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Hurwitz counting problem

II. in terms of products of permutations

cycle type of a permutation σ ∈ Sd: partition of d given by the
lengths of the orbits

σ = 7 4 5 1 8 6 2 3 = (1 7 2 4) (3 5 8) (6) has cycle type (4, 3, 1):
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(1, 7, 2, 4) (3, 5, 8) (6)
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II. in terms of products of permutations

Double Hurwitz counting problem
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Hurwitz counting problem

Theorem (Hurwitz, 1891)

H0(µ) = d
m−3 · (m+ d− 2)! · d! ·

∏
i≥1

1

mi!

(
ii

i!

)mi

(Some) proofs:

• [Hurwitz, 1891], reconstituted by [Strehl, 1996]

• [Goulden, Jackson, 1992]

• [Bousquet-Mélou, Schaeffer, 2000]

• [Lando, Zvonkine, 2000]

• [Borot, Eynard, 2010]



A very simple particular case: H0(d)

Theorem (Dénes, 1959)

H0(d) = (d− 1)! · dd−2

(i.e. any d-cycle has dd−2 factorizations into d−1 transpositions)

Proof bijection with Cayley trees [Moszkowski, 1989]
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First bijective proof of Hurwitz
formula

Theorem (Duchi, P., Schaeffer, 2014)
The number of increasing maps with

• d labeled vertices

• m+ d− 2 labeled edges

• m faces, in which µ gives the distribution of descents

is H0(µ) = dm−3 · (m+ d− 2)! · d! ·∏i≥1
1
mi!

(
ii

i!

)mi

(quite simple bijection with tree-like structures (cacti); uses a
generic scheme [Albenque, P.] based on orientations without
clockwise cycles)
Drawbacks:
• more intricate for double Hurwitz numbers
• does not extend to higher genus
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Hurwitz galaxies vs permutations

let ρ = (1 2 3) (4 5) (6 7), τ1 = (1 4), τ2 = (1 6) and τ3 = (2 7)

mark vertex 1, then remove the labels – we obtain r-Hurwitz
galaxies → h•g(µ, ν)



Hurwitz galaxies vs permutations

let ρ = (1 2 3) (4 5) (6 7), τ1 = (1 4), τ2 = (1 6) and τ3 = (2 7)

mark vertex 1, then remove the labels – we obtain r-Hurwitz
galaxies → h•g(µ, ν)

Lemma
Hg(µ, ν) = (d− 1)! · h•g(µ, ν) and h•g(µ, ν) = d · hg(µ, ν)



Hurwitz galaxies

• rooted bicolored map of genus g = m+ n− 2− r

• r+ 1 shades of vertices: d white vertices (including the
root vertex), d− 1 of each other shade

• m white faces, n black faces, with face degree distribution
given by µ and ν (up to a factor r+ 1)



Orientation and distances in Hurwitz
galaxies

• canonical orientation with the black face on the left

• distance according to this orientation

• d(v) = c(v) mod r+ 1
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Geodesics of Hurwitz galaxies
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• at least one non geodesic edge around each face

• at least one incoming geodesic edge for each vertex
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Cacti and mobiles

• corners of cacti can be canonically labeled

• this labeling has to be coherent on each vertex (automatic
if g = 0)

• it has to be proper (the color of 0-labeled vertices is 0)

Lemma
Hurwitz galaxies of type (µ, ν) are in bijection with proper
coherent cacti of type (µ, ν)

Lemma
each shift-equivalence class of coherent cacti contains r+ 1
elements, one of which is proper



Cacti and mobiles

Theorem
Hurwitz galaxies of type (µ, ν) are in bijection with
shift-equivalence classes of coherent edge-labeled Hurwitz
mobiles of the same type.
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Theorem
Hurwitz galaxies of type (µ, ν) are in bijection with
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Mobiles

More precisely:

• d white nodes on m white polygons (mi of size i)

• d black nodes on n black polygons (ni of size i)
• r+ 1 = m+ n− 1+ 2g weighted edges s.t.
• 0-weight edges connect white nodes
• positive weight edges connect a black and a white node
• sum of weights of edges incident to an i-gon : i

• edge-labeled



Consequences if g = 0 and ν = 1d

• black polygons are 1-gons,

• they are incident to a single (positive) edge

• each white i-gon has i such pending edges

• white polygons and 0-weight edges form a Cayley cactus –
m polygons attached by m− 1 edges

Lemma

M0(µ, 1
d) =

(
d+m− 1

m− 1

)
· 1
m

(
m

m1, . . . ,md

)
dm−2·

(
d

µ

)
·
∏
i≥1

(ii)mi

Corollary
Hurwitz formula



Consequences for genus 0 double
Hurwitz numbers

skeleton of a mobile:

• contract each polygon

• remove 0-weight edges

• forget edge weights

the number of mobiles with a given skeleton is computable,
leading to:

Theorem
h̄0(x, y) is an explicit sum of non negative terms indexed by
skeletons.



Consequences for genus 0 double
Hurwitz numbers

Byproducts:

• Hurwitz formula again

• product formula in some special cases

• polynomiality in chambers (explicit sum of positive
monomials)

• polynomiality of h0(µ, ν1d−ν)


