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Goal: Define a canonical random geometry in two dimensions
(motivations from physics: 2D quantum gravity)

Method:
Replace the sphere S2 by a discretization,
namely a graph drawn on the sphere
(= planar map).
Choose such a planar map uniformly at
random in a suitable class and equip its
vertex set with the graph distance.

Let the size of the graph tend to infinity and
pass to the limit after rescaling to get a
random metric space: the Brownian map.
This convergence still holds if we make local
modifications of the graph distance.

Strong analogy with Brownian motion, which is a canonical model for a
random curve in space, obtained as the scaling limit of random walks
on the lattice.
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1. Convergence to the Brownian map
Definition
A planar map is a proper embedding of a finite connected graph into
the two-dimensional sphere (considered up to orientation-preserving
homeomorphisms of the sphere).

root
edge

root
vertex

A rooted triangulation
with 18 faces

Faces = connected components of
the complement of edges
p-angulation:

each face is bounded by
p edges

p = 3: triangulation
p = 4: quadrangulation

Rooted map: distinguished
oriented edge
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A large triangulation of the sphere (simulation: N. Curien)
Can we get a continuous model out of this ?
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Planar maps as metric spaces

M planar map
V (M) = set of vertices of M
dgr graph distance on V (M)

(V (M),dgr) is a (finite) metric space

0

1

1
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1

2

2

3

4

In blue : distances from root

Mp
n = {rooted p − angulations with n faces}

Mp
n is a finite set (finite number of possible “shapes”)

Choose Mn uniformly at random in Mp
n.

View (V (Mn),dgr) as a random variable with values in
K = {compact metric spaces, modulo isometries}

which is equipped with the Gromov-Hausdorff distance. (A sequence
(En) of compact metric spaces converges if one can embed all En’s
isometrically in the same big space E so that they converge for the
Hausdorff metric on compact subsets of E .)
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Main result: The Brownian map
Mp

n = {rooted p − angulations with n faces}
Mn uniform over Mp

n, V (Mn) vertex set of Mn, dgr graph distance

Theorem (The scaling limit of p-angulations)
Suppose that either p = 3 (triangulations) or p ≥ 4 is even. Set

c3 = 61/4 , cp =
( 9

p(p − 2)

)1/4
if p is even.

Then,

(V (Mn), cp n−1/4 dgr)
(d)−→

n→∞
(m∞,D∗)

in the Gromov-Hausdorff sense. The limit (m∞,D∗) is a random
compact metric space that does not depend on p (universality) and is
called the Brownian map (after Marckert-Mokkadem).

Remarks. The case p = 4 was obtained independently by Miermont.
Extensions to other classes of random planar maps: Abraham,
Addario-Berry-Albenque, Beltran-LG, Bettinelli-Jacob-Miermont, etc.
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Two properties of the Brownian map

Theorem (Hausdorff dimension)

dim(m∞,D∗) = 4 a.s.

(Already known in the physics literature.)

Theorem (topological type, LG-Paulin)

Almost surely, (m∞,D∗) is homeomorphic to the 2-sphere S2.
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Why study planar maps and their continuous limits ?
combinatorics Many papers since Tutte’s work in the 60-70s
(recently Bousquet-Mélou, Bouttier-di Francesco-Guitter, Fusy,
Noy, Schaeffer, etc.)
theoretical physics

I enumeration of maps related to matrix integrals [’t Hooft 74, Brézin,
Itzykson, Parisi, Zuber 78, etc.]
more recent work: Eynard, etc.

I large random planar maps as models of random geometry
2D-quantum gravity, cf Ambjørn, Durhuus, Jonsson 95,
recent papers of Bouttier-Guitter, Ambjørn, Budd, etc.
work of Duplantier-Sheffield (Gaussian free field approach),
also David-Kupiainen-Rhodes-Vargas, etc.
higher dimensional extensions: Rivasseau, Gurau, etc.

probability theory: model for a Brownian surface
I analogy with Brownian motion as continuous limit of discrete paths
I universality of the limit
I asymptotic properties of “typical” large planar graphs
I connections with recent work of Duplantier-Miller-Sheffield (QG as

a mating of trees, Quantum Loewner Evolution, etc.)
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Construction of the Brownian map
The Brownian map (m∞,D∗) is constructed by identifying certain pairs
of points in Aldous’ Brownian continuum random tree (CRT).

Constructions of the CRT (Aldous, 1991-1993):
As the scaling limit of many classes of discrete trees
As the random real tree (Te,de) coded by a Brownian excursion.

A simulation of the CRT

If one explores the
tree in clockwise
order from a vertex ρ
chosen as random,
the distance from ρ
evolves like a
Brownian excursion.
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Constructing the Brownian map
First step. Equip the CRT (Te,de) with
Brownian labels (Za)a∈Te :
conditionally on Te, (Za)a∈Te is the centered
Gaussian process such that

Zρ = 0 (where ρ is the root)
E [(Za − Zb)2] = de(a,b), a,b ∈ Te

Second step. Identify two vertices a,b ∈ Te if:

they have the same label Za = Zb,
one can go from a to b around the tree (in
the clockwise or counterclockwise cyclic
exploration) visiting only vertices with label
greater than or equal to Za = Zb.

a b

ρ

for any red vertex c,
Zc ≥ Za = Zb

The Brownian map m∞ is the quotient space resulting from these
identifications (also need to define the distance D∗ on m∞).
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2. The UIPT and the Brownian plane
Let ∆n be unif. distributed over {rooted triangulations with n faces}.
One can prove (Angel-Schramm 2003, Stephenson 2014) that

∆n
(d)−→

n→∞
∆∞

where ∆∞ is a (rooted) infinite random triangulation called the UIPT for
Uniform Infinite Planar Triangulation.

The convergence holds in the sense of local limits: if Br (∆n) denotes
the ball of radius r in ∆n, defined as the union of all triangles having a
vertex at distance < r from the root vertex ρ, then for every fixed planar
map M,

P(Br (∆n) = M) −→
n→∞

P(Br (∆∞) = M).

This is very different from the Gromov-Hausdorff convergence: Here
we do no rescaling and thus the limit is a non-compact (infinite)
random lattice.
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An artistic representation of the UIPT (artist: N. Curien)

Recurrence of random walk on UIPT: Gurel-Gurevich and Nachmias.
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Balls and hulls in the UIPT

The hull of radius r , denoted by B•r (∆∞), is obtained by filling in the
“holes” in the ball Br (∆∞).

ρ

The shaded part is
the ball B2(∆∞)
(all triangles that
contain a vertex at
distance ≤ 1 from ρ)
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Balls and hulls in the UIPT

The hull of radius r , denoted by B•r (∆∞), is obtained by filling in the
“holes” in the ball Br (∆∞).

ρ

The hull B•2(∆∞) is
the union of B2(∆∞)
and the two holes.
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Asymptotics for volumes and perimeters of hulls

Pr perimeter of the hull B•r (∆∞) (number of edges in boundary)
Vr volume of the hull B•r (∆∞) (number of triangles)

Theorem (Scaling limit of the hull process, Curien-LG)

We have the following convergence in distribution(
n−2P[nt],n−4V[nt]

)
t≥0

(d)−−−→
r→∞

(
Xt ,Yt

)
t≥0

.

where
(Xt )t≥0 is a time-reversed continuous-state branching process
with branching mechanism ψ(u) = c u3/2,

Yt =
∑
s≤t

ξs (∆Xs)2, where the random variables ξs are i.i.d. with

density
1√
2π

x−5/2 e−1/2x 1{x>0}.
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Asymptotic formulas for laws of perimeters and
volumes of hulls
We have

lim
n→∞

E
[
e−λn−2P[nt]

]
= (1 + cλt2)−3/2

lim
n→∞

E
[
e−λn−4V[nt]

]
= 33/2 cosh(c′λ1/4t)

(
cosh2(c′λ1/4t) + 2

)−3/2
.

Also explicit formula for the (asymptotic) conditional distribution of the
volume knowing the perimeter.

The limiting distributions are universal (only the constants c, c′ depend
on the random lattice that is considered).

These distributions can be interpreted in terms of the continuous
object called the Brownian plane (infinite volume version of the
Brownian map)
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Convergence to the Brownian plane
Relations between quadrangulations and the Brownian plane P.

(Qn,dgr)

(Q∞,dgr)

(m∞, D∗)

(P, D∞)

·n−1/4

Local Local

Scaling

Scaling

Quadrangulations
Uniform

UIPQ

Brownian
Map

·λ→ 0
Brownian
Plane

Brownian
Map

·k−1n >> n−1/4

Should also hold for triangulations instead of quadrangulations (the
arrow at the bottom is still missing!).

The Brownian plane is scale invariant: (P, λD∞)
(d)
= (P,D∞).
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3. First passage percolation on random planar maps
(work in progress with Nicolas Curien)

Idea: Assign i.i.d. random weights (lengths) we to the edges of a
(random) planar map M.
Define the weight w(γ) of a path γ as the sum of the weights of the
edges it contains.
The first passage percolation distance dFPP is defined on the vertex set
V (M) by

dFPP(v , v ′) = inf{w(γ) : γ path from v to v ′}.

Goal: In large scales, dFPP behaves like the graph distance dgr
(asymptotically, balls for dFPP are close to balls for dgr).

This is not expected to be true in deterministic lattices such as Zd , but
random planar maps are in a sense more isotropic.

Consequence: The scaling limit of the metric space associated with
dFPP will again be the Brownian map!
Method: Discuss first the UIPT.
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Layers in the UIPT
In view of studying the first-passage percolation distance on the UIPT,
one needs more information about its geometry. Set B•r = B•r (∆∞).

∂B•
`

B•
k

For k < `,
the successive
layers between B•k
and B•` are the sets

B•j \B•j−1

for k < j ≤ `.
(Here 3 layers)
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Downward triangles in the layers

∂B•
`

B•
k

k < ` fixed
For each layer B•j \B•j−1
with k < j ≤ `
the downward triangles
are all triangles
contained in the layer
B•j \B•j−1 that have an
edge in ∂B•j (their third
vertex is on ∂B•j−1).

(Note that we do not get
all triangles in the layer
B•j \B•j−1, only those that
have an edge in the
exterior boundary of the
layer)
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Downward triangles in the layers

∂B•
`

B•
k

Remove the edges not
on the downward
triangles.
This creates “white”
holes.
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The forest coding downward triangles

∂B•`

B•k

e

e′

Can represent the
configuration by a forest
of trees whose vertices
are the edges of ∂B•j for
all k ≤ j ≤ `.
An edge e of ∂B•j is the
parent of an edge e′ of
∂B•j−1 if the white hole
whose boundary
contains e′ is bounded
on its right by the
downward triangle
associated with e.

Trees grow from the boundary ∂B•` of the “big” hull to the boundary
∂B•k of the small hull.
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The forest coding downward triangles

B•
k

∂B•
`

The forest representing
the structure of layers
between B•k and B•` .
The roots of trees in the
forest are all edges of
∂B•` .

To reconstruct B•` \B•k
one only needs

the forest coding
the layers,
the triangulations
(with boundaries)
filling in the holes.
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The Galton-Watson structure
Let T1,T2, . . . ,TP`

be the forest coding the configuration of downward
triangles between ∂B•k and ∂B•` . Here k < `, and P` is the size of ∂B•` .
τ1, . . . , τp deterministic forest with height `− k and q vertices at height
`− k . Write V∗(τi) for all vertices of τi except those at height `− k .

Proposition (related to Krikun (2005))

P
(

(T1,T2, . . . ,TP`
) = (τ1, . . . , τp)

∣∣∣Pk = q
)

=
h(p)

h(q)

∏
v∈V∗(τ1)∪···∪V∗(τp)

θ(cv )

where
cv is the number of children of v;

(θ(n))n≥0 determined by:
∑
θ(n) xn = 1−

(
1 + 1√

1−x

)−2
;

h(p) = 4−p (2p)!
(p!)2 (Stationary distribution for the θ-GW process).

Consequence: The trees T1, . . . ,TP`
are “almost” independent

Galton-Watson trees with offspring distribution θ (genealogical trees for
a population where each individual has n children with probab. θ(n)).
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The half-plane model
Construct a triangulation H of the lower half-plane as follows.

Each horizontal edge on the line Z× {−k} belongs to a downward
triangle whose third vertex is on the line Z× {−k − 1}.

0

−1

−2

−3

−4

(0, 0) (1, 0)(−1, 0)

The trees characterizing the configuration of downward triangles
are independent Galton-Watson trees with offspring distribution θ.
Holes are filled in with “free triangulations” with a boundary
(probab. of a given triangul. with n inner vertices is C (12

√
3)−n).
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First-passage percolation in the half-plane model
Assign i.i.d. weights we to the edges of H, with common distribution ν
such that 0 < c ≤ we ≤ C <∞. Consider the associated first-passage
percolation distance dFPP.

Proposition
Let ρ = (0,0) be the root and for every k ≥ 0, let Lk be the horizontal
line at vertical coordinate −k. Then

1
k

dFPP(ρ,Lk )
a.s.−→

k→∞
c0 ∈ [c,C].

Proof: Kingman’s subadditive ergodic theorem.

−k − `

−k

0

geodesic from to Lk

vk

geodesic from vk to Lk+`

(in region below Lk )

ρ

ρ

dFPP(ρ,Lk+`) ≤ dFPP(ρ,Lk )+Zk ,`

where
Zk ,`

(d)
= dFPP(ρ,L`)

and Zk ,` is independent of
dFPP(ρ,Lk ).
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First-passage percolation in the UIPT

Assign i.i.d. weights we with common distribution ν to the edges of the
UIPT ∆∞ and consider the associated first-passage percolation
distance dFPP.
For every real r ≥ 0, let BFPP

r (∆∞) be the ball of radius r for dFPP.
Let c0 be as in the half-plane model.

Theorem
For every ε > 0, we have

B(1−ε)r/c0
(∆∞) ⊂ BFPP

r (∆∞) ⊂ B(1+ε)r/c0
(∆∞)

with probability tending to 1 as r →∞.

The ball of radius r for the FPP distance is asymptotically close to the
ball of radius r/c0 for the graph distance.
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Idea of the proof
Locally (below the boundary of the hull of radius r ), the UIPT looks like
the half-plane model.

r

r − 1

r − 2
r − 3

∞
distance
from

r

ρ

ρ

Can use the result in the half-plane model to estimate the FPP
distance between a typical point of ∂B•r (∆∞) and ∂B•(1−ε)r (∆∞).
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First-passage percolation in finite triangulations

∆n is uniformly distributed over {triangulations with n faces}
dFPP first-passage percolation distance on V (∆n) defined using
weights i.i.d. according to ν.

Theorem

(V (∆n),61/4 n−1/4 dFPP)
(d)−→

n→∞
(m∞, c0 D∗)

in the Gromov-Hausdorff sense. Here (m∞,D∗) is the Brownian map.

Idea of the proof: Use absolute continuity arguments to relate large
(finite) triangulations to the UIPT, and then apply the theorem about
the UIPT.
Remark. In general one cannot calculate the constant c0, except in
special cases (e.g. Eden model, corresponding to exponential edge
weights on the dual graph of the UIPT). See however Budd (2015).
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