A bijective proof for Hurwitz formula

Dominique Poulalhon
LIAFA, Université Paris Diderot
joint work with Enrica Duchi (LIAFA) and Gilles Schaeffer (LIX)

Conférence Itzykson, 11th June 2015

Hurwitz Counting Problem

I. in terms of ramified covers of \mathcal{S}_{0}
\mathcal{S}_{g}

HuRWITZ COUNTING PROBLEM

I. in terms of ramified covers of \mathcal{S}_{0}
\mathcal{S}_{g}

Hurwitz counting problem

I. in terms of ramified covers of \mathcal{S}_{0}
\mathcal{S}_{g}

generic (unramified) point

Hurwitz counting problem

I. in terms of ramified covers of \mathcal{S}_{0}
\mathcal{S}_{g}

generic (unramified) point

Hurwitz counting problem

I. in terms of ramified covers of \mathcal{S}_{0}
\mathcal{S}_{g}
\mathcal{S}_{0}

simple ramification point

Hurwitz Counting Problem

I. in terms of ramified covers of \mathcal{S}_{0}
\mathcal{S}_{g}
\mathcal{S}_{0}

ramification point of type $(3,2)$

Hurwitz counting problem

I. in terms of ramified covers of \mathcal{S}_{0}
\mathcal{S}_{g}
\mathcal{S}_{0}

two ramification points of type $(3,2)$

Hurwitz counting problem

I. in terms of ramified covers of \mathcal{S}_{0}

Hurwitz counting problem
count (equivalence classes of) ramified covers of \mathcal{S}_{0} by \mathcal{S}_{g}, according to the types of the ramification points

Hurwitz counting problem

I. in terms of ramified covers of \mathcal{S}_{0}

Hurwitz counting problem

count (equivalence classes of) ramified covers of \mathcal{S}_{0} by \mathcal{S}_{g}, according to the types of the ramification points

Simple Hurwitz counting problem

let $\mu \vdash \mathrm{d}$; count d-sheet ramified covers of \mathcal{S}_{0} by \mathcal{S}_{g} with r simple ramification points, and one of type μ

HuRWitz Counting problem

I. in terms of ramified covers of \mathcal{S}_{0}

Hurwitz counting problem

count (equivalence classes of) ramified covers of \mathcal{S}_{0} by \mathcal{S}_{g}, according to the types of the ramification points

Simple Hurwitz counting problem

let $\mu \vdash \mathrm{d}$; count d-sheet ramified covers of \mathcal{S}_{0} by \mathcal{S}_{g} with r
simple ramification points, and one of type μ
$\Longrightarrow r=m+d-2+2 g$, where $m=\ell(\mu)$

Hurwitz Counting Problem

I. in terms of ramified covers of \mathcal{S}_{0}

Hurwitz counting problem

count (equivalence classes of) ramified covers of \mathcal{S}_{0} by \mathcal{S}_{g}, according to the types of the ramification points

Double Hurwitz counting problem

let $\mu, \nu \vdash \mathrm{d}$; count d-sheet ramified coverings of \mathcal{S}_{0} by \mathcal{S}_{g} with r simple ramification points, one of type μ and one of type v

Hurwitz Counting Problem

I. in terms of ramified covers of \mathcal{S}_{0}

Hurwitz counting problem

count (equivalence classes of) ramified covers of \mathcal{S}_{0} by \mathcal{S}_{g}, according to the types of the ramification points

Double Hurwitz counting problem

let $\mu, \nu \vdash \mathrm{d}$; count d-sheet ramified coverings of \mathcal{S}_{0} by \mathcal{S}_{g} with r simple ramification points, one of type μ and one of type v
$\Longrightarrow \mathrm{r}=\mathrm{m}+\mathrm{n}-2+2 \mathrm{~g}$, where $\mathrm{m}=\ell(\mu)$ and $\mathrm{n}=\ell(v)$

Hurwitz Counting Problem

II. in terms of products of permutations

cycle type of a permutation $\sigma \in \mathfrak{S}_{\mathrm{d}}$: partition of d given by the lengths of the orbits
$\sigma=74518623=(1724)(358)(6)$ has cycle type $(4,3,1)$:

$(1,7,2,4)$

$(3,5,8)$

Hurwitz counting problem

II. in terms of products of permutations

Simple Hurwitz counting problem

let $\mu \vdash \mathrm{d}, \mathrm{m}=\ell(\mu)$; count transitive $\mathrm{r}+1$-tuples of permutations $\left(\sigma, \tau_{1}, \ldots, \tau_{r}\right)$ s. t.

- σ has cycle type μ
- $\tau_{1}, \ldots, \tau_{r}$ are transpositions
- $\tau_{r} \ldots \tau_{1}=\sigma$
II. in terms of products of permutations

Simple Hurwitz counting problem

let $\mu \vdash \mathrm{d}, \mathrm{m}=\ell(\mu)$; count transitive $\mathrm{r}+1$-tuples of permutations $\left(\sigma, \tau_{1}, \ldots, \tau_{r}\right)$ s. t.

- σ has cycle type μ
- $\tau_{1}, \ldots, \tau_{r}$ are transpositions
- $\tau_{r} \ldots \tau_{1}=\sigma$
(i.e. the group $\left\langle\sigma, \tau_{1}, \ldots, \tau_{r}\right\rangle$ acts transitively on $\{1, \ldots, \mathrm{~d}\}$)

Hurwitz counting problem

II. in terms of products of permutations

Simple Hurwitz counting problem

let $\mu \vdash \mathrm{d}, \mathrm{m}=\ell(\mu)$; count transitive $\mathrm{r}+1$-tuples of permutations $\left(\sigma, \tau_{1}, \ldots, \tau_{r}\right)$ s. t.

- σ has cycle type μ
- $\tau_{1}, \ldots, \tau_{r}$ are transpositions
- $\tau_{r} \ldots \tau_{1} \sigma=i d$
(i.e. the group $\left\langle\sigma, \tau_{1}, \ldots, \tau_{r}\right\rangle$ acts transitively on $\{1, \ldots, \mathrm{~d}\}$)

Hurwitz counting problem

II. in terms of products of permutations

Simple Hurwitz counting problem

let $\mu \vdash \mathrm{d}, \mathrm{m}=\ell(\mu)$; count transitive $\mathrm{r}+1$-tuples of permutations $\left(\sigma, \tau_{1}, \ldots, \tau_{r}\right)$ s. t.

- σ has cycle type μ
- $\tau_{1}, \ldots, \tau_{r}$ are transpositions
- $\tau_{\mathrm{r}} \ldots \tau_{1} \sigma=\mathrm{id}$

Lemma

$r=m+d-2+2 g$ for some $g \in \mathbb{N}$

Hurwitz counting problem

II. in terms of products of permutations

Simple Hurwitz counting problem

let $\mu \vdash \mathrm{d}, \mathrm{m}=\ell(\mu)$; count transitive $\mathrm{r}+1$-tuples of permutations $\left(\sigma, \tau_{1}, \ldots, \tau_{r}\right)$ s. t.

- σ has cycle type μ
- $\tau_{1}, \ldots, \tau_{r}$ are transpositions
- $\tau_{r} \ldots \tau_{1} \sigma=i d$

Lemma

$r=m+d-2+2 g$ for some $g \in \mathbb{N}$

Lemma

$H_{g}(\mu)=d!\cdot h_{g}(\mu)$

Hurwitz counting problem

II. in terms of products of permutations

Double Hurwitz counting problem

let $\mu, \nu \vdash \mathrm{d}, \mathrm{m}=\ell(\mu), \mathrm{n}=\ell(v)$; count transitive $\mathrm{r}+2$-tuples of permutations ($\rho, \sigma, \tau_{1}, \ldots, \tau_{r}$) s. t.

- ρ has cycle type μ, σ has cycle type ν
- $\tau_{1}, \ldots, \tau_{r}$ are transpositions
- $\tau_{r} \ldots \tau_{1} \rho=\sigma$

Lemma
$r=m+n-2+2 g$ for some $g \in \mathbb{N}$
$\longrightarrow \mathrm{H}_{\mathrm{g}}(\mu, v)$

Lemma

$H_{g}(\mu, v)=d!\cdot h_{g}(\mu, v)$

Hurwitz counting problem

II. in terms of products of permutations

Double Hurwitz counting problem

let $\mu, \nu \vdash \mathrm{d}, \mathrm{m}=\ell(\mu), \mathrm{n}=\ell(v)$; count transitive $\mathrm{r}+2$-tuples of permutations ($\rho, \sigma, \tau_{1}, \ldots, \tau_{r}$) s. t.

- ρ has cycle type μ, σ has cycle type ν
- $\tau_{1}, \ldots, \tau_{r}$ are transpositions
- $\tau_{r} \ldots \tau_{1} \rho \sigma=i d$

Lemma
$r=m+n-2+2 g$ for some $g \in \mathbb{N}$
$\longrightarrow \mathrm{H}_{\mathrm{g}}(\mu, v)$

Lemma

$H_{g}(\mu, v)=d!\cdot h_{g}(\mu, v)$

Hurwitz counting problem

II. in terms of products of permutations

Double Hurwitz counting problem

let $\mu, \nu \vdash \mathrm{d}, \mathrm{m}=\ell(\mu), \mathrm{n}=\ell(v)$; count transitive $\mathrm{r}+2$-tuples of permutations ($\rho, \sigma, \tau_{1}, \ldots, \tau_{r}$) s. t.

- ρ has cycle type μ, σ has cycle type ν
- $\tau_{1}, \ldots, \tau_{r}$ are transpositions
- $\tau_{r} \ldots \tau_{1}=\rho \sigma$

Lemma
$r=m+n-2+2 g$ for some $g \in \mathbb{N}$
$\longrightarrow \mathrm{H}_{\mathrm{g}}(\mu, v)$

Lemma

$H_{g}(\mu, v)=d!\cdot h_{g}(\mu, v)$

Theorem (Hurwitz, 1891)

$$
H_{0}(\mu)=d^{m-3} \cdot(m+d-2)!\cdot d!\cdot \prod_{i \geq 1} \frac{1}{m_{i}!}\left(\frac{\mathfrak{i}^{i}}{i!}\right)^{m_{i}}
$$

(Some) proofs:

- [Hurwitz, 1891], reconstituted by [Strehl, 1996]
- [Goulden, Jackson, 1992]
- [Bousquet-Mélou, Schaeffer, 2000]
- [Lando, Zvonkine, 2000]
- [Borot, Eynard, 2010]

A VERY SIMPLE PARTICULAR CASE: $\mathrm{H}_{0}(\mathrm{~d})$

Theorem (Dénes, 1959)

$$
\mathrm{H}_{0}(\mathrm{~d})=(\mathrm{d}-1)!\cdot \mathrm{d}^{\mathrm{d}-2}
$$

(i.e. any d-cycle has $\mathrm{d}^{\mathrm{d}-2}$ factorizations into $\mathrm{d}-1$ transpositions)

A VERY SIMPLE PARTICULAR CASE: $\mathrm{H}_{0}(\mathrm{~d})$

Theorem (Dénes, 1959)

$$
H_{0}(d)=(d-1)!\cdot d^{d-2}
$$

(i.e. any d-cycle has $\mathrm{d}^{\mathrm{d}-2}$ factorizations into $\mathrm{d}-1$ transpositions)

Proof bijection with Cayley trees [Moszkowski, 1989]

A VERY SIMPLE PARTICULAR CASE: $\mathrm{H}_{0}(\mathrm{~d})$

Theorem (Dénes, 1959)

$$
H_{0}(d)=(d-1)!\cdot d^{d-2}
$$

(i.e. any d-cycle has $\mathrm{d}^{\mathrm{d}-2}$ factorizations into $\mathrm{d}-1$ transpositions)

Proof bijection with Cayley trees [Moszkowski, 1989]

A VERY SIMPLE PARTICULAR CASE: $\mathrm{H}_{0}(\mathrm{~d})$

Theorem (Dénes, 1959)

$$
H_{0}(d)=(d-1)!\cdot d^{d-2}
$$

(i.e. any d-cycle has $\mathrm{d}^{\mathrm{d}-2}$ factorizations into $\mathrm{d}-1$ transpositions)

Proof bijection with Cayley trees [Moszkowski, 1989]

A VERY SIMPLE PARTICULAR CASE: $\mathrm{H}_{0}(\mathrm{~d})$

Theorem (Dénes, 1959)

$$
H_{0}(d)=(d-1)!\cdot d^{d-2}
$$

(i.e. any d-cycle has $\mathrm{d}^{\mathrm{d}-2}$ factorizations into $\mathrm{d}-1$ transpositions)

Proof bijection with Cayley trees [Moszkowski, 1989]

A VERY SIMPLE PARTICULAR CASE: $\mathrm{H}_{0}(\mathrm{~d})$

Theorem (Dénes, 1959)

$$
\mathrm{H}_{0}(\mathrm{~d})=(\mathrm{d}-1)!\cdot \mathrm{d}^{\mathrm{d}-2}
$$

(i.e. any d-cycle has $\mathrm{d}^{\mathrm{d}-2}$ factorizations into $\mathrm{d}-1$ transpositions)

Proof bijection with Cayley trees [Moszkowski, 1989]

A VERY SIMPLE PARTICULAR CASE: $\mathrm{H}_{0}(\mathrm{~d})$

Theorem (Dénes, 1959)

$$
\mathrm{H}_{0}(\mathrm{~d})=(\mathrm{d}-1)!\cdot \mathrm{d}^{\mathrm{d}-2}
$$

(i.e. any d-cycle has $\mathrm{d}^{\mathrm{d}-2}$ factorizations into $\mathrm{d}-1$ transpositions)

Proof bijection with Cayley trees [Moszkowski, 1989]

A VERY SIMPLE PARTICULAR CASE: $\mathrm{H}_{0}(\mathrm{~d})$

Theorem (Dénes, 1959)

$$
\mathrm{H}_{0}(\mathrm{~d})=(\mathrm{d}-1)!\cdot \mathrm{d}^{\mathrm{d}-2}
$$

(i.e. any d-cycle has $\mathrm{d}^{\mathrm{d}-2}$ factorizations into $\mathrm{d}-1$ transpositions)

Proof bijection with Cayley trees [Moszkowski, 1989]

A VERY SIMPLE PARTICULAR CASE: $\mathrm{H}_{0}(\mathrm{~d})$

Theorem (Dénes, 1959)

$$
\mathrm{H}_{0}(\mathrm{~d})=(\mathrm{d}-1)!\cdot \mathrm{d}^{\mathrm{d}-2}
$$

(i.e. any d-cycle has $\mathrm{d}^{\mathrm{d}-2}$ factorizations into $\mathrm{d}-1$ transpositions)

Proof bijection with Cayley trees [Moszkowski, 1989]

A VERY SIMPLE PARTICULAR CASE: $\mathrm{H}_{0}(\mathrm{~d})$

Theorem (Dénes, 1959)

$$
\mathrm{H}_{0}(\mathrm{~d})=(\mathrm{d}-1)!\cdot \mathrm{d}^{\mathrm{d}-2}
$$

(i.e. any d-cycle has $\mathrm{d}^{\mathrm{d}-2}$ factorizations into $\mathrm{d}-1$ transpositions)

Proof bijection with Cayley trees [Moszkowski, 1989]

A VERY SIMPLE PARTICULAR CASE: $\mathrm{H}_{0}(\mathrm{~d})$

Theorem (Dénes, 1959)

$$
H_{0}(d)=(d-1)!\cdot d^{d-2}
$$

(i.e. any d-cycle has $\mathrm{d}^{\mathrm{d}-2}$ factorizations into $\mathrm{d}-1$ transpositions)

Proof bijection with Cayley trees [Moszkowski, 1989]

A VERY SIMPLE PARTICULAR CASE: $\mathrm{H}_{0}(\mathrm{~d})$

Theorem (Dénes, 1959)

$$
\mathrm{H}_{0}(\mathrm{~d})=(\mathrm{d}-1)!\cdot \mathrm{d}^{\mathrm{d}-2}
$$

(i.e. any d-cycle has $\mathrm{d}^{\mathrm{d}-2}$ factorizations into $\mathrm{d}-1$ transpositions)

Proof bijection with Cayley trees [Moszkowski, 1989]

A VERY SIMPLE PARTICULAR CASE: $\mathrm{H}_{0}(\mathrm{~d})$

Theorem (Dénes, 1959)

$$
\mathrm{H}_{0}(\mathrm{~d})=(\mathrm{d}-1)!\cdot \mathrm{d}^{\mathrm{d}-2}
$$

(i.e. any d-cycle has $\mathrm{d}^{\mathrm{d}-2}$ factorizations into $\mathrm{d}-1$ transpositions)

Proof bijection with Cayley trees [Moszkowski, 1989]

$(1,2,3,4,5,6,7,8,9)=(7,8)(1,4)(6,8)(1,3)(4,9)(1,2)(5,8)(4,8)$

First bijective proof of Hurwitz FORMULA

Theorem (Duchi, P., Schaeffer, 2014)

The number of increasing maps with

- d labeled vertices
- $\mathrm{m}+\mathrm{d}-2$ labeled edges
- m faces, in which μ gives the distribution of descents is $H_{0}(\mu)=d^{m-3} \cdot(m+d-2)!\cdot d!\cdot \prod_{i \geq 1} \frac{1}{m_{i}!}\left(\frac{\mathfrak{i}^{i}}{i!}\right)^{m_{i}}$
(quite simple bijection with tree-like structures (cacti); uses a generic scheme [Albenque, P.] based on orientations without clockwise cycles)
Drawbacks:
- more intricate for double Hurwitz numbers
- does not extend to higher genus

Hurwitz galaxies

- two ramification points \circ and •

- two ramification points \circ and -
- r simple ramification points (blue shades)

Hurwitz galaxies

- two ramification points \circ and -
- r simple ramification points (blue shades)
- a closed curve through these r points, separating \circ and •

Hurwitz galaxies

- two ramification points \circ and -
- r simple ramification points (blue shades)
- a closed curve through these r points, separating \circ and •

HuRWITZ GALAXIES

- degree $d=6$, genus $g=0$
- $d-1=5$ vertices for each shade of blue (1 of degree 4)
- ramification over $\circ: \mu=(3,2,1)$
- ramification over $\bullet: v=(2,2,1,1)$
- $\ell(\mu)=m=3$ white faces , $\ell(v)=\mathfrak{n}=4$ black faces

Hurwitz galaxies

- degree $d=6$, genus $g=0$
- $d-1=5$ vertices for each shade of blue (1 of degree 4)
- ramification over $\circ: \mu=(3,2,1)$
- ramification over $\bullet: v=(2,2,1,1)$
- $\ell(\mu)=m=3$ white faces , $\ell(v)=\mathfrak{n}=4$ black faces

HuRWITZ GALAXIES

- degree $d=6$, genus $g=0$
- $d-1=5$ vertices for each shade of blue (1 of degree 4)
- ramification over $\circ: \mu=(3,2,1)$
- ramification over $\bullet: v=(2,2,1,1)$
- $\ell(\mu)=m=3$ white faces , $\ell(v)=\mathfrak{n}=4$ black faces

HuRWITZ GALAXIES

- degree $d=6$, genus $g=0$
- $d-1=5$ vertices for each shade of blue (1 of degree 4)
- ramification over $\circ: \mu=(3,2,1)$
- ramification over $\bullet: v=(2,2,1,1)$
- $\ell(\mu)=m=3$ white faces , $\ell(v)=\mathfrak{n}=4$ black faces

Hurwitz galaxies

- degree $d=6$, genus $g=0$
- $d-1=5$ vertices for each shade of blue (1 of degree 4)
- ramification over $\circ: \mu=(3,2,1)$
- ramification over $\bullet: v=(2,2,1,1)$
- $\ell(\mu)=m=3$ white faces , $\ell(v)=\mathfrak{n}=4$ black faces

HuRWITZ GALAXIES

- degree $d=6$, genus $g=0$
- $d-1=5$ vertices for each shade of blue (1 of degree 4)
- ramification over $\circ: \mu=(3,2,1)$
- ramification over $\bullet: v=(2,2,1,1)$
- $\ell(\mu)=m=3$ white faces , $\ell(v)=\mathfrak{n}=4$ black faces

Hurwitz galaxies vs Permutations
let $\rho=\left(\begin{array}{ll}1 & 2\end{array}\right)(45)(67), \tau_{1}=(14), \tau_{2}=(16)$ and $\tau_{3}=(27)$

Hurwitz galaxies vs Permutations
let $\rho=\left(\begin{array}{ll}1 & 2\end{array}\right)(45)(67), \tau_{1}=(14), \tau_{2}=(16)$ and $\tau_{3}=(27)$

Hurwitz galaxies vs Permutations
let $\rho=\left(\begin{array}{ll}1 & 2\end{array}\right)(45)(67), \tau_{1}=(14), \tau_{2}=(16)$ and $\tau_{3}=(27)$

Hurwitz galaxies vs Permutations
let $\rho=\left(\begin{array}{ll}1 & 2\end{array}\right)(45)(67), \tau_{1}=(14), \tau_{2}=(16)$ and $\tau_{3}=(27)$

Hurwitz galaxies vs Permutations
let $\rho=\left(\begin{array}{ll}1 & 2\end{array}\right)(45)(67), \tau_{1}=(14), \tau_{2}=(16)$ and $\tau_{3}=(27)$

Hurwitz galaxies vs Permutations
let $\rho=\left(\begin{array}{ll}1 & 2\end{array}\right)(45)(67), \tau_{1}=(14), \tau_{2}=(16)$ and $\tau_{3}=(27)$

Hurwitz galaxies vs Permutations
let $\rho=\left(\begin{array}{ll}1 & 2\end{array}\right)(45)(67), \tau_{1}=(14), \tau_{2}=(16)$ and $\tau_{3}=(27)$

Hurwitz galaxies vs Permutations

let $\rho=\left(\begin{array}{ll}1 & 2\end{array}\right)(45)(67), \tau_{1}=(14), \tau_{2}=(16)$ and $\tau_{3}=(27)$

mark vertex 1, then remove the labels - we obtain r-Hurwitz galaxies

$$
\rightarrow \mathrm{h}_{\mathrm{g}}^{\bullet}(\mu, v)
$$

Hurwitz galaxies vs Permutations

let $\rho=\left(\begin{array}{ll}1 & 2\end{array}\right)(45)(67), \tau_{1}=(14), \tau_{2}=(16)$ and $\tau_{3}=(27)$

mark vertex 1 , then remove the labels - we obtain r-Hurwitz galaxies

$$
\rightarrow \mathrm{h}_{\mathrm{g}}^{\bullet}(\mu, v)
$$

Lemma

$H_{g}(\mu, v)=(d-1)!\cdot h_{g}^{\bullet}(\mu, v)$ and $h_{g}^{\bullet}(\mu, v)=d \cdot h_{g}(\mu, v)$

- rooted bicolored map of genus $g=m+n-2-r$
- $r+1$ shades of vertices: d white vertices (including the root vertex), $d-1$ of each other shade
- m white faces, n black faces, with face degree distribution given by μ and ν (up to a factor $r+1$)

Orientation and distances in Hurwitz
 GALAXIES

- canonical orientation with the black face on the left
- distance according to this orientation
- $\mathrm{d}(v)=\mathrm{c}(v) \bmod \mathrm{r}+1$

Orientation and distances in Hurwitz
 GALAXIES

- canonical orientation with the black face on the left
- distance according to this orientation
- $\mathrm{d}(v)=\mathrm{c}(v) \bmod \mathrm{r}+1$

Geodesics of Hurwitz galaxies

- at least one non geodesic edge around each face
- at least one incoming geodesic edge for each vertex

Trees and cacti

- keep only geodesic edges
\Longrightarrow we get a (rooted, oriented) tree

- keep only geodesic edges
- split vertices with 2 incoming geodesic edges
\Longrightarrow we get a (rooted, oriented) tree

Trees and cacti

cut the surface along the tree

cut the surface along the tree \Longrightarrow cactus of genus g with 1 boundary

- m_{i} white faces and n_{i} black faces of degree $i(r+1)$
- all vertices are incident to the boundary, with color condition
- exactly $\mathrm{d}-1$ vertices of each color have at least one incoming white boundary edge

CACTI AND MOBILES

- corners of cacti can be canonically labeled
- this labeling has to be coherent on each vertex (automatic if $\mathrm{g}=0$)
- it has to be proper (the color of 0-labeled vertices is 0)

Lemma

Hurwitz galaxies of type (μ, v) are in bijection with proper coherent cacti of type (μ, ν)

Lemma

each shift-equivalence class of coherent cacti contains $r+1$ elements, one of which is proper

CACtI AND MOBILES

Theorem

Hurwitz galaxies of type (μ, v) are in bijection with shift-equivalence classes of coherent edge-labeled Hurwitz mobiles of the same type.

CACTI AND MOBILES

Theorem

Hurwitz galaxies of type (μ, v) are in bijection with shift-equivalence classes of coherent edge-labeled Hurwitz mobiles of the same type.

CACTI AND MOBILES

Theorem

Hurwitz galaxies of type (μ, v) are in bijection with shift-equivalence classes of coherent edge-labeled Hurwitz mobiles of the same type.

Mobiles

More precisely:

- d white nodes on m white polygons (m_{i} of size i)
- d black nodes on n black polygons (n_{i} of size i)
- $\mathrm{r}+1=\mathrm{m}+\mathrm{n}-1+2 \mathrm{~g}$ weighted edges s.t.
- 0-weight edges connect white nodes
- positive weight edges connect a black and a white node
- sum of weights of edges incident to an i-gon : i
- edge-labeled

Consequences if $g=0$ and $v=1^{\mathrm{d}}$

- black polygons are 1-gons,
- they are incident to a single (positive) edge
- each white i-gon has i such pending edges
- white polygons and 0-weight edges form a Cayley cactus m polygons attached by $m-1$ edges

Lemma

$$
M_{0}\left(\mu, 1^{d}\right)=\binom{d+m-1}{m-1} \cdot \frac{1}{m}\binom{m}{m_{1}, \ldots, m_{d}} d^{m-2} \cdot\binom{d}{\mu} \cdot \prod_{i \geq 1}\left(i^{i}\right)^{m_{i}}
$$

Corollary

Hurwitz formula

Consequences for genus 0 DOUble Hurwitz numbers

skeleton of a mobile:

- contract each polygon
- remove 0-weight edges
- forget edge weights
the number of mobiles with a given skeleton is computable, leading to:

Theorem

$\overline{\mathrm{h}}_{0}(\mathrm{x}, \mathrm{y})$ is an explicit sum of non negative terms indexed by skeletons.

Consequences for genus 0 DOUble Hurwitz numbers

Byproducts:

- Hurwitz formula again
- product formula in some special cases
- polynomiality in chambers (explicit sum of positive monomials)
- polynomiality of $h_{0}\left(\mu, \nu 1^{d-v}\right)$

