\frac{\sigma}{1-\sigma}, \\
& \frac{d_{\mathrm{gr}^{*}}}{d_{\mathrm{gr}}} \rightarrow 2 \frac{1+\mathcal{H}_{\mathbf{q}}}{(1+r) \mathcal{L}_{\mathbf{q}}}=\frac{2}{\mathcal{H}_{\mathbf{q}}-1}, \quad \quad \begin{array}{l}
\text { vertices } \\
\text { faces }
\end{array}=\frac{\left(\mathcal{H}_{\mathbf{q}}+3\right)\left(\mathcal{H}_{\mathbf{q}}-1\right)}{8 \mathcal{H}_{\mathbf{q}}} .
\end{aligned}
$$

- Notice UIPM is $\sigma=\frac{5}{6}, \mathcal{H}_{q}=3$, and duality: $\frac{\mathcal{H}_{q}-1}{2} \leftrightarrow \frac{2}{\mathcal{H}_{q}-1}$.

More examples

	r	c_{+}	$\mathcal{L}_{\text {q }}$	\mathcal{C}_{9}^{4}
Triangulations	$2 \sqrt{3}-3$	$\sqrt{6+4 \sqrt{3}}$	$\frac{1}{2}\left(1+\frac{1}{\sqrt{3}}\right)$	1/3
Quadrangulations	1	$\sqrt{8}$	4/3	8/9
Pentangulations	0.70878...	$2.6098 \ldots$	2.1704 ...	0.7683...
$2 p$-angulations	1	$\sqrt{\frac{4 p}{p-1}}$	$\frac{4}{3}(p-1)$	${ }_{9}^{4} p$
Uniform planar maps	3/5	$5 / \sqrt{3}$	5	16/9
Uniform planar maps (biv.)	$\frac{\mathcal{H}^{2}-3}{\mathcal{H}^{2}+1}$	$\begin{aligned} & \frac{(\mathcal{H}-1)^{3 / 2} \sqrt{\mathcal{H}+3}}{2\left(\mathcal{H}^{2}+3\right)} \end{aligned}$	$\frac{1}{2}\left(\mathcal{H}^{2}+1\right)$	$\frac{(\mathcal{H}+1)^{3}}{6(\mathcal{H}+1)}$
	$\frac{\text { vertices }}{\text { faces }}$	$H / T=\mathcal{H}_{q}$	T / d_{gr}	$d_{\mathrm{gr}} / / d_{\mathrm{gr}}$
Triangulations	1/2	$1+\frac{1}{\sqrt{3}}$	$2 \sqrt{3}$	$1+2 \sqrt{3}$
Quadrangulations	1	2	3/2	9/4
Pentangulations	3/2	2.3608...	1.0785...	1.8123...
$2 p$-angulations	$p-1$	$\underline{\frac{2 p-1}{p\left(p_{p}^{p}\right)^{2}} 2^{2 p-1}}$	$\frac{3}{2(p-1)}$	$\frac{3}{4}\left(\frac{1}{P-1}+\frac{2^{2 p-2}}{P\left(\begin{array}{c}\text { P-2 }\end{array}\right)}\right)$
Uniform planar maps	1	3	1/2	1
Uniform planar maps (biv.)	$\frac{(\mathcal{H}+3)(\mathcal{H}-1)^{2}}{8 \mathcal{H}}$	\mathcal{H}	$\frac{4}{\mathcal{H}^{2}-1}$	$\frac{2}{\mathcal{H}-1}$

What's next? / Open problems

- Can the scaling constant $\mathcal{C}_{\mathbf{q}}$ associated to the graph distance be derived from a peeling process?

What's next? / Open problems

- Can the scaling constant $\mathcal{C}_{\mathbf{q}}$ associated to the graph distance be derived from a peeling process?
- For q-IBPM's we have conjectured a universal asymptotic relation between the passage-time, hop count, and dual graph distance: $d_{\mathrm{gr}} \approx=(H+T) / 2$. Does it hold more generally?

What's next? / Open problems

- Can the scaling constant $\mathcal{C}_{\mathbf{q}}$ associated to the graph distance be derived from a peeling process?
- For q-IBPM's we have conjectured a universal asymptotic relation between the passage-time, hop count, and dual graph distance: $d_{\mathrm{gr}^{*}} \approx(H+T) / 2$. Does it hold more generally?
- On a 2d lattice the relative fluctuations of d_{gr} and T are conjecture to be described by the Kardar-Parisi-Zhang universality class. Can we start to say something about the situation on random graphs?

What's next? / Open problems

- Can the scaling constant $\mathcal{C}_{\mathbf{q}}$ associated to the graph distance be derived from a peeling process?
- For q-IBPM's we have conjectured a universal asymptotic relation between the passage-time, hop count, and dual graph distance: $d_{\mathrm{gr}^{*}} \approx(H+T) / 2$. Does it hold more generally?
- On a 2d lattice the relative fluctuations of $d_{\mathrm{gr}^{*}}$ and T are conjecture to be described by the Kardar-Parisi-Zhang universality class. Can we start to say something about the situation on random graphs?
- Study the heavy-tailed case $\nu(k) \sim k^{-\alpha-1}, \alpha \in\left[\frac{1}{2}, \frac{3}{2}\right]$.
- The q-BPM converges w.r.t. $d_{g r}$ to a stable map with Hausdorff dimension $2 \alpha+1$. [Le Gall, Miermont, '11] How about $d_{\text {gr* }}$ and T ?
- The relation between the perimeter process and random walks extends naturally to $O(n)$ models: condition to stay positive is replaced by certain reflecting boundary conditions. Consequences?

What's next? / Open problems

- Can the scaling constant $\mathcal{C}_{\mathbf{q}}$ associated to the graph distance be derived from a peeling process?
- For q-IBPM's we have conjectured a universal asymptotic relation between the passage-time, hop count, and dual graph distance: $d_{\mathrm{gr}^{*}} \approx(H+T) / 2$. Does it hold more generally?
- On a 2d lattice the relative fluctuations of $d_{\mathrm{gr}^{*}}$ and T are conjecture to be described by the Kardar-Parisi-Zhang universality class. Can we start to say something about the situation on random graphs?
- Study the heavy-tailed case $\nu(k) \sim k^{-\alpha-1}, \alpha \in\left[\frac{1}{2}, \frac{3}{2}\right]$.
- The q-BPM converges w.r.t. $d_{g r}$ to a stable map with Hausdorff dimension $2 \alpha+1$. [Le Gall, Miermont, '11] How about $d_{\mathrm{gr}^{*}}$ and T ?
- The relation between the perimeter process and random walks extends naturally to $O(n)$ models: condition to stay positive is replaced by certain reflecting boundary conditions. Consequences?

Thanks for your attention!

