## Introduction

IPhT, Saclay, June 11, 2015
Hurwitz numbers and matrix models

Leonid Chekhov (Steklov Math. Inst., Moscow, and QGM, Århus University) (based on joint papers with Jan Ambjørn, NBI, Copenhagen)

- Grothendieck's dessins d'enfant: Belyi pairs and partitions of Riemann surfaces
- Complex matrix model for Grothendieck's dessins d'enfant
- Generalizations to hypergeometric Hurwitz numbers
- New matrix models of Toda chain type: spectral curves and topological recursion


## Grothendieck's dessins d'enfant and partitions of Riemann surfaces

Fat graph description for homotopy types of ramified mappings $\mathbb{C} P^{1} \rightarrow C_{g}$ Hurwitz numbers: combinatorial classes of ramified mappings $f: \mathbb{C} P^{1} \rightarrow C_{g}$ of the complex projective line onto a Riemann surface of genus $g$. Grothendieck's dessins d'enfant enumerate mappings ramified over exactly 3 points ( 0,1 , and $\infty)$. At every point we have a ramification profile given by a Young tableaux: it fixes the set of ramification types at the given point.

## Theorem

(Belyi) A smooth complex algebraic curve $C$ is defined over the field of algebraic numbers $\overline{\mathbb{Q}}$ if and only if it exists a nonconstant meromorphic function $f$ on $C\left(f: C \rightarrow \mathbb{C} P^{1}\right)$ ramified only over the points $0,1, \infty \in \mathbb{C} P^{1}$.

## Lemma

(Grothendieck) There is a one-to-one correspondence between the isomorphism classes of Belyi pairs and connected bipartite fat graphs.

## Grothendieck's dessins d'enfant and partitions of Riemann surfaces

Single and double Hurwitz numbers correspond to the cases in which ramification profiles (defines by the corresponding Young tableauxes $\lambda$ or $\lambda$ and $\mu$ ) are respectively given at one $(\infty)$ or two ( $\infty$ and 1 ) distinct points and we take the sum over ramifications types at the remaining point(s).
"Original" Hurwitz numbers have only simple (square-root-type) ramifications at $m$ points; [Goulden, Jackson, Okounkov, Pandharipande, Eynard, Borot,...]

Grothendieck's dessins d'enfant or Belyi pairs: exactly three ramification points with profiles $\lambda, \mu$, and $\nu$.

Clean Belyi pairs: exactly three ramification points with profiles $\lambda, \mu$, and $\nu=(2,2, \ldots, 2)$. (Only single Hurwitz numbers)

Hypergeometric (or generalized) Belyi pairs: exactly $n$ ramification points with profiles $\lambda, \mu$, and $\nu_{i}, i=2, \ldots, n-1$.

Integrable properties: generating functions of all of the above are KP hierarchy $\tau$-functions for single and double Hurwitz numbers (A. Yu. Orlov and Shcherbin'02, Okounkov'00)

## Grothendieck's dessins d'enfant and partitions of Riemann surfaces

A fat graph corresponding to a dessin d'enfant is a 3-valent bipartite fat graph, which is a covering of a base graph (describing the nonramified map $\mathbb{C} P^{1} \rightarrow \mathbb{C} P^{1}$ ) and describes a partition of $C_{g}$ into sets of three-colored polygons (necessarily with even numbers of edges for every polygon).
$\mathrm{n}=3$


## Grothendieck's dessins d'enfant and partitions of Riemann surfaces



## Grothendieck's dessins d'enfant and partitions of Riemann surfaces

$\mathrm{n}=4$

$\mathrm{n}=5$


## Grothendieck's dessins d'enfant and partitions of Riemann surfaces

$\mathrm{n}=4$

$\mathrm{n}=5$



## The matrix model

As was shown (Alexandrov, Mironov, Morozov, Natanzon; Harnad Orlov) the exponential of the generating function

$$
\mathcal{F}\left[\left\{t_{m}\right\},\left\{\mathfrak{t}_{r}\right\}, \gamma_{2}, \ldots, \gamma_{n-1} ; N\right]=\sum_{\Gamma} \frac{1}{|\operatorname{Aut} \Gamma|} N^{2-2 g} \prod_{r=1}^{\infty} \frac{t_{r}^{k_{1}^{(r)}}}{k_{1}^{(r)}!} \prod_{s=1}^{\infty} \frac{\mathfrak{t}_{s}^{k_{s}^{(s)}}}{k_{n}^{(s)}!} \prod_{j=2}^{n-1} \gamma_{j}^{k_{j}}
$$

is a tau function of the KP hierarchy in times $t$ or $\mathfrak{t}$. A matrix model "solvable" in terms of the topological recursion method (Ch-Eynard-Orantin) was proposed by Ambjørn and LCh in the case where $\gamma_{3}=\gamma_{4}=\cdots=\gamma_{n-1}$ leaving $\gamma_{2}>\gamma_{3}$ arbitrary:

$$
\mathcal{F}\left[\left\{t_{m}\right\},\left\{\mathfrak{t}_{r}\right\}, \gamma_{2}, \gamma_{3} ; N\right]=\sum_{\Gamma} \frac{1}{|\operatorname{Aut} \Gamma|} N^{2-2 g} \prod_{r=1}^{\infty} \frac{t_{r}^{k_{1}^{(r)}}}{k_{1}^{(r)}!} \prod_{s=1}^{\infty} \frac{\mathfrak{t}_{s}^{k_{n}^{(s)}}}{k_{n}^{(s)}!} \gamma_{2}^{k_{2}} \gamma_{3}^{k_{3}+\cdots+k_{n-1}},
$$

where $N, \gamma_{2}, \gamma_{3}, t_{r}$, and $\mathfrak{t}_{r}$ are formal independent parameters and the sum ranges all (connected) generalized Belyi fat graphs. We encode the second time dependence through the external matrix field $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{\gamma_{3} N}\right)$, the corresponding times are

$$
\mathfrak{t}_{r}=\operatorname{tr}\left[(\Lambda \bar{\Lambda})^{r}\right]
$$






## The matrix model

- First step is to contract cycles corresponding to $t$-variables (white polygons in the figure).


Here $B_{2}$ is a rectangular complex matrix of size $\gamma_{2} N \times \gamma_{3} N$ (we assume $\left.\gamma_{2} \geq \gamma_{3}\right)$ and all other $B_{i}$ are quadratic matrices of size $\gamma_{3} N \times \gamma_{3} N$.

## The matrix model

Note that the first model of this sort was proposed by Itzykson and P . Di Francesco in hepth/9212108: for clean Belyi numbers (when one of the partitions is $(2,2, \ldots, 2)$ ). Then, contracting these cycles (all of order four) and denoting $t_{k}=\operatorname{tr}\left[\left(\Lambda^{\prime} \bar{\Lambda}^{\prime}\right)^{k}\right]$ and $\mathfrak{t}_{r}=\operatorname{tr}\left[(\Lambda \bar{\Lambda})^{r}\right]$ we obtain the matrix model with complex matrices:

$$
\int d B d \bar{B} e^{-\operatorname{tr} B \bar{B}+\frac{1}{2} \operatorname{tr}\left[\left(B \Lambda \overline{B \Lambda^{\prime}} \Lambda^{\prime}\right)^{2}\right]}
$$

[This model however is not a KP tau-function]

## The matrix model

The generating function reads:

$$
\int D B_{2} \cdots D B_{n-1} e^{N \sum_{r=1}^{\infty} \frac{t_{r}}{r} \operatorname{tr}\left[\left(B_{2} \cdots B_{n-1} \wedge \bar{\wedge} \bar{B}_{n-1} \cdots \bar{B}_{2}\right)^{r}\right]-\sum_{j=2}^{n-1} N \operatorname{tr}\left(B_{j} \bar{B}_{j}\right)}
$$

Performing the variable changing

$$
\begin{aligned}
& \mathfrak{B}_{2}=B_{2} B_{3} \cdots B_{n-1} \\
& \mathfrak{B}_{3}=B_{3} \cdots B_{n-1} \\
& \vdots \\
& \mathfrak{B}_{n-1}=B_{n-1}
\end{aligned}
$$

and assuming that all matrices $\mathfrak{B}_{3}, \ldots, \mathfrak{B}_{n-1}$ are invertible (the matrix $\mathfrak{B}_{2}$ remains rectangular) we obtain

$$
\begin{aligned}
& \int D \mathfrak{B}_{2} \cdots D \mathfrak{B}_{n-1} \exp \left\{-\gamma_{2} N \operatorname{tr} \log \left(\mathfrak{B}_{3} \overline{\mathfrak{B}}_{3}\right)-\sum_{j=4}^{n-1} \gamma_{3} N \operatorname{tr} \log \left(\mathfrak{B}_{j} \overline{\mathfrak{B}}_{j}\right)\right. \\
& +\sum_{r=1}^{\infty} N \frac{t_{r}}{r} \operatorname{tr}\left[\left(\mathfrak{B}_{2}|\Lambda|^{2} \overline{\mathfrak{B}}_{2}\right)^{r}\right]-N \operatorname{tr}\left[\mathfrak{B}_{2} \mathfrak{B}_{3}^{-1} \overline{\mathfrak{B}}_{3}^{-1} \overline{\mathfrak{B}}_{2}\right] \\
& \left.-N \operatorname{tr}\left[\mathfrak{B}_{3} \mathfrak{B}_{4}^{-1} \overline{\mathfrak{B}}_{4}^{-1} \overline{\mathfrak{B}}_{3}\right]-\cdots-N \operatorname{tr}\left[\mathfrak{B}_{n-2} \mathfrak{B}_{n-1}^{-1} \overline{\mathfrak{B}}_{n-1}^{-1} \overline{\mathfrak{B}}_{n-2}\right]-N \operatorname{tr}\left[\mathfrak{B}_{n-1} \overline{\mathfrak{B}}_{n-1}\right]\right\}
\end{aligned}
$$

## The matrix model

An integral over general complex matrices $\mathfrak{B}_{i}$ can be written (Ambjørn, Kristjansen, Makeenko) in terms of positive definite Hermitian matrices $X_{i}$ upon the variable changing

$$
X_{i}:=\overline{\mathfrak{B}}_{i} \mathfrak{B}_{i}, \quad i=2, \ldots, n-1
$$

All the matrices $X_{i}(i=2, \ldots, n-1)$ are of the same size $\gamma_{3} N \times \gamma_{3} N$. Changing the integration measure for rectangular complex matrices is governed by the Marchenko-Pastur law and introduces a simple logarithmic term.

## Theorem

[Marchenko, Pastur, 1967] Upon eliminating unitary group degrees of freedom, for $\gamma_{2} \geq \gamma_{3}$, we have the measure transformation

$$
\prod_{i=1}^{\gamma_{2} N} \prod_{j=1}^{\gamma_{3} N} d \operatorname{Re} B_{i j} d \operatorname{Im} B_{i j}=\prod_{j_{1}<j_{2}}\left(x_{j_{1}}-x_{j 2}\right)^{2} \prod_{j=1}^{\gamma_{3} N} x_{j}^{\left(\gamma_{2}-\gamma_{3}\right) N} \prod_{j=1}^{\gamma_{3} N} d x_{j} \frac{d U_{\gamma_{3} N} d U_{\gamma_{2} N}}{d U_{\left(\gamma_{2}-\gamma_{3}\right) N}}
$$

where $x_{j} \geq 0$ are nonnegative eigenvalues of the Hermitian $\gamma_{3} N \times \gamma_{3} N$ matrix $X:=B^{\dagger} B$.

## The matrix model

Performing the scaling $X_{i} \rightarrow X_{i}|\Lambda|^{-2}$, we obtain an integral over a chain of matrices:

$$
\begin{aligned}
& \int D X_{2 \geq 0} \cdots D X_{n-1} \geq 0 \\
& -\cdots-N \operatorname{tr}\left(X_{n-2} X_{n-1}^{-1}\right)-N \operatorname{tr}\left(X_{n-1}^{\infty} \frac{t_{r}}{r} \operatorname{tr}\left(X_{2}^{r}\right)-N \operatorname{tr}\left(X_{2} X_{3}^{-1}\right)-N \operatorname{tr}\left(X_{3} X_{4}^{-1}\right)\right. \\
& \left.+\left(\gamma_{2}-\gamma_{3}\right) N \operatorname{tr} \log X_{2}-\gamma_{2} N \operatorname{tr} \log X_{3}-\gamma_{3} N \operatorname{tr} \log \left(X_{4} \cdots X_{n-1}\right)\right\}
\end{aligned}
$$

The logarithmic term in $X_{2}$ stabilizes the equilibrium distribution of eigenvalues of this matrix in the domain of positive real numbers; if $\gamma_{2}=\gamma_{3}$, we lose this term and must use the technique of matrix models with hard walls.

## The matrix model

## The matrix model for Grothendieck's dessins d'enfant

For $n=3$, we have only one matrix $X_{2}$ and the generating function for double Hurwitz numbers becomes the Brezín-Gross-Witten integral

$$
\int D X_{2 \geq 0} \exp \left\{N \sum_{r=1}^{\infty} \frac{t_{r}}{r} \operatorname{tr}\left(X_{2}^{r}\right)-N \operatorname{tr}\left(X_{2}|\Lambda|^{-2}\right)+\left(\gamma_{2}-\gamma_{3}\right) N \operatorname{tr} \log X_{2}\right\}
$$

(which was known (Mironov-Morozov-Semenoff'94) to be a KP tau-function).
For simple Hurwitz numbers $\Lambda=\mathbb{E}$, and we obtain a mere Hermitian one-matrix model integral for the corresponding generating function:

$$
\int D X_{\geq 0} \exp \left\{N \operatorname{tr}\left[\sum_{r=1}^{\infty} \frac{t_{r}}{r} X^{r}-X+\left(\gamma_{2}-\gamma_{3}\right) \log X\right]\right\} \quad \text { [De Mello Koch, Ramgoolam] }
$$

For clean Belyi morphisms $t_{i}=-\delta_{i, 2}$ we have KPMM [Ch, Makeenko'91] equivalent to 1 MM with matrices of size $\left(\gamma_{2}-\gamma_{3}\right) N \times\left(\gamma_{2}-\gamma_{3}\right) N$ :

$$
\int D X_{\geq 0} \exp \left\{N \operatorname{tr}\left[-X^{2} / 2-X|\Lambda|^{-2}+\left(\gamma_{2}-\gamma_{3}\right) \log X\right]\right\}
$$

## The matrix model

Performing the scaling $X_{i} \rightarrow X_{i}|\Lambda|^{-2}$, we obtain an integral over a chain of matrices:

$$
\begin{aligned}
& \int D X_{2 \geq 0} \cdots D X_{n-1} \geq 0 \\
& -\cdots-N \operatorname{tr}\left(X_{n-2} X_{n-1}^{-1}\right)-N \operatorname{tr}\left(X_{n-1}^{\infty} \frac{t_{r}}{r} \operatorname{tr}\left(X_{2}^{r}\right)-N \operatorname{tr}\left(X_{2} X_{3}^{-1}\right)-N \operatorname{tr}\left(X_{3} X_{4}^{-1}\right)\right. \\
& \left.+\left(\gamma_{2}-\gamma_{3}\right) N \operatorname{tr} \log X_{2}-\gamma_{2} N \operatorname{tr} \log X_{3}-\gamma_{3} N \operatorname{tr} \log \left(X_{4} \cdots X_{n-1}\right)\right\}
\end{aligned}
$$

The logarithmic term in $X_{2}$ stabilizes the equilibrium distribution of eigenvalues of this matrix in the domain of positive real numbers; if $\gamma_{2}=\gamma_{3}$, we lose this term and must use the technique of matrix models with hard walls.

## The matrix model

Performing the scaling $X_{i} \rightarrow X_{i}|\Lambda|^{-2}$, we obtain an integral over a chain of matrices:

$$
\begin{aligned}
& \int D X_{2 \geq 0} \cdots D X_{n-1} \geq 0 \\
& -\cdots-N \operatorname{tr}\left(X_{n-2} X_{n-1}^{-1}\right)-N \operatorname{tr}\left(X_{n-1}^{\infty} \frac{t_{r}}{r} \operatorname{tr}\left(X_{2}^{r}\right)-N \operatorname{tr}\left(X_{2} X_{3}^{-1}\right)-N \operatorname{tr}\left(X_{3} X_{4}^{-1}\right)\right. \\
& \left.+\left(\gamma_{2}-\gamma_{3}\right) N \operatorname{tr} \log X_{2}-\gamma_{2} N \operatorname{tr} \log X_{3}-\gamma_{3} N \operatorname{tr} \log \left(X_{4} \cdots X_{n-1}\right)\right\}
\end{aligned}
$$

The logarithmic term in $X_{2}$ stabilizes the equilibrium distribution of eigenvalues of this matrix in the domain of positive real numbers; if $\gamma_{2}=\gamma_{3}$, we lose this term and must use the technique of matrix models with hard walls.

This model is the main object of study.

## The matrix model

## Braid-group action

The above matrix chains admit the braid-group action resulted from that an order of ramification points is not fixed a priori.

$$
\beta_{i}:\left\{X_{i} \rightarrow X_{i-1} X_{i}^{-1} X_{i+1} ; X_{j} \rightarrow X_{j}, j \neq i\right\}
$$

It is easy to see that the action of each such generator with $3 \geq i \geq n-2$ leaves the matrix chain action invariant.


## KP tau-function

We apply the Harish-Chandra-Itzykson-Zuber integration formula to every term in the chain of matrices. Taking into account that, for instance, the integral over the unitary group for the term $e^{-N \operatorname{tr} x_{k} x_{k+1}^{-1}}$ gives

$$
\int D U e^{-N \sum_{i, j=1}^{\gamma_{3} N} U_{i j} x_{i}^{(k)} U_{i j}^{*}\left[x_{j}^{(k+1)}\right]^{-\mathbf{1}}}=\frac{\operatorname{det}_{i, j}\left[e^{-N x_{i}^{(k)} / x_{j}^{(k+1)}}\right]}{\Delta\left(x^{(k)}\right) \Delta\left(1 / x^{(k+1)}\right)}
$$

and that $1 / \Delta\left(1 / x^{(k+1)}\right)=\prod_{i=1}^{\gamma_{3} N}\left[x_{i}^{(k+1)}\right]^{\gamma_{3} N-1} / \Delta\left(x^{(k+1)}\right)$ we write the expression in terms of eigenvalues of the matrices $X_{k}$. For

$$
\varphi_{i}^{(r)}=\log x_{i}^{(r)}, \quad r=3, \ldots, n-1
$$

the model integral takes a Toda chain-like form:

$$
\begin{aligned}
& \prod_{i=1}^{\gamma_{3} N} \int_{0}^{\infty} d x_{i}^{(2)} \frac{\Delta\left(x^{(2)}\right)}{\Delta\left(|\Lambda|^{-2}\right)} \prod_{i=1}^{\gamma_{3} N}\left[\int_{-\infty}^{\infty} \prod_{k=3}^{n-1} d \varphi_{i}^{(k)} \times\right. \\
& \quad \times \exp \left[N \sum_{r=1}^{\infty} \frac{t_{r}}{r}\left(x_{i}^{(2)}\right)^{r}+\left(\gamma_{2}-\gamma_{3}\right) N \log x_{i}^{(2)}-\left(\gamma_{2}-\gamma_{3}\right) N \varphi_{i}^{(3)}\right. \\
& \left.\left.\quad-N x_{i}^{(2)} e^{-\varphi_{i}^{(3)}}-N e^{\varphi_{i}^{(3)}-\varphi_{i}^{(4)}}-\cdots-N e^{\varphi_{i}^{(n-2)}-\varphi_{i}^{(n-1)}}-N e^{\varphi_{i}^{(n-1)}}|\Lambda|_{i}^{-2}\right]\right] .
\end{aligned}
$$

In this form it is clear that all integrals w.r.t. $\varphi_{i}^{(k)}$ are convergent.

## Loop equations and the spectral curve

We consider the following variations of the matrix fields $X_{i}$ :

$$
\begin{aligned}
\delta X_{1} & =\frac{1}{x-X_{1}} \xi\left(\left[\widehat{X}_{1}\right]\right), \\
\delta X_{i} & =X_{i} \frac{1}{x-X_{1}} \eta_{i}\left(\left[\widehat{X}_{i}\right]\right), 2 \leq i \leq n-2 \\
\delta X_{n-1} & =\frac{1}{x-X_{1}} \chi\left(\left[\widehat{X}_{n-1}\right]\right),
\end{aligned}
$$

where $\xi, \eta_{i}$, and $\chi$ are Laurent polynomials in all but one of arguments indicated by the symbol [ $\widehat{X}_{i}$ ].
We introduce the standard notation for the leading term of the $1 / N^{2}$-expansion of the one-loop mean of the matrix field $X_{1}$ :

$$
\omega_{1}(x):=\frac{1}{N}\left\langle\operatorname{tr} \frac{1}{x-X_{1}}\right\rangle_{0}
$$

## Loop equations and the spectral curve

The exact loop equations obtained upon the above variations read ([BIPZ])

$$
\begin{aligned}
& \frac{1}{N^{2}}\left\langle\operatorname{tr} \frac{1}{x-X_{1}} \operatorname{tr} \frac{1}{x-X_{1}} \xi\left(\left[\widehat{X}_{1}\right]\right)\right\rangle^{c}+\left[\omega_{1}(x)+V^{\prime}(x)\right]\left\langle\operatorname{tr} \frac{1}{x-X_{1}} \xi\left(\left[\widehat{X}_{1}\right]\right)\right\rangle \\
& \quad+\left\langle\operatorname{tr} \frac{V^{\prime}\left(X_{1}\right)-V^{\prime}(x)}{x-X_{1}} \xi\left(\left[\widehat{X}_{1}\right]\right)\right\rangle+\left\langle\operatorname{tr} X_{2}^{-1} \frac{1}{x-X_{1}} \xi\left(\left[\widehat{X}_{1}\right]\right)\right\rangle=0 ; \\
& \left\langle\operatorname{tr} \frac{-1}{x-X_{1}} \eta\left(\left[\widehat{X}_{2}\right]\right) X_{2}^{-1} X_{1}\right\rangle+\left\langle\operatorname{tr} X_{3}^{-1} X_{2} \frac{1}{x-X_{1}} \eta\left(\left[\widehat{X}_{2}\right]\right)\right\rangle \\
& \quad+\left(\gamma_{2}-\gamma_{3}\right)\left\langle\operatorname{tr} \frac{1}{x-X_{1}} \eta\left(\left[\widehat{X}_{2}\right]\right)\right\rangle=0 ; \\
& \left\langle\operatorname{tr} \frac{1}{x-X_{1}} \rho\left(\left[\widehat{X}_{i}\right]\right) X_{i}^{-1} X_{i-1}\right\rangle=\left\langle\operatorname{tr} \frac{1}{x-X_{1}} \rho\left(\left[\widehat{X}_{i}\right]\right) X_{i+1} X_{i}\right\rangle ; \\
& \left\langle\operatorname{tr} X_{n-2} \frac{1}{x-X_{1}} \chi\left(\left[\widehat{X}_{n-1}\right]\right)\right\rangle+\left\langle\operatorname{tr} U^{\prime}\left(X_{n-1}\right) \frac{1}{x-X_{1}} \chi\left(\left[\widehat{X}_{n-1}\right]\right)\right\rangle=0,
\end{aligned}
$$

where $U\left(X_{n-1}\right)$ is the potential obtained from the external field $\Lambda \bar{\Lambda}$ by the replica method.

## Loop equations and the spectral curve

Finding the spectral curve $(\mathrm{n}=5)$

$$
\begin{aligned}
& \mathbf{a}:=\left\langle\operatorname{tr} \frac{1}{x-M_{1}} \frac{U^{\prime}\left(M_{4}\right)-U^{\prime}(z)}{M_{4}-z}\right\rangle_{0}, \\
& \mathbf{c}:=\left\langle\operatorname{tr} M_{3} \frac{1}{x-M_{1}} \frac{U^{\prime}\left(M_{4}\right)-U^{\prime}(z)}{M_{4}-z}\right\rangle_{0}, \\
& \mathbf{d}:=\left\langle\operatorname{tr} M_{2} \frac{1}{x-M_{1}} \frac{U^{\prime}\left(M_{4}\right)-U^{\prime}(z)}{M_{4}-z}\right\rangle_{0} .
\end{aligned}
$$

After some algebra ( $\geq 6$ pages in A4) we come to the system of equations that holds for any $z$ :

$$
\begin{aligned}
& {\left[x\left[\omega_{1}(x)+V^{\prime}(x)\right]+\left(\gamma_{2}-\gamma_{3}\right)\right] \mathbf{a}+z \mathbf{c}} \\
& \quad=-x P_{n, m}(x, z)-\widehat{Q}_{m}(z)+\left\langle\operatorname{tr} \frac{1}{x-M_{1}}\left[M_{3}^{2}+M_{3} U^{\prime}(z)\right]\right\rangle_{0} \\
& {\left[x\left[\omega_{1}(x)+V^{\prime}(x)\right]+\left(\gamma_{2}-\gamma_{3}\right)\right] \mathbf{c}+\mathbf{d}=-x \widehat{P}_{n, m}(x, z)-\widehat{\widehat{Q}}_{m}(z)} \\
& \mathbf{a}+\left[\omega_{1}(x)+V^{\prime}(x)\right] \mathbf{d}=-\widehat{\widehat{P}}_{n, m}(x, z)
\end{aligned}
$$

## Loop equations and the spectral curve

Finding the spectral curve ( $n=5$ )
Degeneracy conditions expresses $z: z=-r^{2}(x) y(x)$, where

$$
r(x):=x y(x)+\left(\gamma_{2}-\gamma_{3}\right), \quad y(x):=\omega_{1}(x)+V^{\prime}(x)
$$

and the spectral curve is the condition of solvability of inhomogeneous system:

$$
\begin{aligned}
& -x P_{n, m}(x, z)-\widehat{Q}_{m}(z)+\left\langle\operatorname{tr} \frac{1}{x-M_{1}}\left[M_{3}^{2}+M_{3} U^{\prime}(z)\right]\right\rangle_{0} \\
& \quad+r(x) \widehat{\widehat{P}}_{n, m}(x, z)-y(x) r(x)\left[x \widehat{P}_{n, m}(x, z)+\widehat{\widehat{Q}}_{m}(z)\right]=0
\end{aligned}
$$

For the terms $\left\langle\operatorname{tr} \frac{1}{x-M_{1}} M_{3}^{k} M_{2}^{\prime}\right\rangle_{0}$ we have a recurrent procedure expressing them through polynomials and rational functions of $y(x)$.
Given an (algebraic) spectral curve $S(x, y)=0$ and two differentials, $d x$ and $y(x) d x$ on it, we have the machinery of topological recursion (CEO) that produces correlation functions and free energy terms for all genera.

## Conclusion

I remember the time ((in)famous 1984) the Russian translation of the FAMOUS Quantum Field Theory textbook by Claude Itzykson and Jean-Bernard Zuber has appeared (those days I was a PhD student in quantum field theory at the Steklov Mathematical Institute, Moscow). This textbook immediately became very popular among students and researchers; one of just a handful of cases when a Russian translation of a Foreign textbook got a great acclaim, not vice versa!

Merci de votre patience!

