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Introduction

Random Geometry

We expect random geometry to follow the same development path than
ordinary geometry, that is from lower towards higher dimensions, and from
embedded, or extrinsic aspects towards intrinsic aspects (Gromov-Hausdorff).

Interesting random geometries should neither give all (or most of) the weight
to too trivial nor to too complicated geometries.

Among physical motivations:

Quantizing Gravity ' Randomizing Geometry

Z '
∫

Dg e
∫
S AEH (g)
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Introduction

Intrinsic 1D and 2D Random Geometry

A simple intrinsic random geometry is the CRT (branched polymers). It
has Hausdorff dimension 2, spectral dimension 4/3. In physics it
corresponds to the 1/N limit of vector models.

The next typical intrinsic random geometry is the Brownian sphere. It has
Hausdorff dimension 4, very probably spectral dimension 2. In physics it
corresponds to the 1/N limit of matrix models. It can be viewed as a CRT
equipped with extra labels defining the shortcuts. It is linked to 2d gravity
in particular through the many inspiring works of the IphT school
(Bouttier, David, Duplantier, Eynard, Di Francesco, Guitter, Itzykson,
Zuber...)

These geometries have universality properties. Essential for their definition
are the exact counting of the graphs involved (Catalan, Tutte) and
interesting one-to-one maps (Dyck, Schaeffer) to explore the metric
aspects.

What about higher dimensions?
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Introduction

Difficulties

We would like to handle sums over random three-dimensional (and
higher-dimensional) objects, hence create a theory of random knots, random
manifolds, etc.. but

it is difficult to classify all geometries in dimension 3

it is essentially impossible to classify all (smooth) geometries in dimension
≥ 4.

Mathematicians are developing proposals for random 3d geometry, eg petal
model of random knots (Adams et al., 2012), random 3-manifolds based on
random mapping class group gluing for Heegaard splitting into handlebodies (J.
Maher et al.). However they may benefit from physicists input (formalism that
extends to any dimension, 1/N expansion, connection to gravity...).
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Introduction

Higher Dimensional Triangulations

It is difficult to decide whether a general triangulation in 3D is
homeomorphic to the sphere S3

It is essentially impossible (through a single algorithm) to decide whether
a general triangulation in 4D is homeomorphic to the sphere S4

We should distinguish ST (v), the number of spherical triangulations with v
vertices, from ST (t), the number of spherical triangulations with t tetrahedra.
In particular one can have v << t.

T. Jonsson’s talk: LC =locally constructible, CDT = causal triangulations:
exponential growth

LC(t) ≤ C t , CDT (t) ≤ C t

Open, difficult: Is the number ST (t) of triangulations of the 3-sphere with t
tetrahedra exponentially bounded in t?

Lower bounds (super-exponential growth) on ST (v): J. Pfeiffe and G.

Ziegler ST (v) ≥ ev5/4

(2004) E. Nevo and S. Wilson: log STv ≥ ev2

(2013).

Upper bounds on ST (t) R. ShomT (t) ≤ C t(t!)1/3 (2013).
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Introduction

Random Tensors as Symmetry Breaking

∃! Hilbert space `2(Z). U(N) invariance can be broken.

vector models => matrix models => tensor models

Smaller symmetry means there are more invariants available for interactions

Random vectors have exactly one connected invariant interaction, of degree 2
namely the scalar product φ̄ · φ.

Random matrices: N = N1N2, => U(N1N2) symmetry can break to
U(N1)⊗ U(N2) giving rise to infinitely many connected invariant interactions,
one at every (even) degree, namely Tr (MM†)p.

Random tensors: N = N1N2N3 · · · , => U(N1N2N3 · · · ) symmetry can break to
U(N1)⊗ U(N2)⊗ U(N3) · · · , creating even much more invariants
=> richer theory space than for matrix models.
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The people

working on this formalism

J. Ben Geloun, V. Bonzom, S. Carrozza, S. Dartois, T. Delepouve, R. Gurau,
V. Lahoche, L. Lionni, D. Oriti, V. R., J. Ryan, D. O. Samary, A. Tanasa, F.
Vignes-Tourneret...

or interested

D. Benedetti, B. Eynard, J. Ramgoolam, G. Schaeffer, R. van der Veen, R.
Wulkenhaar...

frontier domain between theoretical physics, geometry, combinatorics and
probability theory

Vincent Rivasseau Random Tensors



Introduction

The people

working on this formalism

J. Ben Geloun, V. Bonzom, S. Carrozza, S. Dartois, T. Delepouve, R. Gurau,
V. Lahoche, L. Lionni, D. Oriti, V. R., J. Ryan, D. O. Samary, A. Tanasa, F.
Vignes-Tourneret...

or interested

D. Benedetti, B. Eynard, J. Ramgoolam, G. Schaeffer, R. van der Veen, R.
Wulkenhaar...

frontier domain between theoretical physics, geometry, combinatorics and
probability theory

Vincent Rivasseau Random Tensors



Introduction

The people

working on this formalism

J. Ben Geloun, V. Bonzom, S. Carrozza, S. Dartois, T. Delepouve, R. Gurau,
V. Lahoche, L. Lionni, D. Oriti, V. R., J. Ryan, D. O. Samary, A. Tanasa, F.
Vignes-Tourneret...

or interested

D. Benedetti, B. Eynard, J. Ramgoolam, G. Schaeffer, R. van der Veen, R.
Wulkenhaar...

frontier domain between theoretical physics, geometry, combinatorics and
probability theory

Vincent Rivasseau Random Tensors



Introduction

The people

working on this formalism

J. Ben Geloun, V. Bonzom, S. Carrozza, S. Dartois, T. Delepouve, R. Gurau,
V. Lahoche, L. Lionni, D. Oriti, V. R., J. Ryan, D. O. Samary, A. Tanasa, F.
Vignes-Tourneret...

or interested

D. Benedetti, B. Eynard, J. Ramgoolam, G. Schaeffer, R. van der Veen, R.
Wulkenhaar...

frontier domain between theoretical physics, geometry, combinatorics and
probability theory

Vincent Rivasseau Random Tensors



Introduction

The people

working on this formalism

J. Ben Geloun, V. Bonzom, S. Carrozza, S. Dartois, T. Delepouve, R. Gurau,
V. Lahoche, L. Lionni, D. Oriti, V. R., J. Ryan, D. O. Samary, A. Tanasa, F.
Vignes-Tourneret...

or interested

D. Benedetti, B. Eynard, J. Ramgoolam, G. Schaeffer, R. van der Veen, R.
Wulkenhaar...

frontier domain between theoretical physics, geometry, combinatorics and
probability theory

Vincent Rivasseau Random Tensors



Introduction

The people

working on this formalism

J. Ben Geloun, V. Bonzom, S. Carrozza, S. Dartois, T. Delepouve, R. Gurau,
V. Lahoche, L. Lionni, D. Oriti, V. R., J. Ryan, D. O. Samary, A. Tanasa, F.
Vignes-Tourneret...

or interested

D. Benedetti, B. Eynard, J. Ramgoolam, G. Schaeffer, R. van der Veen, R.
Wulkenhaar...

frontier domain between theoretical physics, geometry, combinatorics and
probability theory

Vincent Rivasseau Random Tensors



Introduction

Colored Triangulations and Edge Colored Graphs

Italian school, Lins, crystallization theory: D-dimensional colored triangulations
are simpler than general triangulations. They triangulate pseudo-manifolds with
a well defined D-homology and they are dual to (D + 1)-edge-colored graphs.

Are colored triangulations general enough for random geometry? Yes, since any
D-dimensional triangulation uniquely defines a D dimensional colored
triangulation, its barycentric subdivision.
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Are colored triangulations general enough for random geometry? Yes, since any
D-dimensional triangulation uniquely defines a D dimensional colored
triangulation, its barycentric subdivision.
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Introduction

Tensor Models

R. Gurau found in 2009 that crystallization theory is dual to a quantum field
theory and in 2010 that this field theory admits a 1/N expansion.

This expansion is not topological !

Basic objects: U(N)⊗D tensor invariants = regular D-edge-colored connected
bipartite graphs

are dual to colored triangulations

are the interactions (vertices) of rank-D random tensors

are the observables of rank-D random tensors

are the Feynman graphs of rank-D − 1 random tensors
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Introduction

Tensor Invariants
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Tensor invariants can be counted as equivalence classes of permutations, in the
style of J.B. Zuber’s talk on doodles (J. Ben Geloun and S. Ramgoolam)

Z c
1 (n) = 1, 0, 0, 0, 0, ... Φ̄ · Φ

Z c
2 (n) = 1, 1, 1, 1, 1, 1, 1... Tr(MM†)n

Z c
3 (n) = 1, 3, 7, 26, 97, 624, 4163...

Z c
4 (n) = 1, 7, 41, 604, 13753...
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Introduction

Tensor Models

A general tensor model (with polynomial interactions) is

S(T , T̄ ) = T · T̄ +
∑
B

tBTrB(T̄ ,T )

Z(tB) =

∫
[dT̄ dT ] e−ND−1S(T ,T̄ )

Feynman graphs: “vertices” B. Gaussian integral: Wick contractions of T and
T̄ → dashed edges to which we assign the index 0 (here green color).
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Introduction

Jackets, Degree, 1/N Expansion

Jackets = color cycle up to orientation (D!/2 at rank D)
= canonical system of D!/2 globally defined Heegaard surfaces in the dual
triangulation

Gurau’s degree governs the expansion. After suitable scaling, A(G) ∝ ND−ω(G),
where

ω =
∑
J

g(J)

is not a topological invariant of the triangulated manifold dual to G .
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Introduction

Tensor Models and Quantum Gravity

The Feynman graphs of tensor models can be considered an equilateral (F.
David) version of Regge calculus (1962):

SRegge = Λ
∑
σD

vol(σD)− 1

16πG

∑
σD−2

vol(σD−2) δ(σD−2)

Discretized Einstein Hilbert action on a triangulation with QD equilateral

D-simplices and QD−2 (D − 2)-simplices:

AG (N) = eκ1QD−2−κ2QD

On the Feynman dual graph: QD → n, number of vertices; QD−2 → F , number

of faces, hence Regge action for equilateral simplices becomes

AG (N) = λnNF

the natural amplitudes of tensor models. The exact correspondence is

ln N =
vol(σD−2)

8G
=

aD

G
,

lnλ =
D

16πG
vol(σD−2)

(
π(D − 1)− (D + 1) arccos

1

D

)
− 2Λ vol(σD)
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of faces, hence Regge action for equilateral simplices becomes

AG (N) = λnNF

the natural amplitudes of tensor models. The exact correspondence is

ln N =
vol(σD−2)

8G
=

aD

G
,

lnλ =
D

16πG
vol(σD−2)

(
π(D − 1)− (D + 1) arccos

1

D

)
− 2Λ vol(σD)
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Tensor Models and Quantum Gravity II

Random tensors therefore provide a new approach, nicknamed the tensor track,
to the quantization of gravity in dimension ≥ 3.

It is based on quantum field theories of space time, not on space-time, with
several nice features

background independence

sum over all topologies

renormalizability

asymptotic freedom
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Tensor Track

Theory

Theory

Field

Group

Triangulations

Dynamical

Matrices

Safety

Asymptotic

Tensor

Track

RandomGravity

Quantum

Loop
String

The tensor track is related to many of the main approaches to quantum gravity.

It suggests a cosmological scenario, of course highly speculative: condensation
of space-time and our universe through a sequence of phase transitions,
starting from a pregeometric, transplanckian combinatorial phase. Tensor
renormalization group flows hopefully can provide mathematical modeling of
such a scenario.
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”Classic” results on tensor models (2011-2013)

Single scaling at any D and double scaling at d ≤ 6 have been solved and
lead to branched polymers (Dartois, Gurau, R. Schaeffer...).

Tensor field theories extend non-commutative field theory just as tensors
extend matrices. They have tensor interactions and propagators of the
inverse Laplacian type. They can be renormalized in many cases (up to
rank/dimension 6) (Ben Geloun, R.) and can also incorporate spin-foam
data such as Boulatov-type projectors (Carrozza, Lahoche, Oriti, R....).

Generically they are asymptotically free, as shown by one and two loop
computations (Ben Geloun, Samary, Carrozza...).

Vincent Rivasseau Random Tensors



Introduction

”Classic” results on tensor models (2011-2013)

Single scaling at any D and double scaling at d ≤ 6 have been solved and
lead to branched polymers (Dartois, Gurau, R. Schaeffer...).

Tensor field theories extend non-commutative field theory just as tensors
extend matrices. They have tensor interactions and propagators of the
inverse Laplacian type. They can be renormalized in many cases (up to
rank/dimension 6) (Ben Geloun, R.) and can also incorporate spin-foam
data such as Boulatov-type projectors (Carrozza, Lahoche, Oriti, R....).

Generically they are asymptotically free, as shown by one and two loop
computations (Ben Geloun, Samary, Carrozza...).

Vincent Rivasseau Random Tensors



Introduction

”Classic” results on tensor models (2011-2013)

Single scaling at any D and double scaling at d ≤ 6 have been solved and
lead to branched polymers (Dartois, Gurau, R. Schaeffer...).

Tensor field theories extend non-commutative field theory just as tensors
extend matrices. They have tensor interactions and propagators of the
inverse Laplacian type. They can be renormalized in many cases (up to
rank/dimension 6) (Ben Geloun, R.) and can also incorporate spin-foam
data such as Boulatov-type projectors (Carrozza, Lahoche, Oriti, R....).

Generically they are asymptotically free, as shown by one and two loop
computations (Ben Geloun, Samary, Carrozza...).

Vincent Rivasseau Random Tensors



Introduction

”Classic” results on tensor models (2011-2013)

Single scaling at any D and double scaling at d ≤ 6 have been solved and
lead to branched polymers (Dartois, Gurau, R. Schaeffer...).

Tensor field theories extend non-commutative field theory just as tensors
extend matrices. They have tensor interactions and propagators of the
inverse Laplacian type. They can be renormalized in many cases (up to
rank/dimension 6) (Ben Geloun, R.) and can also incorporate spin-foam
data such as Boulatov-type projectors (Carrozza, Lahoche, Oriti, R....).

Generically they are asymptotically free, as shown by one and two loop
computations (Ben Geloun, Samary, Carrozza...).

Vincent Rivasseau Random Tensors



Introduction

Recent Results (2014-2015)

Tensor field theories better analyzed at leading order (Carrozza, Lahoche,
Oriti, R., Samary, Wulkenhaar..)

Intermediate field representation link tensor and matrix models (Dartois,
Gurau, Eynard...)

Non perturbative construction: Borel summability of quartic tensor models
and of some superrenormalizable tensor field theories has been proved
using the Loop Vertex Expansion (Delepouve, Gurau, R...)

Multi-orientable models extend colored models in dimension 3 and include
non orientable geometries (Dartois, Fusy, Gurau, Tanasa, R. Youmans...)

Numerical flows computed through Functional Renormalization Group
Equations (Benedetti, Ben Geloun, Oriti...)

Enhanced Models => new 1/N expansions (Bonzom, Delepouve, Lionni,
R...)
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Numerical Flows

Quartic melonic models with single coupling and Mass term, Large N
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Numerical Flows

Quartic model with single coupling and mass term, ”Small” N
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Enhanced Rank Four Quartic Tensor Models

(joint work V. Bonzom and T. Delepouve, arXiv:1502.01365)
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Figure: The quartic invariants at rank 4.

BC1 (T,T) =
∑

n1,...,n4,n
′
1,...,n

′
4

T n1n2n3n4 Tn1n
′
2n
′
3n
′
4
T n′1n

′
2n
′
3n
′
4
Tn′1n2n3n4

and three similar formulae for BC2 , BC3 and BC4 . Also

BC12 (T,T) =
∑

n1,...,n4,n
′
1,...,n

′
4

T n1n2n3n4 Tn1n2n
′
3n
′
4
T n′1n

′
2n
′
3n
′
4
Tn′1n

′
2n3n4
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Enhanced Rank Four Quartic Tensor Models

Standard general (color-symmetric) quartic tensor model at rank 4

dµstandard = dµ0 e−N3λ
∑4

i=1 BCi (T,T) −λ′N3 ∑4
i=2 BC1i

(T,T) .

Borel summable uniformly in N for λ, λ′ in cardioid domains (Delepouve,
Gurau, R.).
Enhanced (maximally rescaled) general quartic model at rank 4

dµmax = dµ0 e−N3λ
∑4

i=1 BCi (T,T) −N4λ′
∑4

i=2 BC1i
(T,T) .

Enhanced restricted quartic model at rank 4 is the same model but without
BC13 and BC14 .
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Intermediate Field Representation

10 LUCA LIONNI UNDER THE SUPERVISION OF V.BONZOM AND V. RIVASSEAU
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Fig 2.1 : Examples of p-point graphs and of their equivalent MEG

a vertex, then each corner represents an edge of color 0 (a propagator) which connects
a white vertex to a black vertex of some quartic bubbles and the vertex represents d ⌅ p
faces of colors 0i, i ⇤ J1, dK ⌥ {i1, ..., ip}, each edge 0 being common to all the faces.
- If the d-p faces 0i of a vertex are external, a cilium is to be drawn at this vertex. The
cilium therefore represents two external half-lines of color 0 (linked by d-p boundary paths
0i). One should respect the location of the cilium with respect to the other edges : it is a
priori of importance for the determination of the boundary graph (see examples fig 2.1).

Proposition 2.1 :The map that associates to a 2p-point graph its mixed expansion
representation with p marked vertices is two-to-one (swapping black and white vertices
leads to the same mixed expansion graph).

proof (sketch). The map that associates to an edge a quartic bubble of the same color,
connecting them with color 0 lines such that any vertex correspond to the faces 0i for all i
that aren’t incident to it, and opening the dotted lines of color 0 into two half lines where
the cilia are is the inverse of the map described in definition 2.2.

Note that each connected component of the mixed expansion graph in the image of this
map has at least one edge (one quartic bubble). Its space of arrival is the space of 2p-point
graph such that no connected component is a single (marked or unmarked) vertex. In

Figure: Intermediate Field Maps (courtesy L. Lionni)
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Leading Order Maps

The leading order maps (in the IF representation) are planar, and made of trees
of unicolored edges which connect bicolored connected objects. The latter can
touch one another at a single vertex at most and do not form closed chains,
thus displaying a “cactus” structure.
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14
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Figure: Grey areas are connected components of given color types. A bicolored
connected component can be attached to another one on a single vertex, without
forming cycles of such components.
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Universality

Induction: A tree of necklaces of type {p1, . . . , pn, pn+1} is obtained from a tree
of necklaces of type {p1, . . . , pn} by removing any edge of color i and replacing
it with the necklace of size pn+1 open on an edge of color i (preserving bipartite
character).

1

1
1

2

2 2

4

Figure: Trees of necklaces

The data {p1, . . . , pn} does not capture the full structure of the observable. It
only records the sizes of the necklaces which are inserted one after the other
one. It is sufficient for enumeration of the leading order contributions.
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Enhancement of trees of necklaces

Let us denote a generic tree of necklaces by L. If it is of type {p1, . . . , pn}, the
enhancement it requires to contribute at large N is

ω(L) =
n∑

k=1

(2 + pk)− 3(n − 1) = 3− n +
n∑

k=1

pk .

Generalized model has measure

dµ(T,T) = exp
(
−
∑
L

Nω(L) tL BL(T,T)
)

dµ0(T,T).

where the sum in the exponential is over a finite number of trees of necklaces.
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Factorization

Theorem

Let us denote the expectation of the necklace of size p as

Cp =
N2+p

N4

〈
B

(p)
12 (T,T)

〉
=

N2+p

N4

∫
dµ(T,T)B

(p)
12 (T,T)∫

dµ(T,T)
.

Then the expectation of any tree of necklaces L{p1,...,pn} factorizes in the large
N limit like

Nω(L{p1,...,pn})

N4

〈
L{p1,...,pn}(T,T)

〉
=

n∏
k=1

Cpk .
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Schwinger-Dyson equations at leading order

Schwinger-Dyson equation

Cp =

p−1∑
k=0

Ck Cp−k−1 +
∑
j≥1

j ∂jV (C1,C2,C3, . . . ) Cj+p−1

where V is some polynomial, and Cp is the number of maps with root vertex of
degree p. The quadratic term corresponds, as usual for equations à la Tutte, to
the case where the root edge is a bridge.

The second term extends the length of the boundary face from p to p + j − 1,
which is also usual for planar maps. However, it here comes with a more
complicated weight j∂jV (C1,C2, . . . ), due to the branching process.
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Introduction

Schwinger-Dyson equations at leading order

This equation was analyzed in the 90’s in the context of multi-trace matrix
models (Das, Dhar, Sengupta, Wadia, Korchemsky, Klebanov et al...).
Free energy behaves like (g − gc)2−γ , where γ is the entropy exponent.

Critical maps, non-critical trees => γ = −1/2 (pure 2D gravity).

Non-critical maps, critical trees => γ = 1/2 (branched polymers)

Both simultaneously critical => γ = 1/3 (proliferation of baby universes)

Tuning more couplings => γ = p/(n + m + 1), p ≤ n and m integers.

Any tensor invariant interaction can be enhanced. Recently, leading order
computed for rank-3 invariants up to order 6 (V. Bonzom, L. Lionni, R.)
but still no general description yet.
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Introduction

Conclusion

Simple quartic tensor models at rank 4 can interpolate between branched
polymers and brownian sphere behavior.

The intermediate field representation provides a relationship between
matrix and tensor models. Tensor models are multi-matrix models, but
coupled in a new way.

The numerical exploration of renormalization group flows in the tensor
theory space has started and confirms their asymptotic freedom.

Hopefully further analysis of random tensor models might lead to the
discovery of new universal phases of random geometry in higher dimension.
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