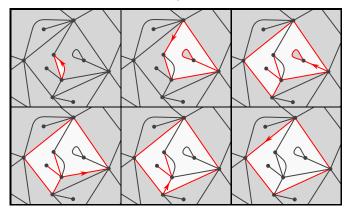
20th Itzykson Conference, IPhT, Saclay, 12-06-2015

Peeling of infinite Boltzmann planar maps

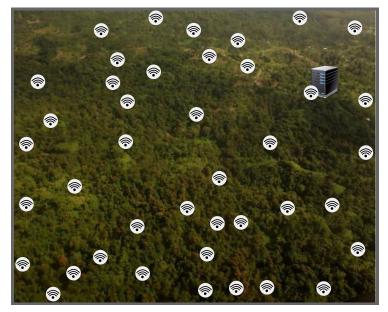
Timothy Budd

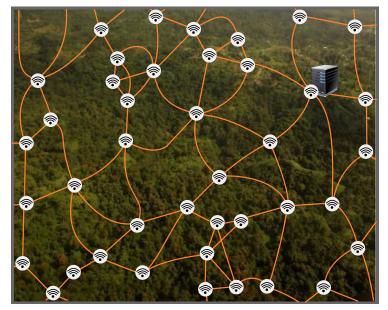


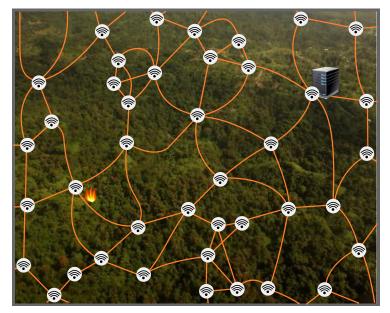
Based on arXiv:1506.01590 and work in progress.

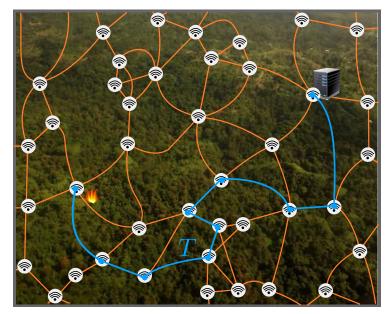
Niels Bohr Institute, University of Copenhagen
budd@nbi.dk, http://www.nbi.dk/~budd/

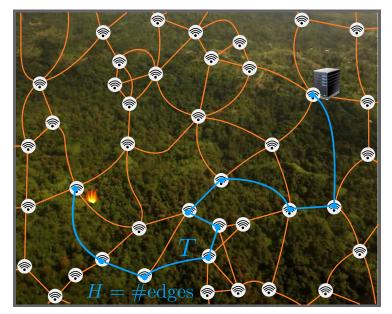
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

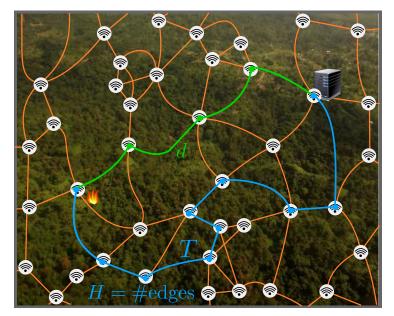


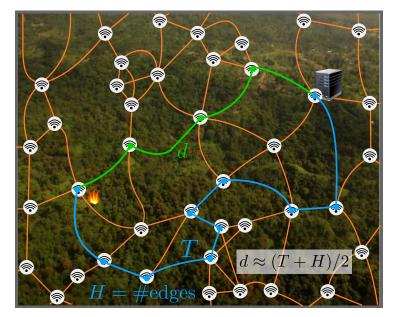


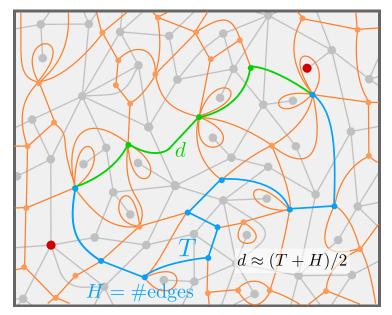


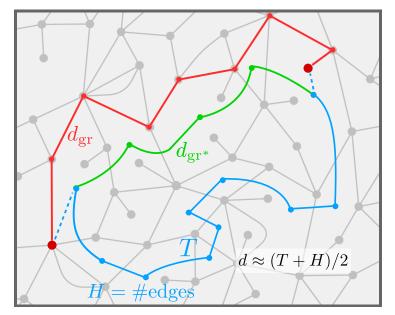




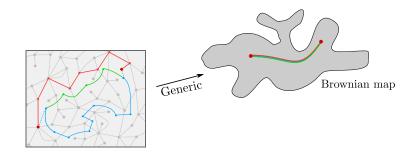






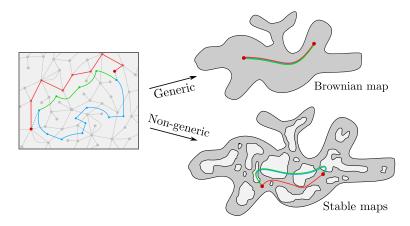


・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

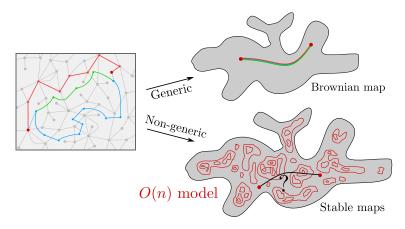


[Le Gall, Miermont, '11] [Borot, Bouttier, Guitter, '12]

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ







Outline

- Introduction
 - q-Boltzmann planar maps
 - Lazy peeling process
- Perimeter and volume processes
 - Description in terms of biased random walks
 - Infinite q-Boltzmann planar maps
 - Scaling limit
- Scaling constants from peeling:
 - First-passage time
 - Hop count
 - Dual graph distance
- Miermont's scaling constant for the graph distance
- Example: uniform infinite planar map.
- Outlook

 Peeling process of random surfaces introduced in [Watabiki,'95] to study their geometry.

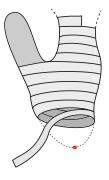
- Peeling process of random surfaces introduced in [Watabiki,'95] to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Peeling process of random surfaces introduced in [Watabiki,'95] to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].
 - Remark: Their 2-point function is not just an approximation, it is exactly the "first-passage time 2-point function" [Ambjørn,TB,'14].

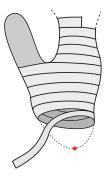


- Peeling process of random surfaces introduced in [Watabiki,'95] to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].
 - Remark: Their 2-point function is not just an approximation, it is exactly the "first-passage time 2-point function" [Ambjørn,TB,'14].
- Peeling was formalized in the setting of infinite triangulations (UIPT) in [Angel, '03].



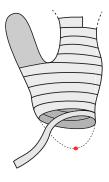
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Peeling process of random surfaces introduced in [Watabiki,'95] to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].
 - Remark: Their 2-point function is not just an approximation, it is exactly the "first-passage time 2-point function" [Ambjørn, TB, '14].
- Peeling was formalized in the setting of infinite triangulations (UIPT) in [Angel, '03].
- Important tool to study properties of the UIPT and UIPQ: distances, percolation, random walks [Angel,'03'][Angel, Curien, '13] [Benjamini, Curien '13]...



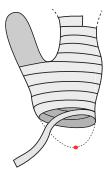
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Peeling process of random surfaces introduced in [Watabiki,'95] to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].
 - Remark: Their 2-point function is not just an approximation, it is exactly the "first-passage time 2-point function" [Ambjørn, TB, '14].
- Peeling was formalized in the setting of infinite triangulations (UIPT) in [Angel, '03].
- Important tool to study properties of the UIPT and UIPQ: distances, percolation, random walks [Angel,'03'][Angel, Curien, '13] [Benjamini, Curien '13]...
- Precise scaling limits have been obtained for the perimeter and volume of the explored region in the UIPT and UIPQ [Curien, Le Gall, '14]



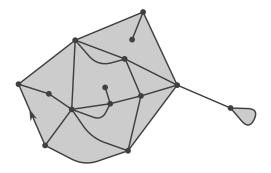
(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- Peeling process of random surfaces introduced in [Watabiki,'95] to study their geometry.
- Lead to the first (approximate) derivation of the 2-point function of random triangulations. [Ambjørn, Watabiki, '95].
 - Remark: Their 2-point function is not just an approximation, it is exactly the "first-passage time 2-point function" [Ambjørn, TB, '14].
- Peeling was formalized in the setting of infinite triangulations (UIPT) in [Angel, '03].
- Important tool to study properties of the UIPT and UIPQ: distances, percolation, random walks [Angel,'03'][Angel, Curien, '13] [Benjamini, Curien '13]...
- Precise scaling limits have been obtained for the perimeter and volume of the explored region in the UIPT and UIPQ [Curien, Le Gall, '14] This talk: extend their results to q-IBPM.

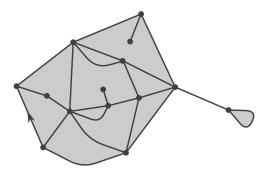


◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

Rooted planar map with faces of arbitrary degrees.



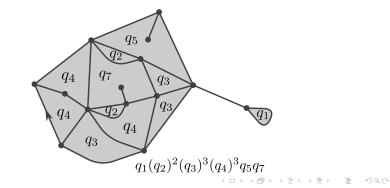
- Rooted planar map with faces of arbitrary degrees.
- Let q = (q_k)[∞]_{k=1} be a weight sequence of non-negative reals, such that q_k > 0 for at least one k ≥ 3.



- Rooted planar map with faces of arbitrary degrees.
- Let q = (q_k)[∞]_{k=1} be a weight sequence of non-negative reals, such that q_k > 0 for at least one k ≥ 3.
- Define the disk function

$$W^{(l)} = W^{(l)}(\mathbf{q}) := \sum_{\mathbf{q} \in \mathcal{M}^{(l)} \text{ non-root faces } f} q_{\deg(f)}, \tag{1}$$

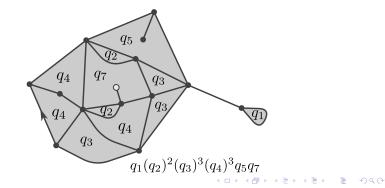
over rooted planar maps m with root face degree l



- Rooted planar map with faces of arbitrary degrees.
- Let q = (q_k)[∞]_{k=1} be a weight sequence of non-negative reals, such that q_k > 0 for at least one k ≥ 3.
- Define the *pointed* disk function

$$W_{\bullet}^{(l)} = W_{\bullet}^{(l)}(\mathbf{q}) := \sum_{\mathbf{q} \in U^{(l)} \text{ non-root faces } f} q_{\deg(f)}, \qquad (1)$$

over rooted planar maps m with root face degree l and a marked vertex.



- Rooted planar map with faces of arbitrary degrees.
- Let q = (q_k)[∞]_{k=1} be a weight sequence of non-negative reals, such that q_k > 0 for at least one k ≥ 3.
- Define the pointed disk function

$$W_{\bullet}^{(l)} = W_{\bullet}^{(l)}(\mathbf{q}) := \sum_{q \mapsto u^{(l)} \text{ non-root faces } f} q_{\deg(f)}, \qquad (1)$$

over rooted planar maps m with root face degree l and a marked vertex.

Call q admissible if W_●^(I) < ∞. Then the summands determine a probability measure, which we call the q-BPM. [Miermont, '06]</p>

- Rooted planar map with faces of arbitrary degrees.
- Let q = (q_k)[∞]_{k=1} be a weight sequence of non-negative reals, such that q_k > 0 for at least one k ≥ 3.
- Define the pointed disk function

$$W_{\bullet}^{(l)} = W_{\bullet}^{(l)}(\mathbf{q}) := \sum_{u \in \mathcal{M}^{(l)} \text{ non-root faces } f} q_{\deg(f)}, \tag{1}$$

over rooted planar maps m with root face degree l and a marked vertex.

- Call q admissible if W_●^(I) < ∞. Then the summands determine a probability measure, which we call the q-BPM. [Miermont, '06]</p>
- ▶ If **q** admissible there exist $c_{\pm} \in \mathbb{R}$ such that for $z > c_+ > c_-$,

$$W_{ullet}(z) := \sum_{l=0}^{\infty} W_{ullet}^{(l)} z^{-l-1} = rac{1}{\sqrt{(z-c_+)(z-c_-)}}.$$

- Rooted planar map with faces of arbitrary degrees.
- Let q = (q_k)[∞]_{k=1} be a weight sequence of non-negative reals, such that q_k > 0 for at least one k ≥ 3.
- Define the pointed disk function

$$W_{\bullet}^{(l)} = W_{\bullet}^{(l)}(\mathbf{q}) := \sum_{u \in \mathcal{M}^{(l)} \text{ non-root faces } f} q_{\deg(f)}, \tag{1}$$

over rooted planar maps m with root face degree l and a marked vertex.

- Call q admissible if W_●^(I) < ∞. Then the summands determine a probability measure, which we call the q-BPM. [Miermont, '06]</p>
- ▶ If **q** admissible there exist $c_{\pm} \in \mathbb{R}$ such that for $z > c_+ > c_-$,

$$W_{ullet}(z) := \sum_{l=0}^{\infty} W_{ullet}^{(l)} z^{-l-1} = rac{1}{\sqrt{(z-c_+)(z-c_-)}}.$$

► Notice universality: W_•⁽¹⁾ depends only on c_±(**q**). Typically only ratio is important r := -c₋/c₊.

(日) (同) (三) (三) (三) (○) (○)

- Rooted planar map with faces of arbitrary degrees.
- Let q = (q_k)[∞]_{k=1} be a weight sequence of non-negative reals, such that q_k > 0 for at least one k ≥ 3.
- Define the pointed disk function

$$W_{\bullet}^{(l)} = W_{\bullet}^{(l)}(\mathbf{q}) := \sum_{\mathbf{r} \in \mathcal{M}^{(l)} \text{ non-root faces } f} q_{\deg(f)}, \tag{1}$$

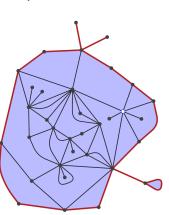
over rooted planar maps m with root face degree l and a marked vertex.

- Call q admissible if W_●^(I) < ∞. Then the summands determine a probability measure, which we call the q-BPM. [Miermont, '06]</p>
- ▶ If **q** admissible there exist $c_{\pm} \in \mathbb{R}$ such that for $z > c_+ > c_-$,

$$W_{ullet}(z) := \sum_{l=0}^{\infty} W_{ullet}^{(l)} z^{-l-1} = rac{1}{\sqrt{(z-c_+)(z-c_-)}}.$$

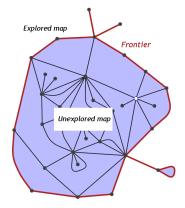
- ► Notice universality: W_•⁽¹⁾ depends only on c_±(**q**). Typically only ratio is important r := -c₋/c₊.
- ▶ If $q_k = 0$ for all odd k, then the **q**-BPM is *bipartite* and r = 1. Otherwise **q** non-bipartite and |r| < 1.

 Start with a planar map with a distinguished outer face and a marked vertex.



(日)、

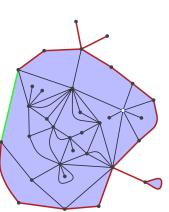
- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.



ヘロト ヘ週ト ヘヨト ヘヨト

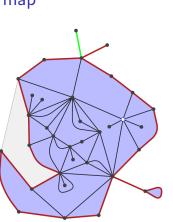
-

- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.



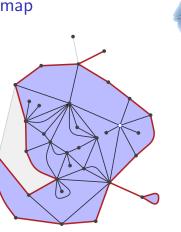
・ロト ・ 一下 ・ ト ・ 日 ・

- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.



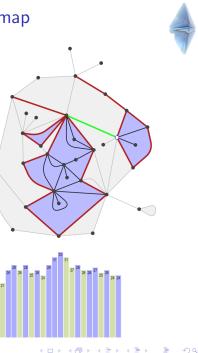
(日)

- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.

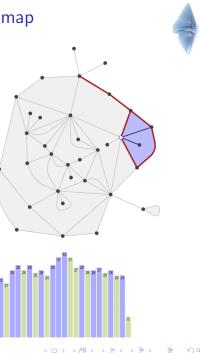


・ロト ・回ト ・ヨト ・ヨト

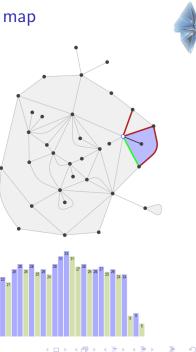
- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.



- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.



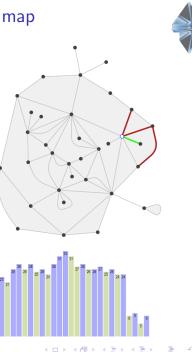
- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.



- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.



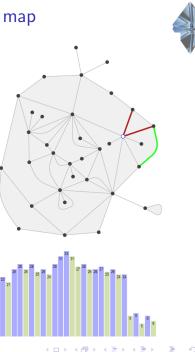
- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.



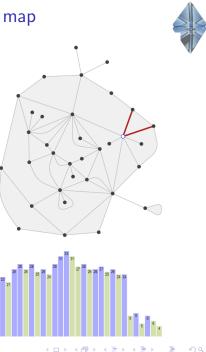
- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.



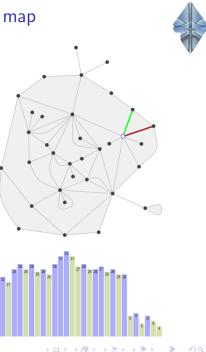
- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.



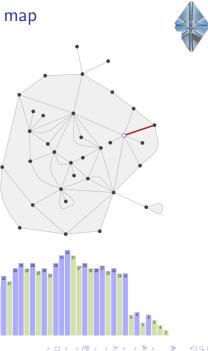
- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.



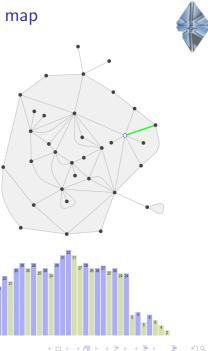
- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.



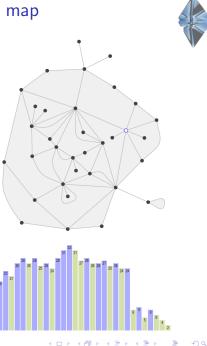
- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.



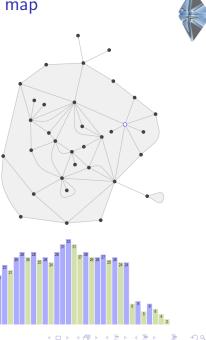
- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.



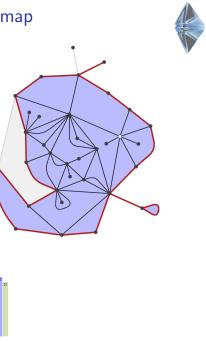
- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.
- After finite number of steps the unexplored region contains only the marked vertex.



- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.
- After finite number of steps the unexplored region contains only the marked vertex.
- ► For a **q**-BPM, what is the law of the perimeter (*l_i*)_{*i*≥0}, i.e. the length of the frontier after *i* steps?

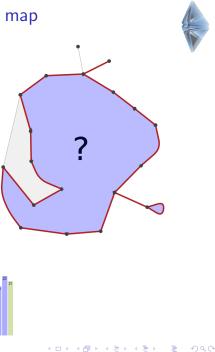


- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.
- After finite number of steps the unexplored region contains only the marked vertex.
- ► For a **q**-BPM, what is the law of the perimeter (*l_i*)_{*i*≥0}, i.e. the length of the frontier after *i* steps?
- It is a Markov process: given the explored map after *i*th step, the unexplored map only depends on *l_i*.

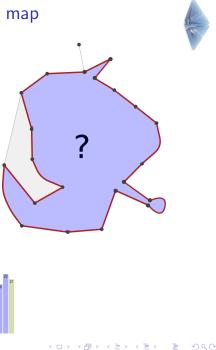


・ロト ・聞 ト ・ヨト ・ヨト

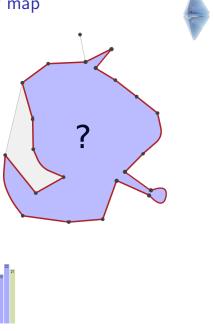
- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.
- After finite number of steps the unexplored region contains only the marked vertex.
- ► For a **q**-BPM, what is the law of the perimeter (*l_i*)_{*i*≥0}, i.e. the length of the frontier after *i* steps?
- It is a Markov process: given the explored map after *i*th step, the unexplored map only depends on *l_i*.



- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.
- After finite number of steps the unexplored region contains only the marked vertex.
- ► For a **q**-BPM, what is the law of the perimeter (*l_i*)_{*i*≥0}, i.e. the length of the frontier after *i* steps?
- It is a Markov process: given the explored map after *i*th step, the unexplored map only depends on *l_i*.



- Start with a planar map with a distinguished outer face and a marked vertex.
- ► A frontier separates the explored map from the unexplored map.
- Choose peel edge and explore adjacent face or prune frontier.
- After finite number of steps the unexplored region contains only the marked vertex.
- ► For a **q**-BPM, what is the law of the perimeter (*l_i*)_{*i*≥0}, i.e. the length of the frontier after *i* steps?
- It is a Markov process: given the explored map after *i*th step, the unexplored map only depends on *I_i*.
- $(I_i)_{i\geq 0}$ independent of peel algorithm.



・ロト ・聞ト ・ヨト ・ヨト

• Loop equations:
$$W_{\bullet}^{(l)} = \sum_{k=0}^{\infty} q_k W_{\bullet}^{(l+k-2)} + 2 \sum_{p=0}^{l-2} W^{(p)} W_{\bullet}^{(l-p-2)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Loop equations: $W_{\bullet}^{(l)} = \sum_{k=0}^{\infty} q_k W_{\bullet}^{(l+k-2)} + 2 \sum_{p=0}^{l-2} W^{(p)} W_{\bullet}^{(l-p-2)}$

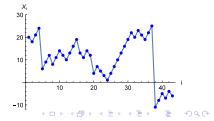
► Read off: $\mathbb{P}(l_{i+1} = l + k | l_i = l) = \frac{W_{\bullet}^{(l+k)}}{W_{\bullet}^{(l)}} \times \begin{cases} q_{k+2} & k \ge -1\\ 2W^{(-k-2)} & k \le -2 \end{cases}$

• Loop equations: $W_{\bullet}^{(l)} = \sum_{k=0}^{\infty} q_k W_{\bullet}^{(l+k-2)} + 2 \sum_{p=0}^{l-2} W^{(p)} W_{\bullet}^{(l-p-2)}$

► Read off:
$$\mathbb{P}(l_{i+1} = l + k | l_i = l) = \frac{W_{\bullet}^{(l+k)}}{W_{\bullet}^{(l)}} \times \begin{cases} q_{k+2} & k \ge -1\\ 2W^{(-k-2)} & k \le -2 \end{cases}$$

▶ In the limit $I \to \infty$ this defines a random walk $(X_i)_{i \ge 0}$ with step probabilities

$$u(k) := \lim_{l \to \infty} \mathbb{P}(l_{i+1} = l + k | l_i = l) = egin{cases} q_{k+2} c_+^k & k \geq -1 \ 2W^{(-k-2)} c_+^k & k \leq -2 \end{cases}$$



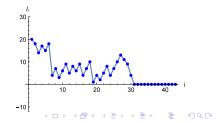
• Loop equations: $W_{\bullet}^{(l)} = \sum_{k=0}^{\infty} q_k W_{\bullet}^{(l+k-2)} + 2 \sum_{p=0}^{l-2} W^{(p)} W_{\bullet}^{(l-p-2)}$

► Read off:
$$\mathbb{P}(l_{i+1} = l + k | l_i = l) = \frac{W_{\bullet}^{(l+k)}}{W_{\bullet}^{(l)}} \times \begin{cases} q_{k+2} & k \ge -1\\ 2W^{(-k-2)} & k \le -2 \end{cases}$$

▶ In the limit $I \to \infty$ this defines a random walk $(X_i)_{i \ge 0}$ with step probabilities

$$u(k) := \lim_{l \to \infty} \mathbb{P}(l_{i+1} = l + k | l_i = l) = egin{cases} q_{k+2} c_+^k & k \geq -1 \ 2W^{(-k-2)} c_+^k & k \leq -2 \end{cases}$$

► (*l_i*)_{*i*} is obtained from (*X_i*)_{*i*} by conditioning to hit 0 before hitting Z_{<0}. Analogous to [Curien, Le Gall, '14]



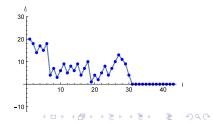
• Loop equations: $W_{\bullet}^{(l)} = \sum_{k=0}^{\infty} q_k W_{\bullet}^{(l+k-2)} + 2 \sum_{p=0}^{l-2} W^{(p)} W_{\bullet}^{(l-p-2)}$

- Read off: $\mathbb{P}(l_{i+1} = l + k | l_i = l) = \frac{h_r^{(0)}(l+k)}{h_r^{(0)}(l)} \nu(k)$
- In the limit *I* → ∞ this defines a random walk (*X_i*)_{*i*≥0} with step probabilities

$$\nu(k) := \lim_{l \to \infty} \mathbb{P}(l_{i+1} = l + k | l_i = l) = \begin{cases} q_{k+2} c_+^k & k \ge -1 \\ 2W^{(-k-2)} c_+^k & k \le -2 \end{cases}$$

- ► (*l_i*)_{*i*} is obtained from (*X_i*)_{*i*} by conditioning to hit 0 before hitting Z_{<0}. Analogous to [Curien, Le Gall, '14]
- Known as a Doob transform w.r.t.

$$h_r^{(0)} := W_{ullet}^{(l)} c_+^{-l}$$



• What properties does ν satisfy (when **q** admissible)?

• What properties does ν satisfy (when **q** admissible)?

• Does not drift to ∞ : $\mathbb{P}(X_k > 0 \text{ for all } k) = 0.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• What properties does ν satisfy (when **q** admissible)?

- Does not drift to ∞ : $\mathbb{P}(X_k > 0 \text{ for all } k) = 0.$
- $h_r^{(0)}$ is ν -harmonic on $\mathbb{Z}_{>0}$:

$$\sum_{k=-\infty}^{\infty} h_r^{(0)}(l+k)
u(k) = h_r^{(0)}(l) \quad ext{for all } l > 0.$$

► Here
$$h_r^{(0)} : \mathbb{Z} \to \mathbb{R}$$
 for $r \in (-1, 1]$ is given by

$$h_r^{(0)}(l) = [y^{-l-1}] \frac{1}{\sqrt{(y-1)(y+r)}} \sim l^{-1/2}.$$

What properties does v satisfy (when q admissible)?

- Does not drift to ∞ : $\mathbb{P}(X_k > 0 \text{ for all } k) = 0.$
- $h_r^{(0)}$ is ν -harmonic on $\mathbb{Z}_{>0}$:

$$\sum_{k=-\infty}^{\infty} h_r^{(0)}(l+k)
u(k) = h_r^{(0)}(l)$$
 for all $l>0$

Using Miermont's criteria for admissibility & criticality: [Miermont,'06]

Proposition (TB,'15)

The relation
$$q_k = (\nu(-2)/2)^{(k-2)/2}\nu(k-2)$$
 determines a bijection
{admissible \mathbf{q} } $\leftrightarrow \left\{ (\nu, r) : \begin{array}{l} h_r^{(0)} \text{ is } \nu \text{-harmonic on } \mathbb{Z}_{>0} \\ \text{and does not drift to } \infty \end{array} \right\}.$

• Here
$$h_r^{(0)}: \mathbb{Z} \to \mathbb{R}$$
 for $r \in (-1, 1]$ is given by

$$h_r^{(0)}(l) = [y^{-l-1}] \frac{1}{\sqrt{(y-1)(y+r)}} \sim l^{-1/2}$$

What properties does v satisfy (when q admissible)?

- Does not drift to ∞ : $\mathbb{P}(X_k > 0 \text{ for all } k) = 0.$
- $h_r^{(0)}$ is ν -harmonic on $\mathbb{Z}_{>0}$:

$$\sum_{k=-\infty}^{\infty} h_r^{(0)}(l+k)
u(k) = h_r^{(0)}(l)$$
 for all $l>0$

Using Miermont's criteria for admissibility & criticality: [Miermont,'06]

Proposition (TB,'15)

The relation
$$q_k = (\nu(-2)/2)^{(k-2)/2}\nu(k-2)$$
 determines a bijection
{admissible \mathbf{q} } $\leftrightarrow \left\{ (\nu, r) : \begin{array}{l} h_r^{(0)} \text{ is } \nu\text{-harmonic on } \mathbb{Z}_{>0} \\ \text{and does not drift to } \infty \end{array} \right\}.$
{critical \mathbf{q} } $\leftrightarrow \left\{ (\nu, r) : \begin{array}{l} h_r^{(0)} \text{ is } \nu\text{-harmonic on } \mathbb{Z}_{>0} \\ \text{and does not drift to } \pm \infty \end{array} \right\}.$

• Here
$$h_r^{(0)}: \mathbb{Z} \to \mathbb{R}$$
 for $r \in (-1, 1]$ is given by

$$h_r^{(0)}(l) = [y^{-l-1}] \frac{1}{\sqrt{(y-1)(y+r)}} \sim l^{-1/2}$$

- What properties does ν satisfy (when **q** admissible)?
 - Does not drift to ∞ : $\mathbb{P}(X_k > 0 \text{ for all } k) = 0.$
 - $h_r^{(0)}$ is ν -harmonic on $\mathbb{Z}_{>0}$:

$$\sum_{k=-\infty}^{\infty} h_r^{(0)}(l+k)
u(k) = h_r^{(0)}(l) \quad ext{for all } l>0$$

Using Miermont's criteria for admissibility & criticality: [Miermont,'06]

Proposition (TB,'15)

The relation
$$q_k = (\nu(-2)/2)^{(k-2)/2}\nu(k-2)$$
 determines a bijection
 $\{admissible \mathbf{q}\} \leftrightarrow \left\{ (\nu, r) : \begin{array}{l} h_r^{(0)} \text{ is } \nu\text{-harmonic on } \mathbb{Z}_{>0} \\ and \sum_{k=0}^{\infty} h_r^{(1)}(k+1)\nu(k) \leq 1 \end{array} \right\}.$
 $\{critical \mathbf{q}\} \leftrightarrow \left\{ (\nu, r) : \begin{array}{l} h_r^{(0)} \text{ is } \nu\text{-harmonic on } \mathbb{Z}_{>0} \\ and \sum_{k=0}^{\infty} h_r^{(1)}(k+1)\nu(k) = 1 \end{array} \right\}.$

► Here
$$h_r^{(k)} : \mathbb{Z} \to \mathbb{R}$$
 for $r \in (-1, 1]$ is given by

$$h_r^{(k)}(l) = [y^{-l-1}] \frac{1}{(y-1)^{k+1/2}\sqrt{y+r}} \sim l^{k-1/2}.$$

What properties does v satisfy (when q admissible)?

- Does not drift to ∞ : $\mathbb{P}(X_k > 0 \text{ for all } k) = 0.$
- $h_r^{(0)}$ is ν -harmonic on $\mathbb{Z}_{>0}$:

$$\sum_{k=-\infty}^{\infty} h_r^{(0)}(l+k)
u(k) = h_r^{(0)}(l)$$
 for all $l>0$

Using Miermont's criteria for admissibility & criticality: [Miermont,'06]

Proposition (TB,'15)

The relation
$$q_k = (\nu(-2)/2)^{(k-2)/2}\nu(k-2)$$
 determines a bijection
 $\{admissible \mathbf{q}\} \leftrightarrow \left\{ (\nu, r) : \begin{array}{l} h_r^{(0)} \text{ is } \nu\text{-harmonic on } \mathbb{Z}_{>0} \\ and \sum_{k=0}^{\infty} h_r^{(1)}(k+1)\nu(k) \leq 1 \end{array} \right\}.$

 $\{critical \mathbf{q}\} \leftrightarrow \left\{ (\nu, r) : h_r^{(1)} \text{ is } \nu\text{-harmonic on } \mathbb{Z}_{>0} \right\}.$

• Here
$$h_r^{(k)}: \mathbb{Z} \to \mathbb{R}$$
 for $r \in (-1, 1]$ is given by

$$h_r^{(k)}(l) = [y^{-l-1}] \frac{1}{(y-1)^{k+1/2}\sqrt{y+r}} \sim l^{k-1/2}$$

Local topology: "Two rooted planar maps are close if they have identical geodesic balls of large radius around the root; the larger the radius, the closer they are."

Local topology: "Two rooted planar maps are close if they have identical geodesic balls of large radius around the root; the larger the radius, the closer they are."

Theorem (Stephenson, '14)

Let **q** be a critical weight sequence and m_n be rooted and pointed **q**-Boltzmann planar maps conditioned to have n vertices. Then there exists a random infinite planar map m_∞ (the **q**-IBPM) such that $m_n \xrightarrow{(d)} m_\infty$ in the local topology as $n \to \infty$ (along a subsequence of \mathbb{Z}).

Local topology: "Two rooted planar maps are close if they have identical geodesic balls of large radius around the root; the larger the radius, the closer they are."

Theorem (Stephenson, '14)

Let **q** be a critical weight sequence and m_n be rooted and pointed **q**-Boltzmann planar maps conditioned to have n vertices. Then there exists a random infinite planar map m_{∞} (the **q**-IBPM) such that $m_n \xrightarrow{(d)} m_{\infty}$ in the local topology as $n \to \infty$ (along a subsequence of \mathbb{Z}).

► The lazy peeling process extends naturally to the **q**-IBPM.

Local topology: "Two rooted planar maps are close if they have identical geodesic balls of large radius around the root; the larger the radius, the closer they are."

Theorem (Stephenson, '14)

Let **q** be a critical weight sequence and m_n be rooted and pointed **q**-Boltzmann planar maps conditioned to have n vertices. Then there exists a random infinite planar map m_{∞} (the **q**-IBPM) such that $m_n \xrightarrow{(d)} m_{\infty}$ in the local topology as $n \to \infty$ (along a subsequence of \mathbb{Z}).

► The lazy peeling process extends naturally to the **q**-IBPM.

Theorem (TB, '15)

The perimeter process $(l_i)_{i\geq 0}$ of the **q**-IBPM is obtained from that of the **q**-BPM by conditioning it to stay positive.

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Local topology: "Two rooted planar maps are close if they have identical geodesic balls of large radius around the root; the larger the radius, the closer they are."

Theorem (Stephenson, '14)

Let **q** be a critical weight sequence and m_n be rooted and pointed **q**-Boltzmann planar maps conditioned to have n vertices. Then there exists a random infinite planar map m_{∞} (the **q**-IBPM) such that $m_n \xrightarrow{(d)} m_{\infty}$ in the local topology as $n \to \infty$ (along a subsequence of \mathbb{Z}).

► The lazy peeling process extends naturally to the **q**-IBPM.

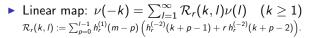
Theorem (TB, '15)

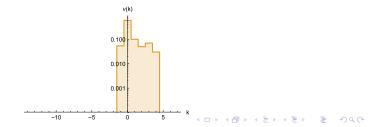
The perimeter process $(l_i)_{i\geq 0}$ of the **q**-IBPM is obtained from that of the **q**-BPM by conditioning it to stay positive.

▶ In fact, $(I_i)_{i\geq 0}$ is the Doob transform of $(X_i)_{i\geq 0}$ w.r.t. $h_r^{(1)}$:

$$\mathbb{P}(I_{i+1} = I + k | I_i = I) = \frac{h_r^{(1)}(I + k)}{h_r^{(1)}(I)} \nu(k).$$

Properties of critical ν

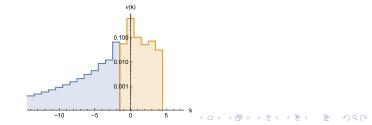




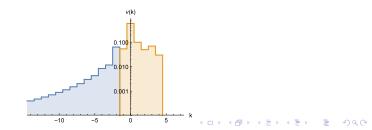
Properties of critical $\boldsymbol{\nu}$

• Linear map:
$$\nu(-k) = \sum_{l=1}^{\infty} \mathcal{R}_r(k, l) \nu(l) \quad (k \ge 1)$$

 $\mathcal{R}_r(k, l) := \sum_{p=0}^{l-1} h_r^{(1)}(m-p) \left(h_r^{(-2)}(k+p-1) + r h_r^{(-2)}(k+p-2) \right).$



- Linear map: $\nu(-k) = \sum_{l=1}^{\infty} \mathcal{R}_r(k, l)\nu(l) \quad (k \ge 1)$ $\mathcal{R}_r(k, l) := \sum_{p=0}^{l-1} h_r^{(1)}(m-p) \left(h_r^{(-2)}(k+p-1) + r h_r^{(-2)}(k+p-2)\right).$
- Since $h_r^{(1)}(k) \sim \sqrt{k}$ as $k \to \infty$, need $\sum_{k=1}^{\infty} \nu(k) \sqrt{k} < \infty$.



- Linear map: $\nu(-k) = \sum_{l=1}^{\infty} \mathcal{R}_r(k, l) \nu(l) \quad (k \ge 1)$ $\mathcal{R}_r(k, l) := \sum_{p=0}^{l-1} h_r^{(1)}(m-p) \left(h_r^{(-2)}(k+p-1) + r h_r^{(-2)}(k+p-2)\right).$
- Since $h_r^{(1)}(k) \sim \sqrt{k}$ as $k \to \infty$, need $\sum_{k=1}^{\infty} \nu(k) \sqrt{k} < \infty$.

v(k

0

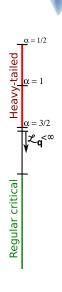
5

0.100

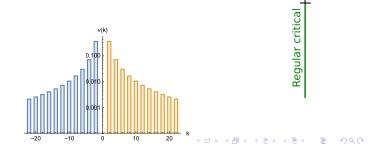
-10

-5

Distinguish different cases:



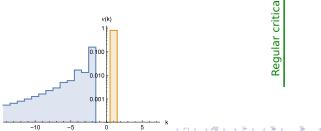
- Linear map: $\nu(-k) = \sum_{l=1}^{\infty} \mathcal{R}_r(k, l)\nu(l) \quad (k \ge 1)$ $\mathcal{R}_r(k,l) := \sum_{p=0}^{l-1} h_r^{(1)}(m-p) \left(h_r^{(-2)}(k+p-1) + r h_r^{(-2)}(k+p-2) \right).$
- Since $h_r^{(1)}(k) \sim \sqrt{k}$ as $k \to \infty$, need $\sum_{k=1}^{\infty} \nu(k) \sqrt{k} < \infty$. $\alpha = 1/2$
- Distinguish different cases:
- istinguish different cases: Heavy-tailed: $\nu(k) \sim k^{-\alpha-1}$, $\alpha \in [1/2, 3/2]$. See also [Le Gall, μ] $\alpha = 1$ Miermont, '11].



 $\alpha = 3/2$

- Linear map: $\nu(-k) = \sum_{l=1}^{\infty} \mathcal{R}_r(k, l)\nu(l) \quad (k \ge 1)$ $\mathcal{R}_r(k,l) := \sum_{p=0}^{l-1} h_r^{(1)}(m-p) \left(h_r^{(-2)}(k+p-1) + r h_r^{(-2)}(k+p-2) \right).$
- Since $h_r^{(1)}(k) \sim \sqrt{k}$ as $k \to \infty$, need $\sum_{k=1}^{\infty} \nu(k) \sqrt{k} < \infty$. $\alpha = 1/2$ led
- Distinguish different cases:
 - Heavy-tailed: $\nu(k) \sim k^{-\alpha-1}$, $\alpha \in [1/2, 3/2]$. See also [Le Gall, $\frac{100}{2}$ $\alpha = 1$ Miermont, '11].
 - Non-heavy-tailed: $\mathcal{L}_{\mathbf{q}} := \sum_{k=1}^{\infty} h_r^{(2)}(k+1)\nu(k) < \infty$. $(h_r^{(2)}(k) \sim k^{3/2})$ Asymptotics of $\mathcal{R}_r(k, l)$ gives

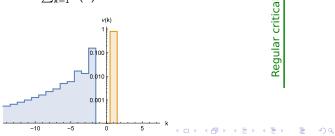
$$u(-k)\sim rac{3\mathcal{L}_{\mathbf{q}}\sqrt{1+r}}{4\sqrt{\pi}}k^{-5/2}$$



 $\alpha = 3/2$

- Linear map: $\nu(-k) = \sum_{l=1}^{\infty} \mathcal{R}_r(k, l)\nu(l) \quad (k \ge 1)$ $\mathcal{R}_r(k,l) := \sum_{p=0}^{l-1} h_r^{(1)}(m-p) \left(h_r^{(-2)}(k+p-1) + r h_r^{(-2)}(k+p-2) \right).$
- Since $h_r^{(1)}(k) \sim \sqrt{k}$ as $k \to \infty$, need $\sum_{k=1}^{\infty} \nu(k)\sqrt{k} < \infty$. $\alpha = 1/2$ ed
- Distinguish different cases:
 - Heavy-tailed: $\nu(k) \sim k^{-\alpha-1}$, $\alpha \in [1/2, 3/2]$. See also [Le Gall, $\frac{1}{2}$] $\alpha = 1$ Miermont, '11].
 - Non-heavy-tailed: $\mathcal{L}_{\mathbf{q}} := \sum_{k=1}^{\infty} h_r^{(2)}(k+1)\nu(k) < \infty$. $(h_r^{(2)}(k) \sim k^{3/2})$ Asymptotics of $\mathcal{R}_r(k, l)$ gives $u(-k) \sim \frac{3\mathcal{L}_{q}\sqrt{1+r}}{4\sqrt{\pi}}k^{-5/2}$

• Regular critical: $\sum_{k=1}^{\infty} \nu(k) C^k < \infty$ for some C > 1.



 $\alpha = 3/2$

Scaling limit for regular critical ${\bf q}$

► Tails and no drift imply (weak) convergence to 3/2-stable process with negative jumps

$$\left(\frac{X_{\lfloor nt \rfloor}}{\left(\sqrt{1+r}\mathcal{L}_{\mathbf{q}}n\right)^{\frac{2}{3}}}\right)_{t \ge 0} \xrightarrow[n \to \infty]{(\mathrm{d})} S_{3/2}(t)$$

Scaling limit for regular critical **q**

► Tails and no drift imply (weak) convergence to 3/2-stable process with negative jumps

$$\left(\frac{I_{\lfloor nt \rfloor}}{\left(\sqrt{1+r}\mathcal{L}_{\mathbf{q}}n\right)^{\frac{2}{3}}}\right)_{t \ge 0} \xrightarrow[n \to \infty]{(d)} S_{3/2}^+(t)$$

 Invariance principle: same holds when conditioned.[Caravenna, Chaumont, '08][Curien, Le Gall, '14]

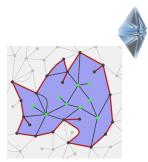
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Scaling limit for regular critical **q**

 Tails and no drift imply (weak) convergence to 3/2-stable process with negative jumps

$$\left(\frac{I_{\lfloor nt \rfloor}}{\left(\sqrt{1+r}\mathcal{L}_{\mathbf{q}}n\right)^{\frac{2}{3}}}\right)_{t \ge 0} \xrightarrow[n \to \infty]{(\mathrm{d})} S_{3/2}^{+}(t)$$

- Invariance principle: same holds when conditioned.[Caravenna, Chaumont, '08][Curien, Le Gall, '14]
 - Let $(V_i)_{i\geq 0}$ be the number of *explored vertices* after *i* steps.



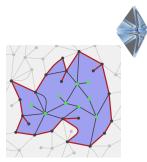
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Scaling limit for regular critical **q**

 Tails and no drift imply (weak) convergence to 3/2-stable process with negative jumps

$$\left(\frac{I_{\lfloor nt \rfloor}}{\left(\sqrt{1+r}\mathcal{L}_{\mathbf{q}}n\right)^{\frac{2}{3}}}\right)_{t \ge 0} \xrightarrow[n \to \infty]{(\mathrm{d})} S_{3/2}^{+}(t)$$

 Invariance principle: same holds when conditioned.[Caravenna, Chaumont, '08][Curien, Le Gall, '14]

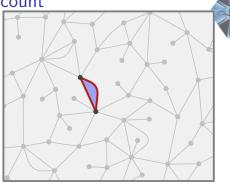


- Let $(V_i)_{i\geq 0}$ be the number of *explored vertices* after *i* steps.
- Checking the details of the proof of Curien and Le Gall:

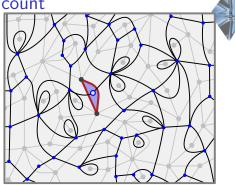
Theorem (TB '15 based on Curien, Le Gall, '14)

The perimeter $(I_i)_{i\geq 0}$ and volume $(V_i)_{i\geq 0}$ of a peeling of a regular critical **q**-IBPM converge jointly in distribution in the sense of Skorokhod to

$$\begin{pmatrix} I_{\lfloor nt \rfloor} & V_{\lfloor nt \rfloor} \\ \overline{\mathbf{p}_{\mathbf{q}}^{\ell} n^{2/3}}, \overline{\mathbf{v}_{\mathbf{q}}^{\ell} n^{4/3}} \end{pmatrix}_{t \ge 0} \xrightarrow[n \to \infty]{(d)} (S_{3/2}^{+}(t), Z(t))_{t \ge 0} \qquad \mathbf{p}_{\mathbf{q}}^{\ell} = (\sqrt{1+r} \mathcal{L}_{\mathbf{q}})^{2/3} \\ \mathbf{v}_{\mathbf{q}}^{\ell} = \frac{8}{3c_{+}^{2}} \left(\frac{\mathcal{L}_{\mathbf{q}}}{1+r}\right)^{1/3}$$

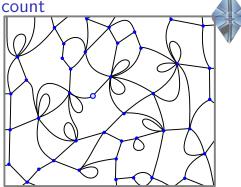


▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへ⊙

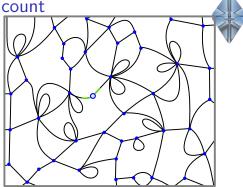


◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

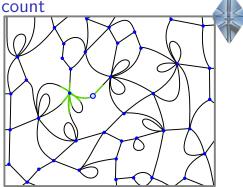
 Assign random exp(1)-lengths to dual edges.



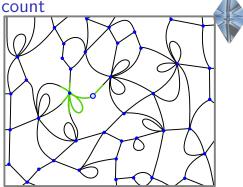
 Assign random exp(1)-lengths to dual edges.



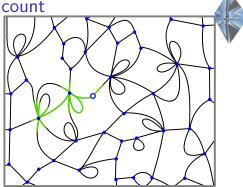
 Assign random exp(1)-lengths to dual edges.



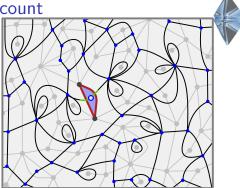
 Assign random exp(1)-lengths to dual edges.



 Assign random exp(1)-lengths to dual edges.

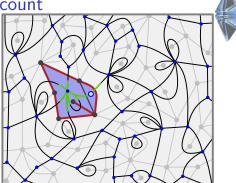


- Assign random exp(1)-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.



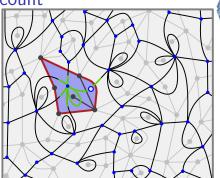
(日)、

- Assign random exp(1)-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.



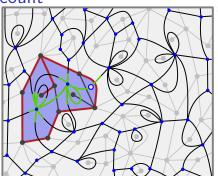
(日)、

- Assign random exp(1)-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.



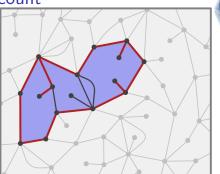
(日)、

- Assign random exp(1)-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.



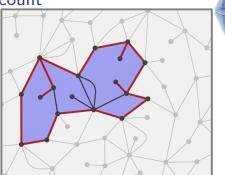
(日)、

- Assign random exp(1)-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.

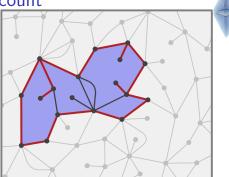


◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

- Assign random exp(1)-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.

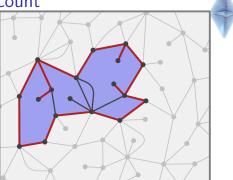


- Assign random exp(1)-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let (*T_i*)_{i≥0} be time at which the i'th peeling step occurs.



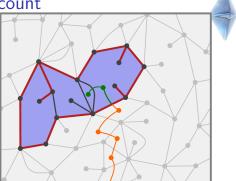
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

- Assign random exp(1)-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let (*T_i*)_{i≥0} be time at which the i'th peeling step occurs.
- Knowing (*l_i*)_{*i*≥0}: *T_i* = ∑^{*i*}_{*j*=1} ^{*c_j*}_{*l_j*-1}, where *c_j* are independent exp(1) random variables.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

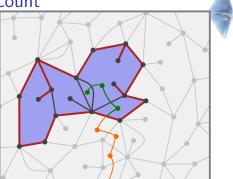
- Assign random exp(1)-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let (*T_i*)_{i≥0} be time at which the i'th peeling step occurs.
- Knowing (*l_i*)_{*i*≥0}: *T_i* = ∑^{*i*}_{*j*=1} ℓ_{*j*−1}, where ℓ_{*j*} are independent exp(1) random variables.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let the hop count H_i be # of edges explored of a shortest-time path to some faraway vertex after i steps.

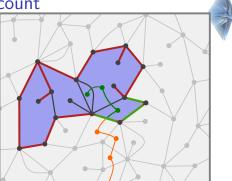
- Assign random exp(1)-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let (*T_i*)_{i≥0} be time at which the i'th peeling step occurs.
- Knowing (*l_i*)_{*i*≥0}: *T_i* = ∑^{*i*}_{*j*=1} ℓ_{*j*−1}, where ℓ_{*j*} are independent exp(1) random variables.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let the hop count H_i be # of edges explored of a shortest-time path to some faraway vertex after i steps.

- Assign random exp(1)-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let (*T_i*)_{i≥0} be time at which the i'th peeling step occurs.
- Knowing (*l_i*)_{*i*≥0}: *T_i* = ∑^{*i*}_{*j*=1} ℓ_{*j*−1}, where ℓ_{*j*} are independent exp(1) random variables.

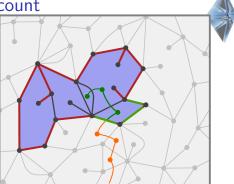


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ Let the *hop count H_i* be # of edges explored of a shortest-time path to some faraway vertex after *i* steps. Knowing (*l_i*)_{*i*≥0}:

$$H_i = \sum_{j=1}^i \mathfrak{b}_j, \quad \mathfrak{b}_j \in \{0,1\}, \quad \mathbb{P}(\mathfrak{b}_j = 1) = \begin{cases} 0 & \text{if } l_j < l_{j-1} \\ \frac{l_j - l_{j-1} + 1}{l_j} & \text{if } l_j \ge l_{j-1} \end{cases}$$

- Assign random exp(1)-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let (*T_i*)_{i≥0} be time at which the i'th peeling step occurs.
- Knowing (*l_i*)_{*i*≥0}: *T_i* = ∑^{*i*}_{*j*=1} ℓ_{*j*−1}, where ℓ_{*j*} are independent exp(1) random variables.



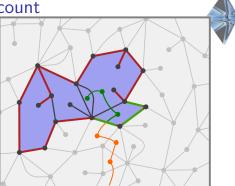
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ Let the hop count H_i be # of edges explored of a shortest-time path to some faraway vertex after i steps. Knowing (l_i)_{i≥0}:

$$H_i = \sum_{j=1}^i \mathfrak{b}_j, \quad \mathfrak{b}_j \in \{0,1\}, \quad \mathbb{P}(\mathfrak{b}_j = 1) = \begin{cases} 0 & \text{if } l_j < l_{j-1} \\ \frac{l_j - l_{j-1} + 1}{l_j} & \text{if } l_j \ge l_{j-1} \end{cases}.$$

• $(I_i, T_i, H_i)_{i \ge 0}$ is a Markov process.

- Assign random exp(1)-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let (*T_i*)_{i≥0} be time at which the i'th peeling step occurs.
- Knowing (l_i)_{i≥0}: T_i = ∑ⁱ_{j=1} e_j/l_{j-1}, where e_j are independent exp(1) random variables.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

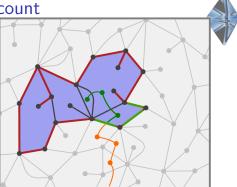
▶ Let the *hop count H_i* be # of edges explored of a shortest-time path to some faraway vertex after *i* steps. Knowing (*l_i*)_{*i*≥0}:

$$H_i = \sum_{j=1}^i \mathfrak{b}_j, \quad \mathfrak{b}_j \in \{0,1\}, \quad \mathbb{P}(\mathfrak{b}_j = 1) = \begin{cases} 0 & \text{if } l_j < l_{j-1} \\ \frac{l_j - l_{j-1} + 1}{l_j} & \text{if } l_j \ge l_{j-1} \end{cases}$$

► $(I_i, T_i, H_i)_{i \ge 0}$ is a Markov process. For regular critical **q** we have

$$\mathbb{E}(H_{i+1}-H_i|I_i) = \sum_{k=0}^{\infty} \frac{k+1}{k+I_i} \frac{h_r^{(1)}(k+I_i)}{h_r^{(1)}(I_i)} \nu(k)$$

- Assign random exp(1)-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let (*T_i*)_{i≥0} be time at which the i'th peeling step occurs.
- Knowing (l_i)_{i≥0}: T_i = ∑ⁱ_{j=1} e_j/l_{j-1}, where e_j are independent exp(1) random variables.



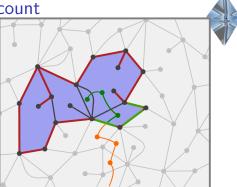
► Let the hop count H_i be # of edges explored of a shortest-time path to some faraway vertex after i steps. Knowing (l_i)_{i≥0}:

$$H_i = \sum_{j=1}^i \mathfrak{b}_j, \quad \mathfrak{b}_j \in \{0,1\}, \quad \mathbb{P}(\mathfrak{b}_j = 1) = \begin{cases} 0 & \text{if } l_j < l_{j-1} \\ \frac{l_j - l_{j-1} + 1}{l_j} & \text{if } l_j \ge l_{j-1} \end{cases}$$

▶ $(I_i, T_i, H_i)_{i \ge 0}$ is a Markov process. For regular critical **q** we have

$$\mathbb{E}(H_{i+1}-H_i|l_i) = \sum_{k=0}^{\infty} \frac{k+1}{k+l_i} \frac{h_r^{(1)}(k+l_i)}{h_r^{(1)}(l_i)} \nu(k) = \sum_{k=0}^{\infty} (k+1)\nu(k) \mathbb{E}(T_{i+1}-T_i|l_i) + \mathcal{O}(l_i^{-1})$$

- Assign random exp(1)-lengths to dual edges.
- Associated peeling: choose peel edge uniformly in frontier.
- Let (*T_i*)_{i≥0} be time at which the i'th peeling step occurs.
- Knowing (*l_i*)_{*i*≥0}: *T_i* = ∑^{*i*}_{*j*=1} ℓ_{*j*}/*l_j*-1</sub>, where ℓ_{*j*} are independent exp(1) random variables.



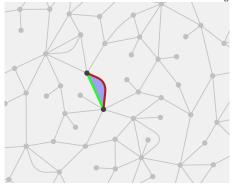
▶ Let the *hop count H_i* be # of edges explored of a shortest-time path to some faraway vertex after *i* steps. Knowing (*l_i*)_{*i*≥0}:

$$H_i = \sum_{j=1}^i \mathfrak{b}_j, \quad \mathfrak{b}_j \in \{0,1\}, \quad \mathbb{P}(\mathfrak{b}_j = 1) = \begin{cases} 0 & \text{if } l_j < l_{j-1} \\ \frac{l_j - l_{j-1} + 1}{l_j} & \text{if } l_j \ge l_{j-1} \end{cases}$$

▶ $(I_i, T_i, H_i)_{i \ge 0}$ is a Markov process. For regular critical **q** we have

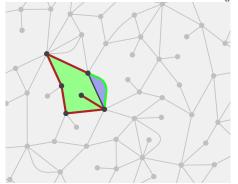
$$\mathbb{E}(H_{i+1}-H_i|l_i) = \sum_{k=0}^{\infty} \frac{k+1}{k+l_i} \frac{h_r^{(1)}(k+l_i)}{h_r^{(1)}(l_i)} \nu(k) = \sum_{k=0}^{\infty} \frac{(k+1)\nu(k)}{k} \mathbb{E}(T_{i+1}-T_i|l_i) + \mathcal{O}(l_i^{-1})$$

 Choose peel edge deterministically: breadth first exploration.

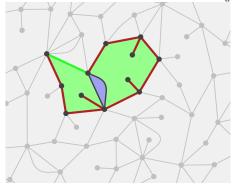


(日) (個) (E) (E) (E)

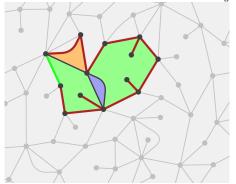
 Choose peel edge deterministically: breadth first exploration.



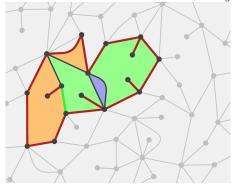
 Choose peel edge deterministically: breadth first exploration.



 Choose peel edge deterministically: breadth first exploration.

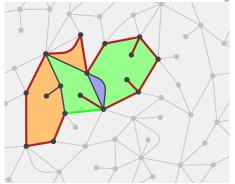


 Choose peel edge deterministically: breadth first exploration.



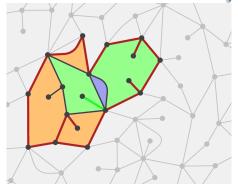
(日) (四) (王) (王) (王)

 Choose peel edge deterministically: breadth first exploration.



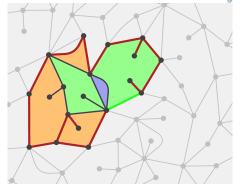
(日) (個) (E) (E) (E)

 Choose peel edge deterministically: breadth first exploration.

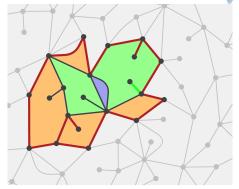


(日) (個) (目) (目) (目) (目)

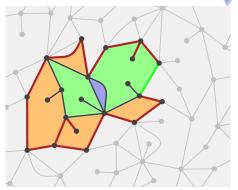
 Choose peel edge deterministically: breadth first exploration.



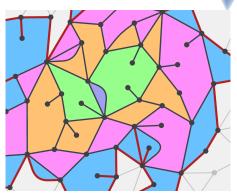
 Choose peel edge deterministically: breadth first exploration.



 Choose peel edge deterministically: breadth first exploration.



- Choose peel edge deterministically: breadth first exploration.
- Let d_i be the average distance from frontier to root face.



- Choose peel edge deterministically: breadth first exploration.
- ► Let *d_i* be the average distance from frontier to root face.
- Frontier of the form: N_i⁽⁰⁾ edges at distance d followed by N_i⁽¹⁾ edges at distance d+1, where d = ⌊d_i⌋.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

- Choose peel edge deterministically: breadth first exploration.
- ► Let *d_i* be the average distance from frontier to root face.
- Frontier of the form: N_i⁽⁰⁾ edges at distance *d* followed by N_i⁽¹⁾ edges at distance *d*+1, where *d* = ⌊*d_i*⌋.
- Write

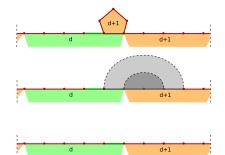
$$d_i = \lfloor d_i \rfloor + 1/2 + (N_i^{(1)} - N_i^{(0)})/(2I_i)$$

- Choose peel edge deterministically: breadth first exploration.
- ► Let *d_i* be the average distance from frontier to root face.
- Frontier of the form: N_i⁽⁰⁾ edges at distance *d* followed by N_i⁽¹⁾ edges at distance *d*+1, where *d* = ⌊*d_i*⌋.
- Write

$$d_i = \lfloor d_i \rfloor + 1/2 + (N_i^{(1)} - N_i^{(0)})/(2I_i)$$

- Choose peel edge deterministically: breadth first exploration.
- Let d_i be the average distance from frontier to root face.
- Frontier of the form: N_i⁽⁰⁾ edges at distance d followed by N_i⁽¹⁾ edges at distance d+1, where d = ⌊d_i⌋.
- Write

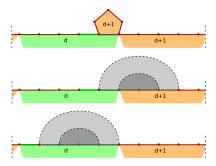
$$d_i = \lfloor d_i \rfloor + 1/2 + (N_i^{(1)} - N_i^{(0)})/(2I_i)$$



(日)、

- Choose peel edge deterministically: breadth first exploration.
- Let d_i be the average distance from frontier to root face.
- Frontier of the form: N_i⁽⁰⁾ edges at distance d followed by N_i⁽¹⁾ edges at distance d+1, where d = ⌊d_i⌋.
- Write

$$d_i = \lfloor d_i \rfloor + 1/2 + (N_i^{(1)} - N_i^{(0)})/(2I_i)$$

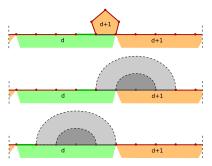


・ロト ・ 雪 ト ・ ヨ ト

-

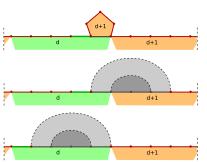
- Choose peel edge deterministically: breadth first exploration.
- ► Let *d_i* be the average distance from frontier to root face.
- Frontier of the form: N_i⁽⁰⁾ edges at distance d followed by N_i⁽¹⁾ edges at distance d+1, where d = ⌊d_i⌋.
- Write
 - $d_i = \lfloor d_i \rfloor + 1/2 + (N_i^{(1)} N_i^{(0)})/(2I_i)$
- If $N_i^{(0)}$ and $N_i^{(1)}$ both large then

$$\mathbb{E}(d_{i+1} - d_i | l_i) = rac{1}{2l_i} \Big[1 + \sum_{k=0}^{\infty} (k+1)
u(k) \Big] + \mathcal{O}(l_i^{-2})$$



・ロト ・ 雪 ト ・ ヨ ト

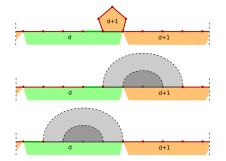
- Choose peel edge deterministically: breadth first exploration.
- ► Let *d_i* be the average distance from frontier to root face.
- Frontier of the form: N_i⁽⁰⁾ edges at distance d followed by N_i⁽¹⁾ edges at distance d+1, where d = ⌊d_i⌋.
- Write
 - $d_i = \lfloor d_i \rfloor + 1/2 + (N_i^{(1)} N_i^{(0)})/(2I_i)$
- If $N_i^{(0)}$ and $N_i^{(1)}$ both large then



・ロト ・ 雪 ト ・ ヨ ト

$$\mathbb{E}(d_{i+1} - d_i | l_i) = \frac{1}{2l_i} \Big[1 + \sum_{k=0}^{\infty} (k+1)\nu(k) \Big] + \mathcal{O}(l_i^{-2}) = \frac{1}{l_i} \frac{1 + \mathcal{H}_{\mathbf{q}}}{2} + \mathcal{O}(l_i^{-2})$$

- Choose peel edge deterministically: breadth first exploration.
- Let d_i be the average distance from frontier to root face.
- Frontier of the form: N_i⁽⁰⁾ edges at distance d followed by N_i⁽¹⁾ edges at distance d+1, where d = ⌊d_i⌋.
- Write $d_i = \lfloor d_i \rfloor + 1/2 + (N_i^{(1)} - N_i^{(0)})/(2I_i)$
- If $N_i^{(0)}$ and $N_i^{(1)}$ both large then

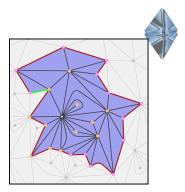


$$\mathbb{E}(d_{i+1}-d_i|l_i) = \frac{1}{2l_i} \Big[1 + \sum_{k=0}^{\infty} (k+1)\nu(k) \Big] + \mathcal{O}(l_i^{-2}) = \frac{1}{l_i} \frac{1+\mathcal{H}_{\mathbf{q}}}{2} + \mathcal{O}(l_i^{-2})$$

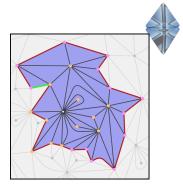
► Using E(T_{i+1} - T_i|l_i) = 1/l_i, and assuming asymptotically linear scaling, this suggests the asymptotic relation:

 $d_{\mathrm{gr}^*} pprox rac{1}{2}(T+H)$ for any regular critical **q**-IBPM

 Can adapt peeling process to graph distance: take peel edge to be frontier edge closest to root vertex.



- Can adapt peeling process to graph distance: take peel edge to be frontier edge closest to root vertex.
- Precise scaling limits for UIPT and UIPQ have been derived.[Curien, Le Gall, '14]



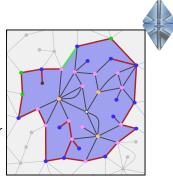
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

- Can adapt peeling process to graph distance: take peel edge to be frontier edge closest to root vertex.
- Precise scaling limits for UIPT and UIPQ have been derived.[Curien, Le Gall, '14]
- For general q the distances on the frontier are not so simple. Another route towards the scaling constants?



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

- Can adapt peeling process to graph distance: take peel edge to be frontier edge closest to root vertex.
- Precise scaling limits for UIPT and UIPQ have been derived.[Curien, Le Gall, '14]
- For general q the distances on the frontier are not so simple. Another route towards the scaling constants?



・ロト ・四ト ・ヨト ・ヨト ・ヨ

Theorem (Miermont, '06)

If **q** is regular critical and m_n is a **q**-BPM conditioned to have n vertices and v_1, v_2 are random vertices, then there exists a $C_{\mathbf{q}} > 0$ and a **q**-independent random variable d_{∞} s.t.

$$\frac{d_{m_n}(v_1,v_2)}{\mathcal{C}_{\mathbf{q}}n^{1/4}}\xrightarrow[n\to\infty]{(d)} d_{\infty}.$$

If **q** is regular critical and m_n is a **q**-BPM conditioned to have n vertices and v_1, v_2 are random vertices, then there exists a $C_q > 0$ and a **q**-independent random variable d_{∞} s.t.

$$\frac{d_{m_n}(v_1,v_2)}{\mathcal{C}_{\mathbf{q}}n^{1/4}} \xrightarrow[n\to\infty]{(d)} d_{\infty}.$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

• Miermont also outlined an algorithm to compute C_q .

If **q** is regular critical and m_n is a **q**-BPM conditioned to have n vertices and v_1, v_2 are random vertices, then there exists a $C_q > 0$ and a **q**-independent random variable d_{∞} s.t.

$$\frac{d_{m_n}(v_1,v_2)}{\mathcal{C}_{\mathbf{q}}n^{1/4}} \xrightarrow[n\to\infty]{(d)} d_{\infty}.$$

▶ Miermont also outlined an algorithm to compute C_q . With some hard work one can show: $C_q = \left(\frac{c_+^2}{96}(1+r)^3 \mathcal{L}_q\right)^{1/4}$

<ロ> (四) (四) (三) (三) (三) (三)

If **q** is regular critical and m_n is a **q**-BPM conditioned to have n vertices and v_1, v_2 are random vertices, then there exists a $C_{\mathbf{q}} > 0$ and a **q**-independent random variable d_{∞} s.t.

$$\frac{d_{m_n}(v_1,v_2)}{\mathcal{C}_{\mathbf{q}}n^{1/4}} \xrightarrow[n\to\infty]{(d)} d_{\infty}.$$

▶ Miermont also outlined an algorithm to compute C_q . With some hard work one can show: $C_q = \left(\frac{c_+^2}{96}(1+r)^3 \mathcal{L}_q\right)^{1/4}$

Combining with previous results and some (so far) heuristic arguments:

Conjecture

Let v be a random vertex at distance $d_{\rm gr}$ from the root in a regular **q**-IBPM, then we have the following limits in probability as $d_{\rm gr} \rightarrow \infty$ for its first-passage time T, hop count H, and dual graph distance $d_{\rm gr^*}$:

$$rac{H}{T} o \mathcal{H}_{\mathbf{q}}, \quad rac{d_{\mathrm{gr}^*}}{T} o rac{1+\mathcal{H}_{\mathbf{q}}}{2}, \quad rac{d_{\mathrm{gr}}}{T} o rac{1}{4}(1+r)\mathcal{L}_{\mathbf{q}}.$$

If **q** is regular critical and m_n is a **q**-BPM conditioned to have n vertices and v_1, v_2 are random vertices, then there exists a $C_{\mathbf{q}} > 0$ and a **q**-independent random variable d_{∞} s.t.

$$\frac{d_{m_n}(v_1,v_2)}{\mathcal{C}_{\mathbf{q}}n^{1/4}} \xrightarrow[n \to \infty]{(d)} d_{\infty}.$$

▶ Miermont also outlined an algorithm to compute C_q . With some hard work one can show: $C_q = \left(\frac{c_+^2}{96}(1+r)^3 \mathcal{L}_q\right)^{1/4}$

Combining with previous results and some (so far) heuristic arguments:

Conjecture

Let v be a random vertex at distance $d_{\rm gr}$ from the root in a regular **q**-IBPM, then we have the following limits in probability as $d_{\rm gr} \rightarrow \infty$ for its first-passage time T, hop count H, and dual graph distance $d_{\rm gr^*}$:

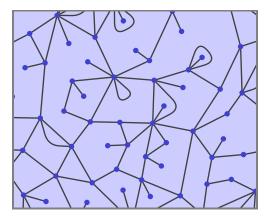
$$rac{H}{T} o \mathcal{H}_{\mathbf{q}}, \quad rac{d_{\mathrm{gr}^*}}{T} o rac{1+\mathcal{H}_{\mathbf{q}}}{2}, \quad rac{d_{\mathrm{gr}}}{T} o rac{1}{4}(1+r)\mathcal{L}_{\mathbf{q}}.$$

Seems to be settled for the UIPT. [Curien, Le Gall, to appear]

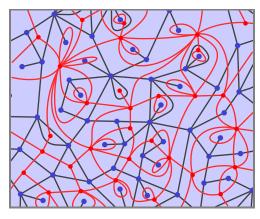
900

◆□>
◆□>
E>

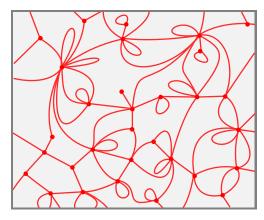
 Local limit of uniform random planar maps with fixed # vertices and faces.



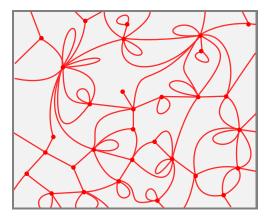
 Local limit of uniform random planar maps with fixed # vertices and faces.



Local limit of uniform random planar maps with fixed # vertices and faces. Both the primal and dual map are q-IBPM's with q a geometric sequence.



- Local limit of uniform random planar maps with fixed # vertices and faces. Both the primal and dual map are q-IBPM's with q a geometric sequence.
- Then necessarily ν(k) = ασ^k is a geometric sequence as well for k ≥ −1.



- Then necessarily ν(k) = ασ^k is a geometric sequence as well for k ≥ −1.
- Now impose that $h_r^{(1)}$ is ν -harmonic:

$$h_r^{(1)}(1) = \sum_{k=0}^{\infty} h_r^{(1)}(k+1)\nu(k)$$
$$h_r^{(1)}(2) = \sum_{k=-1}^{\infty} h_r^{(1)}(k+2)\nu(k)$$
$$h_r^{(1)}(3) = \sum_{k=-2}^{\infty} h_r^{(1)}(k+3)\nu(k)$$

- Then necessarily ν(k) = ασ^k is a geometric sequence as well for k ≥ −1.
- Now impose that $h_r^{(1)}$ is ν -harmonic:

$$1 = \sum_{k=0}^{\infty} h_r^{(1)}(k+1)\nu(k)$$
$$h_r^{(1)}(2) = \sum_{k=-1}^{\infty} h_r^{(1)}(k+2)\nu(k)$$
$$h_r^{(1)}(3) = \sum_{k=-2}^{\infty} h_r^{(1)}(k+3)\nu(k)$$

- Then necessarily ν(k) = ασ^k is a geometric sequence as well for k ≥ −1.
- Now impose that $h_{r_{\infty}}^{(1)}$ is ν -harmonic:

$$1 = \sum_{k=0}^{\infty} h_r^{(1)}(k+1)\nu(k) = \frac{\alpha}{(1-\sigma)^{3/2}\sqrt{1+r\sigma}}$$
$$h_r^{(1)}(2) = \sum_{k=-1}^{\infty} h_r^{(1)}(k+2)\nu(k)$$
$$h_r^{(1)}(3) = \sum_{k=-2}^{\infty} h_r^{(1)}(k+3)\nu(k)$$

- Then necessarily ν(k) = ασ^k is a geometric sequence as well for k ≥ −1.
- Now impose that $h_{r_{\infty}}^{(1)}$ is ν -harmonic:

$$1 = \sum_{k=0}^{\infty} h_r^{(1)}(k+1)\nu(k) = \frac{\alpha}{(1-\sigma)^{3/2}\sqrt{1+r\sigma}}$$
$$\frac{3-r}{2} = \sum_{k=-1}^{\infty} h_r^{(1)}(k+2)\nu(k)$$
$$h_r^{(1)}(3) = \sum_{k=-2}^{\infty} h_r^{(1)}(k+3)\nu(k)$$

- Then necessarily ν(k) = ασ^k is a geometric sequence as well for k ≥ −1.
- Now impose that $h_r^{(1)}$ is ν -harmonic:

$$1 = \sum_{k=0}^{\infty} h_r^{(1)}(k+1)\nu(k) = \frac{\alpha}{(1-\sigma)^{3/2}\sqrt{1+r\sigma}}$$
$$\frac{3-r}{2} = \sum_{k=-1}^{\infty} h_r^{(1)}(k+2)\nu(k) = \frac{1}{\sigma}\frac{\alpha}{(1-\sigma)^{3/2}\sqrt{1+r\sigma}}$$
$$h_r^{(1)}(3) = \sum_{k=-2}^{\infty} h_r^{(1)}(k+3)\nu(k)$$

- Then necessarily ν(k) = ασ^k is a geometric sequence as well for k ≥ −1.
- Now impose that $h_{r_{\infty}}^{(1)}$ is ν -harmonic:

$$1 = \sum_{k=0}^{\infty} h_r^{(1)}(k+1)\nu(k) = \frac{\alpha}{(1-\sigma)^{3/2}\sqrt{1+r\sigma}}$$
$$\frac{3-r}{2} = \sum_{k=-1}^{\infty} h_r^{(1)}(k+2)\nu(k) = \frac{1}{\sigma}$$
$$h_r^{(1)}(3) = \sum_{k=-2}^{\infty} h_r^{(1)}(k+3)\nu(k)$$

- Then necessarily ν(k) = ασ^k is a geometric sequence as well for k ≥ −1.
- Now impose that $h_{r_{\infty}}^{(1)}$ is ν -harmonic:

$$1 = \sum_{k=0}^{\infty} h_r^{(1)}(k+1)\nu(k) = \frac{\alpha}{(1-\sigma)^{3/2}\sqrt{1+r\sigma}}$$
$$\frac{3-r}{2} = \sum_{k=-1}^{\infty} h_r^{(1)}(k+2)\nu(k) = \frac{1}{\sigma} \qquad (\Rightarrow \sigma > \frac{1}{2})$$
$$h_r^{(1)}(3) = \sum_{k=-2}^{\infty} h_r^{(1)}(k+3)\nu(k)$$

- Then necessarily ν(k) = ασ^k is a geometric sequence as well for k ≥ −1.
- Now impose that $h_{r_{\infty}}^{(1)}$ is ν -harmonic:

$$1 = \sum_{k=0}^{\infty} h_r^{(1)}(k+1)\nu(k) = \frac{\alpha}{(1-\sigma)^{3/2}\sqrt{1+r\sigma}}$$
$$\frac{3-r}{2} = \sum_{k=-1}^{\infty} h_r^{(1)}(k+2)\nu(k) = \frac{1}{\sigma} \qquad (\Rightarrow \sigma > \frac{1}{2})$$
$$5 - 2r + r^2) = \sum_{k=-1}^{\infty} h^{(1)}(k+3)\nu(k)$$

$$\frac{3}{8}(5-2r+r^2) = \sum_{k=-2}^{\infty} h_r^{(1)}(k+3)\nu(k)$$

- Then necessarily ν(k) = ασ^k is a geometric sequence as well for k ≥ −1.
- Now impose that $h_{r_{\infty}}^{(1)}$ is ν -harmonic:

$$1 = \sum_{k=0}^{\infty} h_r^{(1)}(k+1)\nu(k) = \frac{\alpha}{(1-\sigma)^{3/2}\sqrt{1+r\sigma}}$$
$$\frac{3-r}{2} = \sum_{k=-1}^{\infty} h_r^{(1)}(k+2)\nu(k) = \frac{1}{\sigma} \quad (\Rightarrow \sigma > \frac{1}{2})$$

$$\frac{3}{8}(5-2r+r^2) = \sum_{k=-2}^{\infty} h_r^{(1)}(k+3)\nu(k) = \frac{1-\alpha}{\sigma^2} + \nu(-2)$$

- Then necessarily ν(k) = ασ^k is a geometric sequence as well for k ≥ −1.
- Now impose that $h_{r_{\infty}}^{(1)}$ is ν -harmonic:

$$1 = \sum_{k=0}^{\infty} h_r^{(1)}(k+1)\nu(k) = \frac{\alpha}{(1-\sigma)^{3/2}\sqrt{1+r\sigma}}$$
$$\frac{3-r}{2} = \sum_{k=-1}^{\infty} h_r^{(1)}(k+2)\nu(k) = \frac{1}{\sigma} \quad (\Rightarrow \sigma > \frac{1}{2})$$

$$\frac{3}{8}(5-2r+r^2) = \sum_{k=-2}^{\infty} h_r^{(1)}(k+3)\nu(k) = \frac{1-\alpha}{\sigma^2} + \frac{2}{c_+^2}$$

- Then necessarily ν(k) = ασ^k is a geometric sequence as well for k ≥ −1.
- Now impose that $h_{r_{\infty}}^{(1)}$ is ν -harmonic:

$$1 = \sum_{k=0}^{\infty} h_r^{(1)}(k+1)\nu(k) = \frac{\alpha}{(1-\sigma)^{3/2}\sqrt{1+r\sigma}}$$

$$\frac{3-r}{2} = \sum_{k=-1}^{\infty} h_r^{(1)}(k+2)\nu(k) = \frac{1}{\sigma} \qquad (\Rightarrow \sigma > \frac{1}{2})$$

$$\frac{3}{8}(5-2r+r^2) = \sum_{k=-2}^{\infty} h_r^{(1)}(k+3)\nu(k) = \frac{1-\alpha}{\sigma^2} + \frac{2}{c_+^2}$$

Can easily compute various constants:

$$\begin{aligned} \mathcal{H}_{\mathbf{q}} &:= \sum_{k=0}^{\infty} (k+1)\nu(k) = \sqrt{\frac{3\sigma-1}{1-\sigma}}, \quad \mathcal{L}_{\mathbf{q}} := \sum_{k=1}^{\infty} h_r^{(2)}(k+1)\nu(k) = \frac{\sigma}{1-\sigma}, \\ \frac{d_{\mathrm{gr}^*}}{d_{\mathrm{gr}}} &\to 2\frac{1+\mathcal{H}_{\mathbf{q}}}{(1+r)\mathcal{L}_{\mathbf{q}}} = \frac{2}{\mathcal{H}_{\mathbf{q}}-1}, \qquad \frac{\mathrm{vertices}}{\mathrm{faces}} = \frac{(\mathcal{H}_{\mathbf{q}}+3)(\mathcal{H}_{\mathbf{q}}-1)}{8\mathcal{H}_{\mathbf{q}}}. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへの

- Then necessarily ν(k) = ασ^k is a geometric sequence as well for k ≥ −1.
- Now impose that $h_{r_{\infty}}^{(1)}$ is ν -harmonic:

$$1 = \sum_{k=0}^{\infty} h_r^{(1)}(k+1)\nu(k) = \frac{\alpha}{(1-\sigma)^{3/2}\sqrt{1+r\sigma}}$$

$$\frac{3-r}{2} = \sum_{k=-1}^{\infty} h_r^{(1)}(k+2)\nu(k) = \frac{1}{\sigma} \qquad (\Rightarrow \sigma > \frac{1}{2})$$

$$\frac{3}{8}(5-2r+r^2) = \sum_{k=-2}^{\infty} h_r^{(1)}(k+3)\nu(k) = \frac{1-\alpha}{\sigma^2} + \frac{2}{c_+^2}$$

Can easily compute various constants:

$$\begin{aligned} \mathcal{H}_{\mathbf{q}} &:= \sum_{k=0}^{\infty} (k+1)\nu(k) = \sqrt{\frac{3\sigma-1}{1-\sigma}}, \quad \mathcal{L}_{\mathbf{q}} := \sum_{k=1}^{\infty} h_r^{(2)}(k+1)\nu(k) = \frac{\sigma}{1-\sigma}, \\ \frac{d_{\mathrm{gr}^*}}{d_{\mathrm{gr}}} &\to 2\frac{1+\mathcal{H}_{\mathbf{q}}}{(1+r)\mathcal{L}_{\mathbf{q}}} = \frac{2}{\mathcal{H}_{\mathbf{q}}-1}, \qquad \frac{\mathrm{vertices}}{\mathrm{faces}} = \frac{(\mathcal{H}_{\mathbf{q}}+3)(\mathcal{H}_{\mathbf{q}}-1)}{8\mathcal{H}_{\mathbf{q}}}. \end{aligned}$$

► Notice UIPM is $\sigma = \frac{5}{6}$, $\mathcal{H}_q = 3$, and duality: $\frac{\mathcal{H}_q - 1}{2} \leftrightarrow \frac{2}{\mathcal{H}_q - 1}$.

More examples

	r	c +	\mathcal{L}_{q}	$\mathcal{C}^4_{\mathbf{q}}$
Triangulations	$2\sqrt{3} - 3$	$\sqrt{6+4\sqrt{3}}$	$\frac{1}{2}\left(1+\frac{1}{\sqrt{3}}\right)$	1/3
Quadrangulations	1	$\sqrt{8}$	4/3	8/9
Pentangulations	0.70878	2.6098	2.1704	0.7683
2p-angulations	1	$\sqrt{\frac{4p}{p-1}}$	$\frac{4}{3}(p-1)$	$\frac{4}{9}p$
Uniform planar maps	3/5	$5/\sqrt{3}$	5	16/9
Uniform planar maps (biv.)	$\frac{\mathcal{H}^2 - 3}{\mathcal{H}^2 + 1}$	$rac{(\mathcal{H}-1)^{3/2}\sqrt{\mathcal{H}+3}}{2(\mathcal{H}^2+3)}$	$rac{1}{2}(\mathcal{H}^2+1)$	$rac{(\mathcal{H}+1)^3}{6(\mathcal{H}+1)}$
	vertices faces	$H/T = \mathcal{H}_{\mathbf{q}}$	$T/d_{ m gr}$	$d_{ m gr^*}/d_{ m gr}$
Triangulations	1/2	$1 + \frac{1}{\sqrt{3}}$	$2\sqrt{3}$	$1 + 2\sqrt{3}$
Quadrangulations	1	2	3/2	9/4
Pentangulations	3/2	2.3608	1.0785	1.8123
2 <i>p</i> -angulations	p-1	$\frac{2p-1}{p\binom{2p}{p}}2^{2p-1}$	$\frac{3}{2(p-1)}$	$\frac{3}{4}\left(\frac{1}{p-1}+\frac{2^{2p-2}}{p\binom{2p-2}{p}}\right)$
Uniform planar maps	1	3	1/2	1
Uniform planar maps (biv.)	$\frac{(\mathcal{H}+3)(\mathcal{H}-1)^2}{8\mathcal{H}}$	\mathcal{H}	$\frac{4}{\mathcal{H}^2-1}$	$\frac{2}{\mathcal{H}-1}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Can the scaling constant C_q associated to the graph distance be derived from a peeling process?

- Can the scaling constant C_q associated to the graph distance be derived from a peeling process?
- ► For **q**-IBPM's we have conjectured a universal asymptotic relation between the passage-time, hop count, and dual graph distance: $d_{\text{gr}^*} \approx (H + T)/2$. Does it hold more generally?

- Can the scaling constant C_q associated to the graph distance be derived from a peeling process?
- ► For **q**-IBPM's we have conjectured a universal asymptotic relation between the passage-time, hop count, and dual graph distance: $d_{\text{gr}^*} \approx (H + T)/2$. Does it hold more generally?
- ► On a 2d lattice the relative fluctuations of d_{gr*} and T are conjecture to be described by the Kardar–Parisi–Zhang universality class. Can we start to say something about the situation on random graphs?

- Can the scaling constant C_q associated to the graph distance be derived from a peeling process?
- For q-IBPM's we have conjectured a universal asymptotic relation between the passage-time, hop count, and dual graph distance: d_{gr*} ≈ (H + T)/2. Does it hold more generally?
- ► On a 2d lattice the relative fluctuations of d_{gr*} and T are conjecture to be described by the Kardar–Parisi–Zhang universality class. Can we start to say something about the situation on random graphs?
- Study the heavy-tailed case $\nu(k) \sim k^{-\alpha-1}$, $\alpha \in [\frac{1}{2}, \frac{3}{2}]$.
 - ► The q-BPM converges w.r.t. d_{gr} to a stable map with Hausdorff dimension 2α + 1. [Le Gall, Miermont, '11] How about d_{gr*} and T?
 - ► The relation between the perimeter process and random walks extends naturally to O(n) models: condition to stay positive is replaced by certain reflecting boundary conditions. Consequences?

- Can the scaling constant C_q associated to the graph distance be derived from a peeling process?
- ► For **q**-IBPM's we have conjectured a universal asymptotic relation between the passage-time, hop count, and dual graph distance: $d_{\text{gr}^*} \approx (H + T)/2$. Does it hold more generally?
- ► On a 2d lattice the relative fluctuations of d_{gr*} and T are conjecture to be described by the Kardar–Parisi–Zhang universality class. Can we start to say something about the situation on random graphs?
- Study the heavy-tailed case $\nu(k) \sim k^{-\alpha-1}$, $\alpha \in [\frac{1}{2}, \frac{3}{2}]$.
 - ► The q-BPM converges w.r.t. d_{gr} to a stable map with Hausdorff dimension 2α + 1. [Le Gall, Miermont, '11] How about d_{gr*} and T?
 - ► The relation between the perimeter process and random walks extends naturally to O(n) models: condition to stay positive is replaced by certain reflecting boundary conditions. Consequences?

Thanks for your attention!