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Liouville QFT Random Planar Maps

Question:
What is the geometry of space under the coupled effect of Quantum Gravity
interacting with Conformal Field Theories (CFT)?

Founding fathers: Polyakov, David, Distler, Kawai, Knizhnik, Zamolodchikov in the eighties
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Constructing the Liouville quantum field theory on the Riemann sphere

Conjectures relating to random planar maps
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Uniformization and Liouville equation
Problem:
Given a 2d Riemann manifold (M, ĝ), find a metric g conformally equivalent to
ĝ with constant Ricci scalar curvature µ

Rg = −µ

Liouville equation:
If X : M → R solves the equation

4ĝX − Rĝ = µeX

then the metric g = eX ĝ satisfies

Rg = −µ

Liouville action:
Find such a X by minimizing the functional

SL(X , ĝ) =

∫
M

(
|∂ĝX |2 + 2RĝX + µeX

)
dVĝ

Notations: 4g = Laplacian, ∂g = gradient , Rg=Ricci curvature, Vg=volume form



Liouville Quantum Field Theory
Consider a 2d Riemann manifold (M, ĝ). Define a (probability) measure

e−β SL(X ,ĝ)DX

→ e−SL(X ,ĝ)DX

defined on the maps X : M → R, where SL is the Liouville action

SL(X , ĝ) =
1

4π

∫
M

(
|∂ĝX |2 + 2RĝX + µeX

)
dVĝ

and DX is the "uniform measure" on maps

X : M → R,

β fixed parameter and µ > 0.

Get rid of the parameter β by making a change of variables X → γX .

Notations: 4g = Laplacian, ∂g = gradient , Rg=Ricci curvature, Vg=volume form
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defined on the maps X : M → R, where SL is the Liouville action

SL(X , ĝ) =
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Liouville Quantum Field Theory
Consider a 2d Riemann manifold (M, ĝ). Define a (probability) measure
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���XXXXXXe−β SL(X , ĝ)DX → e−SL(X ,ĝ)DX

defined on the maps X : M → R, where SL is the Liouville action

SL(X , ĝ) =
1

4π

∫
M

(
|∂ĝX |2 + QRĝX + µeγX

)
dVĝ

and DX is the "uniform measure" on maps

X : M → R,

and γ ∈ [0,2] and Q = 2
γ + γ

2 and µ > 0.

Under this (probability) measure, one studies the "physical" random metric

eγX ĝ

through its volume form, Brownian motion, Riemann distance,...

Notations: 4g = Laplacian, ∂g = gradient , Rg=Ricci curvature, Vg=volume form



LQFT on the Riemann sphere

Sphere = R2 equipped with the round metric

ĝ(x)dx2 =
4

(1 + |x |2)2 dx2.

Define the path integral by viewing it as a perturbation of the Gaussian
measure

e−SL(X ,ĝ)DX = e
− 1

4π

∫
R2

(
QRĝX+µeγX

)
dVĝ e−

1
4π

∫
R2 |∂ĝX |2 dVĝ DX︸ ︷︷ ︸

Gaussian measure

Notations: 4g = Laplacian, ∂g = gradient , Rg=Ricci curvature, Vg=volume form



Gaussian part
Focus on the "Gaussian measure"

e−
1

4π

∫
R2 |∂ĝX |2 dVĝ DX

gives equal weights to constant functions⇒ not a probability measure!

independent of the choice of the metric g conformally equivalent to the
round metric ĝ ∫

R2
|∂gX |2 dVg =

∫
R2
|∂ĝX |2 dVĝ

invariant under composition of X by Möbius transforms∫
R2
|∂g(X ◦ ψ)|2 dVg =

∫
R2
|∂gX |2 dVg

Notations: 4g = Laplacian, ∂g = gradient , Rg=Ricci curvature, Vg=volume form



GFF with vanishing g-mean
I Denote by mg(f ) the mean value of f in the metric g:

mg(f ) =
1

Vg(R2)

∫
R2

f dVg

If we restrict the Gaussian measure

e−
1

4π

∫
R2 |∂ĝX |2 dVĝ DX

to maps X : R2 → R with vanishing mean in the metric g then it corresponds
to the Gaussian Free Field with vanishing g-mean Xg .

I The GFF Xg is a Gaussian random "function" (rigorously a distribution)
Xg : R2 → R s.t.

E[Xg(x)] = 0 E[Xg(x)Xg(y)] = Gg(x , y)

where Gg = Green function of the Laplacian 4g with 0-mean

−4gu = 2π f , mg(u) = 0.



Free GFF
I Rule for conformal change of metrics

Xg
law
= Xg′ −mg(Xg′)

Integrate with respect to Lebesgue to get rid of the metric dependency

X = c + Xg

where c is "distributed" as the Lebesgue measure.

Free GFF
Infinite measure on maps R2 → R, conformally invariant∫

F (X ) e−
1

4π

∫
|∂gX |2 dVg DX =

∫
R

E[F (c + Xg)] dc

The definition does not depend on g.

Remark: coincides with Lebesgue measure when restricted to constant
functions (called zero mode in physics)



Gaussian multiplicative chaos
Recall the strategy

e−SL(X ,ĝ)DX = e
− 1

4π

∫
R2

(
QRĝX+µeγX

)
dVĝ e−

1
4π

∫
R2 |∂ĝX |2 dVĝ DX︸ ︷︷ ︸

Gaussian measure

Recall that
X = c + Xĝ

with c distributed as Lebesgue measure and Xĝ is the GFF with vanishing
ĝ-mean.

⇒ construct the random measure

eγXĝ(x) dVĝ

I Problem: the GFF Xĝ is a distribution, not a fairly defined function

E[Xĝ(x)Xĝ(y)] = ln
1

|x − y |
+ smooth function



Gaussian multiplicative chaos

Construct the random measure

eγXĝ(x) dVĝ

I Regularization:
X ε

ĝ = Xĝ ∗ ρε

where ρε = ε−2ρ
( ·
ε

)
is a mollifying sequence.

I Kahane ’85: for γ ∈ [0,2[,

lim
ε→0

eγXεĝ (x)− γ
2

2 E[(Xεĝ (x))2] Vĝ(dx) = Mγ
ĝ (dx)

in probability. The random measure Mγ
ĝ has finite mass, full support, is diffuse

and has carrier with Hausdorff dimension 2− γ2

2 .



Path integral
Now we are in position to define the formal integral∫

F (X )e−
1

4π

∫
R2

(
QRĝX+4πµeγX

)
dVĝ e−

1
4π

∫
R2 |∂ĝX |2ĝ dVĝ DX︸ ︷︷ ︸

Gaussian part

where X = c + Xĝ . In the round metric, Rĝ = 2, and the curvature term
becomes

1
4π

∫
R2

QRĝ(c + Xĝ) dVĝ = 2Qc

so that the integration measure is

µL(dX ) =e−2Qc−µeγcMγ

ĝ (R2) dc dPXĝ

Problem: µL is not a probability measure because∫
µL(dX ) ≥

∫
R

e−2Qc−µeγc
dc = +∞

Law of X under µL invariant under the Möbius group SL2(C) non compact!



Back to classical uniformization theory

Liouville action

SL(X , ĝ) =
1

4π

∫
M

(
|∂ĝX |2 + 2RĝX + µeX

)
dVĝ

Saddle point
4ĝϕ− Rĝ = 2πµeϕ.

If g = eϕĝ then
Rg = −2πµ < 0

No such a metric on the sphere⇒ Liouville action is not bounded from
below on the sphere



Back to classical uniformization theory
Remedy: Insert strong "bumps of positive curvature" at some fixed places to
compensate for the lack of positive curvature

4ĝϕ− Rĝ = 2πµeϕ − 2π
n∑

i=1

αiδzi

zi = location of the bump αi = "strength of the bump"

The metric g = eϕĝ has curvature
−2πµ everywhere except at the places (zi )i where

g(x) ∼ |x − zi |−αi when x → zi

Troyanov ’91: solvable if

∀i , αi < 2 and
∑

i

αi > 2

At least 3 insertions! Quantum analog?

Quantum analog?



Correlation functions
To get a probability measure, define "quantum insertions"

Define the vertex operators

Vα(z) = eαX(z)−α2
2 E[Xĝ(z)2]+αQ

2 ln ĝ

Correlation functions

Π(zi ,αi )i
µ,γ (F ) =

∫
F (X )

( n∏
i=1

Vαi (zi )
)
µL(dX )

Liouville partition function with n vertex operators on the sphere

Π(zi ,αi )
µ,γ (1) =C

(
{zi}

) ∫
R

e(
∑

i αi−2Q)cE
[
e−µeγcZ(zi ,αi )(R2)

]
dc

where
Z(zi ,αi )(dx) = eγ

∑
i αi Gĝ(x,zi )Mγ

ĝ (dx)



Seiberg’s bounds
Liouville partition function with n vertex operators on the sphere

Π(zi ,αi )
µ,γ (1) =C

(
(zi )i

) ∫
R

e(
∑

i αi−2Q)cE
[
e−µeγcZ(zi ,αi )(R2)

]
dc

where
Z(zi ,αi )(dx) = eγ

∑
i αi Gĝ(x,zi )Mγ

ĝ (dx)

Theorem (DKRV ’14)

The Liouville partition function is well defined, i.e. 0 < Π
(zi ,αi )
µ,γ (1) <∞, iff∑

i

αi > 2Q and ∀i , αi < Q.

Remark: at least 3 vertex operators needed

I Zero mode contribution∫
R

e(
∑

i αi−2Q)ce−µeγc
dc < +∞ ⇐⇒

∑
i

αi > 2Q
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Seiberg’s bounds
Liouville partition function with n vertex operators on the sphere

Π(zi ,αi )
µ,γ (1) =C

(
(zi )i

) ∫
R

e(
∑

i αi−2Q)cE
[
e−µeγcZ(zi ,αi )(R2)

]
dc

where
Z(zi ,αi )(dx) = eγ

∑
i αi Gĝ(x,zi )Mγ

ĝ (dx)

Theorem (DKRV ’14)

The Liouville partition function is well defined, i.e. 0 < Π
(zi ,αi )
µ,γ (1) <∞, iff∑

i

αi > 2Q and ∀i , αi < Q.

Remark: at least 3 vertex operators needed

I the random measure Z(zi ,αi )(dx) is of finite total mass if and only if

∀i , αi < Q.



KPZ
Theorem (DKRV ’14))

(a) KPZ scaling laws: scaling w.r.t the cosmological constant µ

Π(zi ,αi )
µ,γ (ĝ,1) = µ

2Q−
∑

i αi
γ Π

(zi ,αi )
1,γ (ĝ,1).

(b) Conformal covariance: let ψ be Möbius. Then

Π(ψ(zi ),αi )i
µ,γ (ĝ,1) =

(∏
i

|ψ′(zi )|−2∆αi

)
Π(zi ,αi )i
µ,γ (ĝ,1)

where the conformal weights are defined by 4α = α
2 (Q − α

2 ).

(c) Weyl invariance: Let g = ehĝ

ln
Π

(zi ,αi )i
µ,γ (ehĝ,1)

Π
(zi ,αi )i
µ,γ (ĝ,1)

=
cL

96π

(∫
R2
|∂ĝh|2 dVĝ +

∫
R2

2Rĝh dVĝ

)
where the central charge of the Liouville theory is

cL = 1 + 6Q2



Liouville measure
It is the "volume form" Z associated to the (physical) metric

eγX dVĝ ,

where the law of X is ruled by Π
(zi ,αi )i
µ,γ (ĝ, ·).

Explicit expression

Eγ,µ(zi ,αi )
[F (Z (A))] = CE

[
F
(
ξ

Z(zi ,αi )(A)

Z(zi ,αi )(R
2)

) 1

Z(zi ,αi )(R
2)

∑
i αi−2Q
γ

]
where C is a renormalization constant and

ξ has Gamma law Γ(
∑

i αi−2Q
γ , µ) independent of Z(zi ,αi )(dx)

(reminder)
Z(zi ,αi )(dx) = eγ

∑
i=1 αi Gĝ(x,zi )Mγ

ĝ (dx)

Conformally invariant and metric independent.
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Triangulations of the sphere

Triangulations of the sphere:
glue N triangles together along their edges so as to get a shape with the
topology of a sphere.

Combinatorics: finite number of such objects up to angle preserving
homeomorphisms.



Discrete LQG
Conformal structure of triangulations

I see each face of the triangulation as an equilateral triangle and
glue them along their edges so as to get a conformal structure
with the topology of a sphere.



Discrete LQG
Conformal structure of triangulations

I see each face of the triangulation as an equilateral triangle and
glue them along their edges so as to get a conformal structure
with the topology of a sphere.

Conformal map

I N →∞ scaling limit of random triangulations conformally
embedded onto the sphere S2?

I In which sense? Which notion of randomness?



Random Planar Maps (Pure discrete gravity)

I Let T 3
N be the set of N-triangulations with 3 marked faces

Partition function: Zµ̄ =
∑

N

e−µ̄NCard(T 3
N )

I Asymptotically (Tutte)
Card(T 3

N ) ∼ N−
1
2 eµcN

I for µ̄ > µc , define a probability measure on
⋃

N T 3
N

Eµ̄[F (T )] =
1

Zµ̄

∑
N

e−µ̄N
∑

T∈T 3
N

F (T )

Remark: If µ̄ ↓ µc , triangulations with large number of faces are more likely to
be sampled.



Random Planar Maps+Matter
I Consider a lattice model (percolation, Ising,...) on triangulations at its
critical point

I Let Z (T ) be the partition function of the model on the triangulation T .
Conjecturally, for some γ > 0 depending on the model,

ZN =
∑

T∈T 3
N

Z (T ) ∼ N1− 4
γ2 eµcN

I for µ̄ > µc , define a probability measure on
⋃

N T 3
N

Eµ̄[F (T )] =
1

Zµ̄

∑
N

e−µ̄N
∑

T∈T 3
N

Z (T )F (T )

I If γ ∈ [
√

2,2], then triangulations with large number of faces are more likely
to be sampled when µ̄ ↓ µc .

γ =
√

8/3 Percolation, γ =
√

3 Ising, γ = 2 GFF, ...



Scaling limit of random measures
I Fix the conformal map so that the three marked faces are sent to three
fixed points z1, z2, z3 on the sphere S2.

I Give a mass a to each face of the triangulation and push to a measure
νT ,a on the sphere

I Sample T according to Pµ̄, hence

Law of νT ,a : Eµ̄[F (νµ̄,a(dx))] =
1

Zµ̄

∑
N

e−µ̄N
∑

T∈T 3
N

Z (T )F (νT ,a(dx))

Conjecture (DKRV)

Fix µ > 0. In the regime

a→ 0 and µ̄ ∼ µc + aµ,

νµ̄,a converges in law towards the Liouville measure Z of Liouville QFT with
parameters (γ, µ) and three vertex insertions (xi , γ)i=1,2,3.

The Liouville measure (for (xi , γ)i=1,2,3):

Eγ,µ(xi ,γ)[F (Z (A))] = CE
[
F
(
ξ

Z(xi ,γ)(A)

Z(xi ,γ)(R2)

)
Z(xi ,γ)(R

2)−(3− 2Q
γ )
]

where ξ has Gamma law Γ(3− 2Q
γ , µ) and

Z(zi ,γ)(dx) = eγ
∑

i=1 αi Gĝ(x,zi )Mγ
ĝ (dx)



Scaling limit of random measures
I Fix the conformal map so that the three marked faces are sent to three
fixed points z1, z2, z3 on the sphere S2.

I Give a mass a to each face of the triangulation and push to a measure
νT ,a on the sphere

I Sample T according to Pµ̄, hence

Law of νT ,a : Eµ̄[F (νµ̄,a(dx))] =
1

Zµ̄

∑
N
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N
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Fix µ > 0. In the regime

a→ 0 and µ̄ ∼ µc + aµ,

νµ̄,a converges in law towards the Liouville measure Z of Liouville QFT with
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Scaling limit of random measures

Conjecture (DKRV)

Fix µ > 0. In the regime

a→ 0 and µ̄ ∼ µc + aµ,

νµ̄,a converges in law towards the Liouville measure Z of Liouville QFT with
parameters (γ, µ) and three vertex insertions (zi , γ)i=1,2,3.

The Liouville measure (for (zi , γ)i=1,2,3):

Eγ,µ(zi ,γ)[F (Z (A))] = CE
[
F
(
ξ

Z(zi ,γ)(A)

Z(zi ,γ)(R2)

)
Z(zi ,γ)(R

2)−(3− 2Q
γ )
]

where ξ has Gamma law Γ(3− 2Q
γ , µ) and

Z(zi ,γ)(dx) = eγ
∑3

i=1 αi Gĝ(x,zi )Mγ
ĝ (dx)



Open question: DOZZ formula

Fix 3 points z1, z2, z3 and consider the 3-point function

Π(zi ,αi )
µ,γ (1) = µ

2Q−
∑

i αi
γ |z1 − z2|2412 |z2 − z3|2423 |z1 − z3|2413Cγ(α1, α2, α3)

with 412 = 4α3 −4α1 −4α2 ,...

Believed to determine the whole Liouville theory.

Conjectural explicit analytic expression for Cγ(α1, α2, α3). Prove it!

Similars results on the Random Planar Maps (without matter):

- for 2-point distances (Ambjørn-Watabiki, Di Francesco-Guitter ).
- for 3-point distances (Bouttier-Guitter ’08)



Connection with 2-point quantum sphere
I Can one give sense to the 2-point correlation functions (Seiberg ’92)?
Makes sense only for equal weights

(z1, γ) (z2, γ)

The resulting Liouville measure must be invariant under dilation⇒

Dilemma: not a true probability measure or not conformally invariant

I Recent rigorous construction by Duplantier-Miller-Sheffield 2014

I Possible to recover the 2 point function from the three point functions: take
three vertex operators

(0, γ) (∞, γ) (z, ε)

and send ε→ 0. Convergence modulo multiplicative constants of the unit
volume Liouville measure



Thanks!
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