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Hurwitz numbers and matrix models

Leonid Chekhov (Steklov Math. Inst., Moscow, and QGM, Århus University)
(based on joint papers with Jan Ambjørn, NBI, Copenhagen)

Grothendieck’s dessins d’enfant: Belyi pairs and partitions of Riemann
surfaces

Complex matrix model for Grothendieck’s dessins d’enfant

Generalizations to hypergeometric Hurwitz numbers

New matrix models of Toda chain type: spectral curves and topological
recursion



Grothendieck’s dessins d’enfant and partitions of Riemann surfaces

Fat graph description for homotopy types of ramified mappings CP1 → Cg

Hurwitz numbers: combinatorial classes of ramified mappings f : CP1 → Cg of
the complex projective line onto a Riemann surface of genus g . Grothendieck’s
dessins d’enfant enumerate mappings ramified over exactly 3 points (0, 1, and
∞). At every point we have a ramification profile given by a Young tableaux: it
fixes the set of ramification types at the given point.

Theorem

(Belyi) A smooth complex algebraic curve C is defined over the field of

algebraic numbers Q if and only if it exists a nonconstant meromorphic

function f on C (f : C → CP1) ramified only over the points 0, 1,∞ ∈ CP1.

Lemma

(Grothendieck) There is a one-to-one correspondence between the

isomorphism classes of Belyi pairs and connected bipartite fat graphs.



Grothendieck’s dessins d’enfant and partitions of Riemann surfaces

Single and double Hurwitz numbers correspond to the cases in which
ramification profiles (defines by the corresponding Young tableauxes λ or λ and
µ) are respectively given at one (∞) or two (∞ and 1) distinct points and we
take the sum over ramifications types at the remaining point(s).

“Original” Hurwitz numbers have only simple (square-root-type) ramifications
at m points; [Goulden, Jackson, Okounkov, Pandharipande, Eynard, Borot,...]

Grothendieck’s dessins d’enfant or Belyi pairs: exactly three ramification points
with profiles λ, µ, and ν.

Clean Belyi pairs: exactly three ramification points with profiles λ, µ, and
ν = (2, 2, . . . , 2). (Only single Hurwitz numbers)

Hypergeometric (or generalized) Belyi pairs: exactly n ramification points with
profiles λ, µ, and νi , i = 2, . . . , n − 1.

Integrable properties: generating functions of all of the above are KP hierarchy
τ -functions for single and double Hurwitz numbers (A. Yu. Orlov and
Shcherbin’02, Okounkov’00)



Grothendieck’s dessins d’enfant and partitions of Riemann surfaces

A fat graph corresponding to a dessin d’enfant is a 3-valent bipartite fat graph,
which is a covering of a base graph (describing the nonramified map
CP1 → CP1) and describes a partition of Cg into sets of three-colored
polygons (necessarily with even numbers of edges for every polygon).
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Maps C1 → CP1 for n = 4



The matrix model

As was shown (Alexandrov, Mironov, Morozov, Natanzon; Harnad Orlov) the
exponential of the generating function
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is a tau function of the KP hierarchy in times t or t. A matrix model “solvable”
in terms of the topological recursion method (Ch-Eynard-Orantin) was
proposed by Ambjørn and LCh in the case where γ3 = γ4 = · · · = γn−1 leaving
γ2 > γ3 arbitrary:
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where N, γ2, γ3, tr , and tr are formal independent parameters and the sum
ranges all (connected) generalized Belyi fat graphs. We encode the second time
dependence through the external matrix field Λ = diag (λ1, . . . , λγ3N), the
corresponding times are

tr = tr
[
(ΛΛ)r

]
.



Maps C1 → CP1 for n = 4
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The matrix model

• First step is to contract cycles corresponding to t-variables (white polygons
in the figure).
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Here B2 is a rectangular complex matrix of size γ2N × γ3N (we assume
γ2 ≥ γ3) and all other Bi are quadratic matrices of size γ3N × γ3N.



The matrix model

Note that the first model of this sort was proposed by Itzykson and P. Di
Francesco in hepth/9212108: for clean Belyi numbers (when one of the
partitions is (2, 2, . . . , 2)). Then, contracting these cycles (all of order four) and

denoting tk = tr
[
(Λ′Λ

′
)k
]

and tr = tr
[
(ΛΛ)r

]
we obtain the matrix model with

complex matrices: ∫
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[This model however is not a KP tau-function]



The matrix model

The generating function reads:
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Performing the variable changing
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The matrix model

An integral over general complex matrices Bi can be written (Ambjørn,
Kristjansen, Makeenko) in terms of positive definite Hermitian matrices Xi

upon the variable changing

Xi := BiBi , i = 2, . . . , n − 1.

All the matrices Xi (i = 2, . . . , n − 1) are of the same size γ3N × γ3N.
Changing the integration measure for rectangular complex matrices is governed
by the Marchenko–Pastur law and introduces a simple logarithmic term.

Theorem

[Marchenko, Pastur, 1967] Upon eliminating unitary group degrees of freedom,

for γ2 ≥ γ3, we have the measure transformation
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where xj ≥ 0 are nonnegative eigenvalues of the Hermitian γ3N × γ3N matrix

X := B†B.



The matrix model

Performing the scaling Xi → Xi |Λ|
−2, we obtain an integral over a chain of

matrices:

∫
DX2≥0 · · ·DXn−1≥0
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}

The logarithmic term in X2 stabilizes the equilibrium distribution of eigenvalues
of this matrix in the domain of positive real numbers; if γ2 = γ3, we lose this
term and must use the technique of matrix models with hard walls.



The matrix model

The matrix model for Grothendieck’s dessins d’enfant

For n = 3, we have only one matrix X2 and the generating function for double
Hurwitz numbers becomes the Breźin–Gross–Witten integral
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(which was known (Mironov–Morozov–Semenoff’94) to be a KP tau-function).

For simple Hurwitz numbers Λ = E, and we obtain a mere Hermitian
one-matrix model integral for the corresponding generating function:

∫
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]}

[De Mello Koch, Ramgoolam]

For clean Belyi morphisms ti = −δi,2 we have KPMM [Ch, Makeenko’91]
equivalent to 1MM with matrices of size (γ2 − γ3)N × (γ2 − γ3)N:

∫
DX≥0 exp

{
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[
−X

2/2 − X |Λ|−2 + (γ2 − γ3) logX
]}



The matrix model

Performing the scaling Xi → Xi |Λ|
−2, we obtain an integral over a chain of
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The logarithmic term in X2 stabilizes the equilibrium distribution of eigenvalues
of this matrix in the domain of positive real numbers; if γ2 = γ3, we lose this
term and must use the technique of matrix models with hard walls.

This model is the main object of study.
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The matrix model

Braid-group action

The above matrix chains admit the braid-group action resulted from that an
order of ramification points is not fixed a priori.

βi :
{
Xi → Xi−1X

−1

i Xi+1; Xj → Xj , j 6= i
}
.

It is easy to see that the action of each such generator with 3 ≥ i ≥ n − 2
leaves the matrix chain action invariant.
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KP tau-function

We apply the Harish-Chandra–Itzykson–Zuber integration formula to every
term in the chain of matrices. Taking into account that, for instance, the

integral over the unitary group for the term e−N tr XkX
−1

k+1 gives
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In this form it is clear that all integrals w.r.t. ϕ
(k)
i are convergent.



Loop equations and the spectral curve

We consider the following variations of the matrix fields Xi :

δX1 =
1

x − X1

ξ([X̂1]),

δXi = Xi

1

x − X1

ηi ([X̂i ]), 2 ≤ i ≤ n − 2

δXn−1 =
1

x − X1

χ([X̂n−1]),

where ξ, ηi , and χ are Laurent polynomials in all but one of arguments
indicated by the symbol [X̂i ].
We introduce the standard notation for the leading term of the 1/N2-expansion
of the one-loop mean of the matrix field X1:
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1
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〈
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0

.



Loop equations and the spectral curve

The exact loop equations obtained upon the above variations read ([BIPZ])

1
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where U(Xn−1) is the potential obtained from the external field ΛΛ by the
replica method.



Loop equations and the spectral curve

Finding the spectral curve (n=5)
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〈
tr
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0
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0

.

After some algebra (≥ 6 pages in A4) we come to the system of equations that
holds for any z :

[
x
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Loop equations and the spectral curve

Finding the spectral curve (n=5)

Degeneracy conditions expresses z : z = −r2(x)y(x), where

r(x) := xy(x) + (γ2 − γ3), y(x) := ω1(x) + V
′(x)

and the spectral curve is the condition of solvability of inhomogeneous system:

−xPn,m(x , z)− Q̂m(z) +

〈
tr

1

x −M1

[M2

3 +M3U
′(z)]

〉

0

+r(x)
̂̂
Pn,m(x , z)− y(x)r(x)

[
xP̂n,m(x , z) +

̂̂
Qm(z)

]
= 0,

For the terms
〈
tr 1

x−M1

Mk
3M

l
2

〉

0

we have a recurrent procedure expressing

them through polynomials and rational functions of y(x).

Given an (algebraic) spectral curve S(x , y) = 0 and two differentials, dx and
y(x)dx on it, we have the machinery of topological recursion (CEO) that
produces correlation functions and free energy terms for all genera.



Conclusion

I remember the time ((in)famous 1984) the Russian translation of the
FAMOUS Quantum Field Theory textbook by Claude Itzykson and
Jean-Bernard Zuber has appeared (those days I was a PhD student in quantum
field theory at the Steklov Mathematical Institute, Moscow). This textbook
immediately became very popular among students and researchers; one of just
a handful of cases when a Russian translation of a Foreign textbook got a great
acclaim, not vice versa!

Merci de votre patience!


