Scaling laws for large deviations in Voronoi tessellations

H.J. Hilhorst
Université Paris-Sud, Orsay, France

20ième Colloque Itzykson, 10-12 June 2015, Saclay

The Voronoi construction

1

2

3

The Voronoi construction

The Voronoi construction

The Voronoi construction

The sidedness probability p_{n}

What is the probability p_{n} that an arbitrarily picked cell have exactly n sides?

RANDOM GEOMETRY AND THE STATISTICS OF TWO-DIMENSIONAL CELLS

J.M. DROUFFE and C. ITZYKSON

Service de Physque Théorique, CEN Saclay, 91191 Grf-sur-Yvette Cedex, France
Received 7 November 1983
We obtain accurate values of p_{n}, the probability of finding an n-sided Voronoi cell in a two-dimensional Poisson random lattice up to large values of $n(\sim 50)$. Numerical as well as analytical evidence points to a $n^{-a n}$ behavior for large n with a of order 2 . We also study the mean area and the mean distance to a neighbor as functions of n, and check accurately several sum rules.

1. Introduction

As part of a program for studying field theory on random lattices pionneered by Christ, Friedberg and Lee [1,2], we present here some numerical results on twodimensional random geometry. More precisely we study the statistics of Voronoi cells. Neither the methods [3,4] nor the results for small numbers of sides n are new.

However, we have pushed the investigation to a rather large number of sides down to very small probabilities. For the largest values $n \sim 50$, the corresponding probability is of order 10^{-75} ! This allows a study of the asymptotic behavior of p_{n}, the probability of finding a cell with n sides which we find behaves as $p_{n} \sim n^{-a n}$. The numerical study favors $a \simeq 2$, while we are able to prove that $1 \leqslant a \leqslant 2$.

The sidedness probability p_{n}

Drouffe and Itzykson (1984):
Asymptotic guess: $p_{n} \sim n^{-\alpha n} \quad(n \rightarrow \infty)$
Analytically: $1 \leq \alpha \leq 2$
Fit to the data: $\alpha \approx 2 \quad(n \lesssim 50)$

An exact asymptotic result for p_{n}

$$
\begin{aligned}
p_{n} & =\int \mathrm{d} R_{1} \ldots \mathrm{~d} R_{n} \underbrace{\chi_{n}\left(R_{1}, \ldots, R_{n}\right)} \underbrace{\mathrm{e}^{-\rho A_{n}\left(R_{1}, \ldots, R_{n}\right)}} \\
& =\ldots \\
& =\ldots(\mathrm{HJH}, 2005) \\
& =\ldots \\
& =\frac{\left(8 \pi^{2}\right)^{n}}{(2 n)!} C_{2} \quad(n \rightarrow \infty)
\end{aligned}
$$

The quantity C_{2}

Expansion in powers of $1 / n$:

$q=2$

$$
C_{2}=\frac{1}{4 \pi^{2}} \prod_{q=1}^{\infty}\left(1-\frac{1}{q^{2}}+\frac{4}{q^{4}}\right)^{-1}+O\left(\frac{1}{n}\right)
$$

Byproduct: cell becomes circular

$$
R \simeq\left(\frac{n}{4 \pi}\right)^{1 / 2}
$$

The $2 n$ angles

A very-many-sided cell

Another byproduct:

 an algorithm without attrition
$n=96$
 $p_{n} \approx 10^{-177}$

A very-many-sided cell

Another byproduct:

 an algorithm without attrition
$n=96$
 $p_{n} \approx 10^{-177}$

An entropy argument

Heuristically

$$
w \sim R^{-3 / 2}
$$

Maximize entropy under constraints:

$$
R^{*} \simeq\left(\frac{n}{4 \pi}\right)^{1 / 2}
$$

the exact result.

3D cell, n faces
 $$
p_{n}=?
$$

2009 Entropy argument
Spherical excluded volume equal to n

$$
\Longrightarrow \quad R \simeq \frac{1}{2}\left(\frac{3 n}{4 \pi}\right)^{1 / 3}
$$

2013-2014: Monte Carlo data by E. Lazar

- statistics of n-faced cells, very good agreement for R

But also:

- statistics of n-edged faces
-...
—. . .

A face shared by two 3D cells

$$
P_{n}(L) \text { for } n \rightarrow \infty \text { ? }
$$

Two 3D cells sharing an n-edged face, $n \rightarrow \infty$

(1) The n-edged face becomes circular
(2) Probability of an n-edged face

$$
p_{n}=\frac{\left(12 \pi^{2}\right)^{n}}{(2 n)!} C_{3}
$$

(3) The excluded volume becomes a torus of equal radii

$$
R \simeq \rho \simeq\left(\frac{n}{2 \pi^{2}}\right)^{1 / 3}
$$

(4) Average of L given n

$$
\langle L\rangle=\frac{\sqrt{3}}{\pi}\left(\frac{2}{\pi n}\right)^{1 / 6} \quad \text { entropic attraction between seeds! }
$$

(5) Conditional distribution of L

$$
Q_{n}\left(n^{1 / 6} L\right) \simeq Q_{\infty}\left(n^{1 / 6} L\right), \quad Q_{\infty}(y)=c_{0} y^{2} e^{-c_{1} y^{2}}
$$

Distribution of L

(E. Lazar and HJH, 2014)

