Random Planar Geometry

Jean-François Le Gall

Université Paris-Sud Orsay and Institut universitaire de France

Conférence Itzykson 2015

Goal: Define a canonical random geometry in two dimensions (motivations from physics: 2D quantum gravity)

Goal: Define a canonical random geometry in two dimensions (motivations from physics: 2D quantum gravity)

Method:

- Replace the sphere \mathbb{S}^{2} by a discretization, namely a graph drawn on the sphere (= planar map).
- Choose such a planar map uniformly at random in a suitable class and equip its
 vertex set with the graph distance.

Goal: Define a canonical random geometry in two dimensions (motivations from physics: 2D quantum gravity)

Method:

- Replace the sphere \mathbb{S}^{2} by a discretization, namely a graph drawn on the sphere (= planar map).
- Choose such a planar map uniformly at random in a suitable class and equip its
 vertex set with the graph distance.
- Let the size of the graph tend to infinity and pass to the limit after rescaling to get a random metric space: the Brownian map.
- This convergence still holds if we make local modifications of the graph distance.

Goal: Define a canonical random geometry in two dimensions (motivations from physics: 2D quantum gravity)

Method:

- Replace the sphere \mathbb{S}^{2} by a discretization, namely a graph drawn on the sphere (= planar map).
- Choose such a planar map uniformly at random in a suitable class and equip its vertex set with the graph distance.
- Let the size of the graph tend to infinity and pass to the limit after rescaling to get a random metric space: the Brownian map.
- This convergence still holds if we make local modifications of the graph distance.

Strong analogy with Brownian motion, which is a canonical model for a random curve in space, obtained as the scaling limit of random walks on the lattice.

1. Convergence to the Brownian map

Definition

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

1. Convergence to the Brownian map

Definition

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

A rooted triangulation with 18 faces

A large triangulation of the sphere (simulation: N . Curien) Can we get a continuous model out of this ?

Planar maps as metric spaces

M planar map

- $V(M)=$ set of vertices of M
- d_{gr} graph distance on $V(M)$
- ($\left.V(M), d_{\mathrm{gr}}\right)$ is a (finite) metric space

In blue : distances from root

Planar maps as metric spaces

M planar map

- $V(M)=$ set of vertices of M
- d_{gr} graph distance on $V(M)$
- ($\left.V(M), d_{\mathrm{gr}}\right)$ is a (finite) metric space

In blue : distances from root
$\mathbb{M}_{n}^{p}=\{$ rooted p - angulations with n faces $\}$
\mathbb{M}_{n}^{p} is a finite set (finite number of possible "shapes")
Choose M_{n} uniformly at random in \mathbb{M}_{n}^{p}.

Planar maps as metric spaces

M planar map

- $V(M)=$ set of vertices of M
- $d_{\text {gr }}$ graph distance on $V(M)$
- ($\left.V(M), d_{\mathrm{gr}}\right)$ is a (finite) metric space

In blue : distances from root
$\mathbb{M}_{n}^{p}=\{$ rooted p - angulations with n faces $\}$
\mathbb{M}_{n}^{p} is a finite set (finite number of possible "shapes")
Choose M_{n} uniformly at random in \mathbb{M}_{n}^{p}.
View $\left(V\left(M_{n}\right), d_{\mathrm{gr}}\right)$ as a random variable with values in
$\mathbb{K}=\{$ compact metric spaces, modulo isometries $\}$
which is equipped with the Gromov-Hausdorff distance. (A sequence $\left(E_{n}\right)$ of compact metric spaces converges if one can embed all E_{n} 's isometrically in the same big space E so that they converge for the Hausdorff metric on compact subsets of E.)

Main result: The Brownian map
 $\mathbb{M}_{n}^{p}=\{$ rooted p - angulations with n faces $\}$
 M_{n} uniform over $\mathbb{M}_{n}^{p}, V\left(M_{n}\right)$ vertex set of M_{n}, d_{gr} graph distance

Main result: The Brownian map

$\mathbb{M}_{n}^{p}=\{$ rooted p - angulations with n faces $\}$
M_{n} uniform over $\mathbb{M}_{n}^{p}, \quad V\left(M_{n}\right)$ vertex set of M_{n}, d_{gr} graph distance
Theorem (The scaling limit of p-angulations)
Suppose that either $p=3$ (triangulations) or $p \geq 4$ is even. Set

$$
c_{3}=6^{1 / 4} \quad, \quad c_{p}=\left(\frac{9}{p(p-2)}\right)^{1 / 4} \quad \text { if } p \text { is even. }
$$

Then,

$$
\left(V\left(M_{n}\right), c_{p} n^{-1 / 4} d_{\mathrm{gr}}\right) \xrightarrow[n \rightarrow \infty]{(\mathrm{d})}\left(\mathbf{m}_{\infty}, D^{*}\right)
$$

in the Gromov-Hausdorff sense. The limit $\left(\mathbf{m}_{\infty}, D^{*}\right)$ is a random compact metric space that does not depend on p (universality) and is called the Brownian map (after Marckert-Mokkadem).

Main result: The Brownian map

$\mathbb{M}_{n}^{p}=\{$ rooted p - angulations with n faces $\}$
M_{n} uniform over $\mathbb{M}_{n}^{p}, \quad V\left(M_{n}\right)$ vertex set of M_{n}, d_{gr} graph distance
Theorem (The scaling limit of p-angulations)
Suppose that either $p=3$ (triangulations) or $p \geq 4$ is even. Set

$$
c_{3}=6^{1 / 4} \quad, \quad c_{p}=\left(\frac{9}{p(p-2)}\right)^{1 / 4} \quad \text { if } p \text { is even. }
$$

Then,

$$
\left(V\left(M_{n}\right), c_{p} n^{-1 / 4} d_{\mathrm{gr}}\right) \xrightarrow[n \rightarrow \infty]{(\mathrm{d})}\left(\mathbf{m}_{\infty}, D^{*}\right)
$$

in the Gromov-Hausdorff sense. The limit $\left(\mathbf{m}_{\infty}, D^{*}\right)$ is a random compact metric space that does not depend on p (universality) and is called the Brownian map (after Marckert-Mokkadem).

Remarks. The case $p=4$ was obtained independently by Miermont.
Extensions to other classes of random planar maps: Abraham, Addario-Berry-Albenque, Beltran-LG, Bettinelli-Jacob-Miermont, etc.

Two properties of the Brownian map

Theorem (Hausdorff dimension)

$$
\operatorname{dim}\left(\mathbf{m}_{\infty}, D^{*}\right)=4 \quad \text { a.s. }
$$

(Already known in the physics literature.)

Two properties of the Brownian map

Theorem (Hausdorff dimension)

$$
\operatorname{dim}\left(\mathbf{m}_{\infty}, D^{*}\right)=4 \quad \text { a.s. }
$$

(Already known in the physics literature.)
Theorem (topological type, LG-Paulin)
Almost surely, $\left(\mathbf{m}_{\infty}, D^{*}\right)$ is homeomorphic to the 2-sphere \mathbb{S}^{2}.

Why study planar maps and their continuous limits?

- combinatorics Many papers since Tutte's work in the 60-70s (recently Bousquet-Mélou, Bouttier-di Francesco-Guitter, Fusy, Noy, Schaeffer, etc.)
- theoretical physics
- enumeration of maps related to matrix integrals ['t Hooft 74, Brézin, Itzykson, Parisi, Zuber 78, etc.]
more recent work: Eynard, etc.
- large random planar maps as models of random geometry 2D-quantum gravity, cf Ambjørn, Durhuus, Jonsson 95, recent papers of Bouttier-Guitter, Ambjørn, Budd, etc. work of Duplantier-Sheffield (Gaussian free field approach), also David-Kupiainen-Rhodes-Vargas, etc. higher dimensional extensions: Rivasseau, Gurau, etc.
- probability theory: model for a Brownian surface
- analogy with Brownian motion as continuous limit of discrete paths
- universality of the limit
- asymptotic properties of "typical" large planar graphs
- connections with recent work of Duplantier-Miller-Sheffield (QG as a mating of trees, Quantum Loewner Evolution, etc.)

Construction of the Brownian map

The Brownian map ($\mathbf{m}_{\infty}, D^{*}$) is constructed by identifying certain pairs of points in Aldous' Brownian continuum random tree (CRT).

Construction of the Brownian map

The Brownian map ($\mathbf{m}_{\infty}, D^{*}$) is constructed by identifying certain pairs of points in Aldous' Brownian continuum random tree (CRT).

Constructions of the CRT (Aldous, 1991-1993):

- As the scaling limit of many classes of discrete trees
- As the random real tree ($\mathcal{T}_{\mathrm{e}}, d_{\mathrm{e}}$) coded by a Brownian excursion.

If one explores the tree in clockwise order from a vertex ρ chosen as random, the distance from ρ evolves like a Brownian excursion.

A simulation of the CRT

Constructing the Brownian map

First step. Equip the CRT $\left(\mathcal{T}_{\mathrm{e}}, d_{\mathrm{e}}\right)$ with
Brownian labels $\left(Z_{a}\right)_{a \in \mathcal{T}_{e}}$:
conditionally on $\mathcal{T}_{\mathrm{e}},\left(Z_{a}\right)_{\mathrm{a} \in \mathcal{T}_{\mathrm{e}}}$ is the centered Gaussian process such that

- $Z_{\rho}=0 \quad$ (where ρ is the root)
- $E\left[\left(Z_{a}-Z_{b}\right)^{2}\right]=d_{e}(a, b)$, $a, b \in \mathcal{T}_{\mathrm{e}}$

Second step. Identify two vertices $a, b \in \mathcal{T}_{\mathrm{e}}$ if:

- they have the same label $Z_{a}=Z_{b}$,
- one can go from a to b around the tree (in the clockwise or counterclockwise cyclic exploration) visiting only vertices with label greater than or equal to $Z_{a}=Z_{b}$.

for any red vertex c,

$$
Z_{c} \geq Z_{a}=Z_{b}
$$

The Brownian map \mathbf{m}_{∞} is the quotient space resulting from these identifications (also need to define the distance D^{*} on \mathbf{m}_{∞}).

2. The UIPT and the Brownian plane

Let Δ_{n} be unif. distributed over \{rooted triangulations with n faces $\}$. One can prove (Angel-Schramm 2003, Stephenson 2014) that

$$
\Delta_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \Delta_{\infty}
$$

where Δ_{∞} is a (rooted) infinite random triangulation called the UIPT for Uniform Infinite Planar Triangulation.

2. The UIPT and the Brownian plane

Let Δ_{n} be unif. distributed over \{rooted triangulations with n faces $\}$.
One can prove (Angel-Schramm 2003, Stephenson 2014) that

$$
\Delta_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \Delta_{\infty}
$$

where Δ_{∞} is a (rooted) infinite random triangulation called the UIPT for Uniform Infinite Planar Triangulation.
The convergence holds in the sense of local limits: if $B_{r}\left(\Delta_{n}\right)$ denotes the ball of radius r in Δ_{n}, defined as the union of all triangles having a vertex at distance $<r$ from the root vertex ρ, then for every fixed planar map M,

$$
\mathbb{P}\left(B_{r}\left(\Delta_{n}\right)=M\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}\left(B_{r}\left(\Delta_{\infty}\right)=M\right)
$$

This is very different from the Gromov-Hausdorff convergence: Here we do no rescaling and thus the limit is a non-compact (infinite) random lattice.

An artistic representation of the UIPT (artist: N. Curien) Recurrence of random walk on UIPT: Gurel-Gurevich and Nachmias.

Balls and hulls in the UIPT

The hull of radius r, denoted by $B_{r}^{\bullet}\left(\Delta_{\infty}\right)$, is obtained by filling in the "holes" in the ball $B_{r}\left(\Delta_{\infty}\right)$.

The shaded part is the ball $B_{2}\left(\Delta_{\infty}\right)$ (all triangles that contain a vertex at distance ≤ 1 from ρ)

Balls and hulls in the UIPT

The hull of radius r, denoted by $B_{r}^{\bullet}\left(\Delta_{\infty}\right)$, is obtained by filling in the "holes" in the ball $B_{r}\left(\Delta_{\infty}\right)$.

The hull $B_{2}^{\bullet}\left(\Delta_{\infty}\right)$ is the union of $B_{2}\left(\Delta_{\infty}\right)$ and the two holes.

Asymptotics for volumes and perimeters of hulls

P_{r} perimeter of the hull $B_{r}^{\bullet}\left(\Delta_{\infty}\right)$ (number of edges in boundary)
V_{r} volume of the hull $B_{r}^{\circ}\left(\Delta_{\infty}\right)$ (number of triangles)

Theorem (Scaling limit of the hull process, Curien-LG)

We have the following convergence in distribution

$$
\left(n^{-2} P_{[n t]}, n^{-4} V_{[n t]}\right)_{t \geq 0} \xrightarrow[r \rightarrow \infty]{(d)}\left(X_{t}, Y_{t}\right)_{t \geq 0}
$$

where

- $\left(X_{t}\right)_{t \geq 0}$ is a time-reversed continuous-state branching process with branching mechanism $\psi(u)=c u^{3 / 2}$,
- $Y_{t}=\sum_{s \leq t} \xi_{s}\left(\Delta X_{s}\right)^{2}$, where the random variables ξ_{s} are i.i.d. with density

$$
\frac{1}{\sqrt{2 \pi}} x^{-5 / 2} e^{-1 / 2 x} 1_{\{x>0\}}
$$

Asymptotic formulas for laws of perimeters and volumes of hulls

We have

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[e^{-\lambda n^{-2} P_{[n t]}}\right]=\left(1+c \lambda t^{2}\right)^{-3 / 2}
$$

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[e^{-\lambda n^{-4} V_{[n t]}}\right]=3^{3 / 2} \cosh \left(c^{\prime} \lambda^{1 / 4} t\right)\left(\cosh ^{2}\left(c^{\prime} \lambda^{1 / 4} t\right)+2\right)^{-3 / 2}
$$

Also explicit formula for the (asymptotic) conditional distribution of the volume knowing the perimeter.

The limiting distributions are universal (only the constants c, c^{\prime} depend on the random lattice that is considered).

These distributions can be interpreted in terms of the continuous object called the Brownian plane (infinite volume version of the Brownian map)

Convergence to the Brownian plane

Relations between quadrangulations and the Brownian plane \mathcal{P}.
Uniform
Quadrangulations
Brownian
Map

UIPQ
Brownian
Plane
Should also hold for triangulations instead of quadrangulations (the arrow at the bottom is still missing!).
The Brownian plane is scale invariant: $\left(\mathcal{P}, \lambda D_{\infty}\right) \stackrel{(\mathrm{d})}{=}\left(\mathcal{P}, D_{\infty}\right)$.

3. First passage percolation on random planar maps

 (work in progress with Nicolas Curien)Idea: Assign i.i.d. random weights (lengths) w_{e} to the edges of a (random) planar map M. Define the weight $w(\gamma)$ of a path γ as the sum of the weights of the edges it contains.
The first passage percolation distance d_{FPP} is defined on the vertex set $V(M)$ by

$$
d_{\mathrm{FPP}}\left(v, v^{\prime}\right)=\inf \left\{w(\gamma): \gamma \text { path from } v \text { to } v^{\prime}\right\} .
$$

3. First passage percolation on random planar maps

 (work in progress with Nicolas Curien)Idea: Assign i.i.d. random weights (lengths) w_{e} to the edges of a (random) planar map M.
Define the weight $w(\gamma)$ of a path γ as the sum of the weights of the edges it contains.
The first passage percolation distance $d_{\text {FPP }}$ is defined on the vertex set $V(M)$ by

$$
d_{\mathrm{FPP}}\left(v, v^{\prime}\right)=\inf \left\{w(\gamma): \gamma \text { path from } v \text { to } v^{\prime}\right\} .
$$

Goal: In large scales, $d_{\text {fPp }}$ behaves like the graph distance d_{gr} (asymptotically, balls for d_{FPP} are close to balls for d_{gr}).
This is not expected to be true in deterministic lattices such as \mathbb{Z}^{d}, but random planar maps are in a sense more isotropic.

Consequence: The scaling limit of the metric space associated with $d_{\text {FPP }}$ will again be the Brownian map!
Method: Discuss first the UIPT.

Layers in the UIPT

In view of studying the first-passage percolation distance on the UIPT, one needs more information about its geometry. Set $B_{r}^{\bullet}=B_{r}^{\bullet}\left(\Delta_{\infty}\right)$.

For $k<\ell$,
the successive layers between B_{k}^{*} and B_{ℓ}^{\bullet} are the sets

$$
B_{j}^{\bullet} \backslash B_{j-1}^{\bullet}
$$

for $k<j \leq \ell$.
(Here 3 layers)

Downward triangles in the layers

$$
k<\ell \text { fixed }
$$

For each layer $B_{j}^{\bullet} \backslash B_{j-1}^{\bullet}$ with $k<j \leq \ell$
the downward triangles are all triangles contained in the layer $B_{j}^{\bullet} \backslash B_{j-1}^{\bullet}$ that have an edge in ∂B_{j}^{\bullet} (their third vertex is on $\left.\partial B_{j-1}^{\bullet}\right)$.
(Note that we do not get all triangles in the layer $B_{j}^{\bullet} \backslash B_{j-1}^{\bullet}$, only those that have an edge in the exterior boundary of the layer)

Downward triangles in the layers

Remove the edges not on the downward triangles.
This creates "white" holes.

The forest coding downward triangles

Can represent the configuration by a forest of trees whose vertices are the edges of ∂B_{j}^{\bullet} for all $k \leq j \leq \ell$.
An edge e of ∂B_{j}^{e} is the parent of an edge e^{\prime} of $\partial B_{j-1}^{\bullet}$ if the white hole whose boundary contains e^{\prime} is bounded on its right by the downward triangle associated with e.

Trees grow from the boundary $\partial B_{\ell}^{\bullet}$ of the "big" hull to the boundary ∂B_{k}^{\bullet} of the small hull.

The forest coding downward triangles

The forest representing the structure of layers between B_{k}^{\bullet} and B_{ℓ}^{\bullet}.
The roots of trees in the forest are all edges of $\partial B_{\ell}^{\bullet}$.

To reconstruct $B_{\ell}^{\bullet} \backslash B_{k}^{\bullet}$ one only needs

- the forest coding the layers,
- the triangulations (with boundaries) filling in the holes.

The Galton-Watson structure

Let $\mathcal{T}_{1}, \mathcal{T}_{2}, \ldots, \mathcal{T}_{P_{\ell}}$ be the forest coding the configuration of downward triangles between ∂B_{k}^{\bullet} and $\partial B_{\ell}^{\bullet}$. Here $k<\ell$, and P_{ℓ} is the size of $\partial B_{\ell}^{\bullet}$. $\tau_{1}, \ldots, \tau_{p}$ deterministic forest with height $\ell-k$ and q vertices at height $\ell-k$. Write $V_{*}\left(\tau_{i}\right)$ for all vertices of τ_{i} except those at height $\ell-k$.

Proposition (related to Krikun (2005))

$P\left(\left(\mathcal{T}_{1}, \mathcal{T}_{2}, \ldots, \mathcal{T}_{P_{\ell}}\right)=\left(\tau_{1}, \ldots, \tau_{p}\right) \mid P_{k}=q\right)=\frac{h(p)}{h(q)} \prod_{v \in V_{*}\left(\tau_{1}\right) \cup \ldots \cup V_{*}\left(\tau_{\rho}\right)} \theta\left(c_{v}\right)$
where

- c_{v} is the number of children of v;
- $(\theta(n))_{n \geq 0}$ determined by: $\sum \theta(n) x^{n}=1-\left(1+\frac{1}{\sqrt{1-x}}\right)^{-2}$;

Consequence: The trees $\mathcal{T}_{1}, \ldots, \mathcal{T}_{P_{\ell}}$ are "almost" independent Galton-Watson trees with offspring distribution θ (genealogical trees for a population where each individual has n children with probab. $\theta(n)$).

The half-plane model

Construct a triangulation \mathcal{H} of the lower half-plane as follows.

- Each horizontal edge on the line $\mathbb{Z} \times\{-k\}$ belongs to a downward triangle whose third vertex is on the line $\mathbb{Z} \times\{-k-1\}$.

- The trees characterizing the configuration of downward triangles are independent Galton-Watson trees with offspring distribution θ.
- Holes are filled in with "free triangulations" with a boundary (probab. of a given triangul. with n inner vertices is $\left.C(12 \sqrt{3})^{-n}\right)$.

First-passage percolation in the half-plane model Assign i.i.d. weights w_{e} to the edges of \mathcal{H}, with common distribution ν such that $0<c \leq w_{e} \leq C<\infty$. Consider the associated first-passage percolation distance $d_{\text {FPP }}$.

Proposition

Let $\rho=(0,0)$ be the root and for every $k \geq 0$, let L_{k} be the horizontal line at vertical coordinate $-k$. Then

$$
\frac{1}{k} d_{\mathrm{FPP}}\left(\rho, L_{k}\right) \underset{k \rightarrow \infty}{\text { a.s. }} c_{0} \in[c, C] .
$$

First-passage percolation in the half-plane model

Assign i.i.d. weights w_{e} to the edges of \mathcal{H}, with common distribution ν such that $0<c \leq w_{e} \leq C<\infty$. Consider the associated first-passage percolation distance $d_{\text {FPp }}$.

Proposition

Let $\rho=(0,0)$ be the root and for every $k \geq 0$, let L_{k} be the horizontal line at vertical coordinate $-k$. Then

$$
\frac{1}{k} d_{\mathrm{FPP}}\left(\rho, L_{k}\right) \underset{k \rightarrow \infty}{\text { a.s. }} c_{0} \in[c, C] .
$$

Proof: Kingman's subadditive ergodic theorem.

$d_{\mathrm{FPP}}\left(\rho, L_{k+\ell}\right) \leq d_{\mathrm{FPP}}\left(\rho, L_{k}\right)+Z_{k, \ell}$ where

$$
z_{\kappa, \ell} \stackrel{(\mathrm{d})}{=} d_{\mathrm{FPP}}\left(\rho, L_{\ell}\right)
$$

and $Z_{k, \ell}$ is independent of $d_{\text {FPP }}\left(\rho, L_{k}\right)$.

First-passage percolation in the UIPT

Assign i.i.d. weights w_{e} with common distribution ν to the edges of the UIPT Δ_{∞} and consider the associated first-passage percolation distance $d_{\text {FPP }}$.
For every real $r \geq 0$, let $B_{r}^{\mathrm{FPP}}\left(\Delta_{\infty}\right)$ be the ball of radius r for d_{FPP}.
Let c_{0} be as in the half-plane model.
Theorem
For every $\varepsilon>0$, we have

$$
B_{(1-\varepsilon) r / c_{0}}\left(\Delta_{\infty}\right) \subset B_{r}^{\mathrm{FPP}}\left(\Delta_{\infty}\right) \subset B_{(1+\varepsilon) r / c_{0}}\left(\Delta_{\infty}\right)
$$

with probability tending to 1 as $r \rightarrow \infty$.
The ball of radius r for the FPP distance is asymptotically close to the ball of radius r / c_{0} for the graph distance.

Idea of the proof

Locally (below the boundary of the hull of radius r), the UIPT looks like the half-plane model.

Can use the result in the half-plane model to estimate the FPP distance between a typical point of $\partial B_{r}^{\circ}\left(\Delta_{\infty}\right)$ and $\partial B_{(1-\varepsilon) r}^{\circ}\left(\Delta_{\infty}\right)$.

First-passage percolation in finite triangulations

Δ_{n} is uniformly distributed over \{triangulations with n faces $\}$ $d_{\text {FPP }}$ first-passage percolation distance on $V\left(\Delta_{n}\right)$ defined using weights i.i.d. according to ν.

Theorem

$$
\left(V\left(\Delta_{n}\right), 6^{1 / 4} n^{-1 / 4} d_{\mathrm{FPP}}\right) \xrightarrow[n \rightarrow \infty]{(\mathrm{d})}\left(\mathbf{m}_{\infty}, c_{0} D^{*}\right)
$$

in the Gromov-Hausdorff sense. Here $\left(\mathbf{m}_{\infty}, D^{*}\right)$ is the Brownian map.
Idea of the proof: Use absolute continuity arguments to relate large (finite) triangulations to the UIPT, and then apply the theorem about the UIPT.

Remark. In general one cannot calculate the constant c_{0}, except in special cases (e.g. Eden model, corresponding to exponential edge weights on the dual graph of the UIPT). See however Budd (2015).

