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Planar bicolored maps

Rooted planar map
→ canonical drawing in the plane

bicolored in black and white
→ the map is bipartite (all faces of
even degree)

black-rooted (resp. white-rooted)
→ if the root vertex is black (resp.
white)

with a boundary of length 2n
→ the external face is of degree 2n

here 2n = 6

M•n the set of black-rooted bicolored
maps with a boundary of length 2n
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“Bivariate” generating function

weight t• per black vertex
t◦ per white vertex

+ a standard control on the degree of
the faces:
weight gk per face of degree 2k

F •n(t•, t◦; g1, g2, . . .) = 1
t•

∑
M∈M•n

w(M)

w(M) = t#black vert.
• t#white vert.

◦
× ∏

inner
faces F

g 1
2
degree(F )

×

t◦

t•

NB: By convention, no weight for the external face & no weight for the
root vertex

The g.f. for black-rooted bicolored maps is G• = t•
∑
n≥1

gnF
•
n
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The two-point function

Pointed black-rooted map ≡ black rooted map with an extra marked
vertex of arbitrary (black or white) color

The distance-dependent two-point function

Def: G•(d) is the g.f. of pointed black-rooted maps whose black (resp.
white) extremities of the root edge are at distance d (resp. d− 1) from
the pointed vertex

G•(d) =

ï1d
d
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There is a direct connection between G•(d) and F •n

ï1d
d

n2
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Pointed rooted maps

Pointed black-rooted map with a boundary of length 2n

t•

t◦

M•n(d) set of these maps such that the distance d• from the root
vertex to the pointed vertex satisfies

d• ≤ d

and all boundary vertices are at distance ≥ d• from the pointed vertex

Call F •n(d) =
∑

M∈M•n(d)

1
t (M)w(M)

with now the convention that the
pointed vertex receives no weight
(and no longer the root vertex)

d = 0⇔ pointed vertex = root vertex

M•n =M•n(0) and F •n = F •n(0)

Emmanuel Guitter (IPhT, CEA Saclay) Bivariate two-point function (Itzykson conf., june 10-12, 2015) 7 / 38



Pointed rooted maps

Pointed black-rooted map with a boundary of length 2n

M•n(d) set of these maps such that the distance d• from the root
vertex to the pointed vertex satisfies

d• ≤ d

and all boundary vertices are at distance ≥ d• from the pointed vertex

d• t•

t◦

≥ d•

Call F •n(d) =
∑

M∈M•n(d)

1
t (M)w(M)

with now the convention that the
pointed vertex receives no weight
(and no longer the root vertex)

d = 0⇔ pointed vertex = root vertex

M•n =M•n(0) and F •n = F •n(0)

Emmanuel Guitter (IPhT, CEA Saclay) Bivariate two-point function (Itzykson conf., june 10-12, 2015) 7 / 38



Pointed rooted maps

Pointed black-rooted map with a boundary of length 2n

M•n(d) set of these maps such that the distance d• from the root
vertex to the pointed vertex satisfies

d• ≤ d

and all boundary vertices are at distance ≥ d• from the pointed vertex

d• t•

t◦

≥ d•
Call F •n(d) =

∑
M∈M•n(d)

1
t (M)w(M)

with now the convention that the
pointed vertex receives no weight
(and no longer the root vertex)

d = 0⇔ pointed vertex = root vertex

M•n =M•n(0) and F •n = F •n(0)

Emmanuel Guitter (IPhT, CEA Saclay) Bivariate two-point function (Itzykson conf., june 10-12, 2015) 7 / 38



Pointed rooted maps

Pointed black-rooted map with a boundary of length 2n

M•n(d) set of these maps such that the distance d• from the root
vertex to the pointed vertex satisfies

d• ≤ d

and all boundary vertices are at distance ≥ d• from the pointed vertex

d• t•

t◦

≥ d•
Call F •n(d) =

∑
M∈M•n(d)

1
t (M)w(M)

with now the convention that the
pointed vertex receives no weight
(and no longer the root vertex)

d = 0⇔ pointed vertex = root vertex

M•n =M•n(0) and F •n = F •n(0)

Emmanuel Guitter (IPhT, CEA Saclay) Bivariate two-point function (Itzykson conf., june 10-12, 2015) 7 / 38



Enumeration by slice decomposition
Take M ∈M•n(d) and draw the leftmost geodesic (≡ shortest) path
from a boundary vertex to the pointed vertex

d•

×
t•

t◦

Repeat the construction for all boundary vertices

Label each boundary vertex by i = distance to +(d− d•).
- for each sequence i−1→ i, the geodesic follows the boundary
- each sequence i→ i−1 gives rise to a new domain = “i-slice”
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d
is
ta
n
ce

+
(d

−
d
•)

d

2n
d

d

×

t•
t◦

i

i−1

i-slice

path

Path of length 2n made of ±1 steps, with total height change 0, each
“descending step” i→ i−1 equipped with an i-slice
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`
−
(i
−

d
)

d

2n

d• = max
slices

`−(i−d)

d

×

i
i−1

i-slice

d•
`

d• ≤ d ↔ “height” ` of an i-slice such that ` ≤ i
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Slices

i i−1

1 ≤ ` ≤ i
`− 1

apex

i i−1

apex

black-rooted i-slice white-rooted i-slice

geodesic

unique geodesic

- left boundary = geodesic, of length `, 1 ≤ ` ≤ i
- right boundary = unique geodesic, of length `−1

NB: i is only an upper bound on the length of the left boundary of the slice
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Call Bi ≡ Bi(t•, t◦, {gk}k≥1) (resp. Wi) the g.f. for black-rooted (resp.
white-rooted) i-slices
For a proper counting, put no weights on the right boundary

i i−1

×

×

×

×

×

no weights

on the right

boundary
Bi
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where Z•◦i,i−1(2k− 1, {Bj}j≥1, {Wj}j≥1)
denotes the g.f. for paths of length
2k − 1 from black height i to white
height i− 1 with weights Bj (resp. Wj)
attached to each descending step
j → j − 1 starting at a black (resp. a
white) vertex

→ two independent systems:
- one relating Wi with odd i and Bi

with even i

- one relating Wi with even i and Bi

with odd i

→ how to solve them ?

i i−1

×

×

×

×

×

×

gk

Bi and Wi are solution of the (non linear) system

Bi = t• +
∑

k≥1
gkZ

•◦
i,i−1(2k − 1, {Bj}j≥1, {Wj}j≥1)

Wi = t◦ +
∑

k≥1
gkZ

◦•
i,i−1(2k − 1, {Bj}j≥1, {Wj}j≥1)

for i ≥ 1 with B0 = W0 = 0.
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We can shift all the path heights by i (i.e. consider paths from 0 to −1)
provided we attach weights Bj+i and Wj+i to j → j − 1 steps

Sending i→∞, Bi and Wi tend to B and W respectively, which are slice
g.f. with no bound on the boundary length, determined by the (closed)
system

B = t• +
∑

k≥1
gkZ•◦0,−1(2k − 1;B,W )

W = t◦ +
∑

k≥1
gkZ◦•0,−1(2k − 1;B,W ) .

The path g.f. Z now involve homogeneous weights: B (resp. W ) attached
to any descending step starting with a black (resp. a white) vertex
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Back to F •n
The slice decomposition allows us to relate Bi, Wi and F •n :

We have
F •n(d) = Z••+d,d (2n, {Bi}i≥1, {Wi}i≥1)

where Z••+d,d (2n, {Bi}i≥1, {Wi}i≥1) denotes the g.f. for paths of
length 2n from black height d to black height d, remaining above d,
with weight Bi (resp. Wi) attached to any descending step i→ i− 1
starting at a black (resp. a white) vertex

d
2n

d

i

j−1

Wi

i−1
j

Bj

In particular
F •n = Z••+0,0 (2n, {Bi}i≥1, {Wi}i≥1)

and therefore

∑

n≥0
F •nz

n =
1

1− z W1

1− z B2

1− z W3

1− z B4

1− · · ·

NB: involves only Wi with odd i and Bi with even i

Emmanuel Guitter (IPhT, CEA Saclay) Bivariate two-point function (Itzykson conf., june 10-12, 2015) 15 / 38



Back to F •n
The slice decomposition allows us to relate Bi, Wi and F •n :

We have
F •n(d) = Z••+d,d (2n, {Bi}i≥1, {Wi}i≥1)

where Z••+d,d (2n, {Bi}i≥1, {Wi}i≥1) denotes the g.f. for paths of
length 2n from black height d to black height d, remaining above d,
with weight Bi (resp. Wi) attached to any descending step i→ i− 1
starting at a black (resp. a white) vertex

d
2n

d

i

j−1

Wi

i−1
j

Bj

In particular
F •n = Z••+0,0 (2n, {Bi}i≥1, {Wi}i≥1)

and therefore

∑

n≥0
F •nz

n =
1

1− z W1

1− z B2

1− z W3

1− z B4

1− · · ·

NB: involves only Wi with odd i and Bi with even i

Emmanuel Guitter (IPhT, CEA Saclay) Bivariate two-point function (Itzykson conf., june 10-12, 2015) 15 / 38



Back to F •n
The slice decomposition allows us to relate Bi, Wi and F •n :

We have
F •n(d) = Z••+d,d (2n, {Bi}i≥1, {Wi}i≥1)

where Z••+d,d (2n, {Bi}i≥1, {Wi}i≥1) denotes the g.f. for paths of
length 2n from black height d to black height d, remaining above d,
with weight Bi (resp. Wi) attached to any descending step i→ i− 1
starting at a black (resp. a white) vertex

d
2n

d

i

j−1

Wi

i−1
j

Bj

In particular
F •n = Z••+0,0 (2n, {Bi}i≥1, {Wi}i≥1)

and therefore

∑

n≥0
F •nz

n =
1

1− z W1

1− z B2

1− z W3

1− z B4

1− · · ·

NB: involves only Wi with odd i and Bi with even i

Emmanuel Guitter (IPhT, CEA Saclay) Bivariate two-point function (Itzykson conf., june 10-12, 2015) 15 / 38



Slice generating functions can be obtained from F •n

Indeed, a standard result of the continued fraction theory (here of
Stieltjes-type) says that

B2i =
h
(0)
i

h
(0)
i−1

/h(1)i−1

h
(1)
i−2

W2i−1 =
h
(1)
i−1

h
(1)
i−2

/h(0)i−1

h
(0)
i−2

in terms of the Hankel determinants

h
(0)
i = det(F •n+m)0≤n,m≤i h

(1)
i = det(F •n+m+1)0≤n,m≤i

To compute the other parity, simply exchange t• and t◦
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Back to the two-point function

d d−1

` ≤ d `−1

×

×
×
×

× ` `−1

0

` ≤ d
distance ×

Bd = t• +
∑

`≤d

G•(`)

(δ`,event• + δ`,oddt◦)

The twopoint function can be obtained from the slice g.f.

G•(d) = t (B•d −B•d−1), t = (δd,event• + δd,oddt◦)
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The recipe

1 Take a known formula for F •n

2 Compute the Hankel determinants to get a formula for Bd (and Wd)

3 Deduce G•(d)
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1 An expression for F •n

F •n can be expressed in terms of B and W via1

F •n =
∑
q≥0

αqẐ••+0,0 (2n+ 2q) αq = B
t•

(
δq,0 −

∑
k≥q+1

gkL0(2k − 2q − 2)

)

involving a linear combination of g.f. for paths of length
2n, 2n+ 2, 2n+ 4, · · · . Here, in Ẑ, we decided to distribute the weights in
a more symmetric way by setting b ≡

√
B and w ≡

√
W

b =
√
B

w =
√
W

1can be proved slice decomposition - see the good authors
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· · · and introduced

Lk(2n) ≡ Ẑ••i,i−2k(2n) (Lk(2n) = L−k(2n), Lk(2n) = Ẑ◦◦i,i−2k(2n))

0

i i−2k

2k

2n

0

i

i+2k

2k

2n
0

i

i−2k

−2k

2n

i+2k

0

i

i−2k

2k

2n
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2 Computing the Hankel determinant

Start with h
(1)
i :

h
(1)
i = det

0≤n,m≤i
(F •n+m+1) where F •n+m+1 =

∑
q≥0

αqẐ••+0,0 (2n+ 2m+ 2 + 2q)

0

2k−1

2`−1

A◦◦+
2k−1,2`−1(2q)

2q2m+1 2n+1

Ẑ••+0,0 (2m+2n+2+2q) =
m+1∑

k=1

n+1∑

`=1

Ẑ•◦+0,2k−1(2m+1)A◦◦+2k−1,2`−1(2q)Ẑ
◦•+
2`−1,0(2n+1)

h
(1)
i = W i+1(BW )

i(i+1)
2 det

1≤k,`≤i+1
(
∑

q≥0
αqA

◦◦+
2k−1,2`−1(2q))
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Reflection principle (to preserve the weights b and w, make a vertical
reflection of the last part)

0

2k−1

2`−1

0

2k−1

2`+1

A◦◦+
2k−1,2`−1(2q) = Lk−`(2q)−

= Lk+`(2q)=

2q

2q

h
(1)
i = W i+1(BW )

i(i+1)
2 det

1≤k,`≤i+1
(Ck−`−Ck+`) where Ck =

∑

q≥0
αqLk(2q)
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From now on, assume faces with degree at most 2p+ 2

⇒ αq = 0 for q > p ⇒ Ck = 0 for |k| > p

Then it is a standard result that the wanted determinant can be expressed
in terms of the roots xa of the characteristic equation

0 =

p∑

k=−p
Ckx

k = C0 +

p∑

k=1

Ck

(
xk +

1

xk

)

(which yields 2p solutions, (xa)1≤a≤p and (1/xa)1≤a≤p), namely

Di ≡ det
1≤k,`≤i+1

(Ck−`−Ck+`) = (−1)p(i+1)Ci+1
p

det
1≤a,a′≤p

(xi+1+a′
a −x−(i+1+a′)

a )

det
1≤a,a′≤p

(xa′a − x−a
′

a )

from which h
(1)
i follows immediately
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Heuristic explanation
Kernel of (Ck−` − Ck+`)1≤k,`≤i+1

∑
`∈Z

Ck−`x
`
a =

∑
`∈Z

Ck−`x
−`
a = 0, a = 1, · · · , p

∑
`≥1

(Ck−` − Ck+`)v` =
∑
`≥1

Ck−`v` −
∑

`≤−1
Ck−`v−` =

∑
`∈Z

Ck−`v`

provided v−` = −v` for all `. Choose:

v
(a)
` = x`a − x−`a ` ≥ 1 then

∑

`≥1
(Ck−` − Ck+`)v

(a)
` = 0

To satisfy
i+1∑
`=1

(Ck−` − Ck+`)v` = 0 for 1 ≤ k ≤ i+ 1, simply take a

linear comb. of the v
(a)
` such that vi+2 = vi+3 = · · · = vi+p+1 = 0.

A non-zero such combination exists if:

di ≡ det
1≤a,a′≤p

v
(a)
i+a′+1 = 0

In other words di = 0⇒ Di = 0
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However di also vanishes whenever
• xa = xa′ for some a 6= a′ (as it implies v

(a)
` = v

(a′)
` )

• xa = 1/xa′ for any a, a′ (as it implies v
(a)
` = −v(a

′)
` ) and in

particular (for a = a′) when xa = ±1 (in which case v
(a)
` = 0).

These cases correspond precisely to the zeros of

d−1 = det
1≤a,a′≤p

v
(a)
a′ =

p∏
a=1

(x2a − 1)
∏

1≤a<a′≤p
(xa − xa′)(1− xaxa′)

p∏
a=1

xpa

and we must suppress them by dividing di by d−1.
In other words Di ∝ di/d−1
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Di ∝
di
d−1

We obtain the proportionality constant by ensuring that the
(x1x2 · · ·xp)i+1 term coincides on both sides

Di = (−1)p(i+1)Ci+1
p

det
1≤a,a′≤p

(xi+1+a′
a − x−(i+1+a′)

a )

det
1≤a,a′≤p

(xa′a − x−a
′

a )

h
(1)
i = W i+1(BW )

i(i+1)
2 (−1)p(i+1)Ci+1

p

det
1≤a,a′≤p

(xi+1+a′
a − x−(i+1+a′)

a )

det
1≤a,a′≤p

(xa′a − x−a
′

a )
)
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Computing the Hankel determinant II
h
(0)
i much more involved: h

(0)
i = (BW )

i(i+1)
2 det

0≤k,`≤i
(
∑
q≥0

αqA
••+
2k,2`(2q))

0

2k

2`
A••+2k,2`(2q) = Lk−`(2q)− { }

= b
w×

2q

0

2k

2`+2

2q

+w
b×

0

2k

2`

2q

= b
w (Lk+`+1(2q)−∆k+`+1(2q)) + w

b ∆k+`+1(2q)

+

0

2k

2q

2`+2

b

b

w

w

= b
wLk+`+1(2q) +

(
w
b − b

w

)
∆k+`+1(2q)
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∆k+`+1(2q) = = b
w×

= b
w (Lk+`+2(2q) − ∆k+`+2(2q))

0

2q

2k

b

0

2q

2`+4

w

2`+2

2k

A••+2k,2`(2q) = Lk−`(2q)− cLk+`+1(2q) + (c2− 1)
∑

m≥2
Lk+`+m(2q)(−c)m−2

where c ≡ b
w =

√
B
W

h
(0)
i ∝ D̄i ≡ det

0≤k,`≤i
(Ck−` − cCk+`+1 + (c2 − 1)

∑

m≥2
Ck+`+m(−c)m−2)
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Heuristic argument∑
`≥0

(
Ck−` − cCk+`+1 + (c2 − 1)

∑
m≥2

Ck+`+m(−c)m−2
)
w`

=
∑
`≥0

Ck−`w` +
∑

`≤−1
Ck−`(−cw−`−1 + (c2 − 1)

−∑̀
m=2

(−c)m−2w−`−m)

=
∑
`∈Z

Ck−`w` provided, for ` ≤ −1

w` = −cw−`−1 + (c2 − 1)
−∑̀

m=2
(−c)m−2w−`−m

which, by recursion is equivalent to
(w` + w−`−2) + c(w`+1 + w−`−1) = 0

Choose now:

w
(a)
` =

c+ xa
1 + c xa

x`a − x−`−1a ` ≥ 0

Then d̄i ≡ det
1≤a,a′≤p

w
(a)
i+a′ = 0⇒ D̄i = 0 and, eventually

D̄i ∝
d̄i
d−1
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We end up with

h
(0)
i =(BW )

i(i+1)
2 (−1)p(i+1)Ci+1

p

p∏

a=1

(1+c xa)

det
1≤a,a′≤p

(γax
i+a′
a −x−(i+1+a′)

a )

det
1≤a,a′≤p

(xa′a − x−a
′

a )

where γa =
c+ xa

1 + c xa

→ can be proved rigorously
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Final formula

Final formulas for slice g.f.

B2i = B

det
1≤a,a′≤p

(
xi+a′−1
a − x−(i+a′−1)

a

)
det

1≤a,a′≤p

(
γax

i+a′
a − x−(i+a′+1)

a

)

det
1≤a,a′≤p

(
γax

i+a′−1
a − x−(i+a′)

a

)
det

1≤a,a′≤p

(
xi+a′
a − x−(i+a′)

a

)

W2i+1=W

det
1≤a,a′≤p

(
γax

i+a′−1
a − x−(i+a′)

a

)
det

1≤a,a′≤p

(
xi+a′+1
a − x−(i+a′+1)

a

)

det
1≤a,a′≤p

(
xi+a′
a − x−(i+a′)

a

)
det

1≤a,a′≤p

(
γax

i+a′
a − x−(i+a′+1)

a

)

where γa =
c+ xa

1 + c xa

For the other parity, change W ↔ B, i.e. c↔ 1/c, i.e. γa ↔ 1/γa

3 The expression for the two-point function G•(d) follows immediately
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Example
Quadrangulations

Faces with degree 4 only: gk = δk,2

B = t• +
∑

k≥1
gkZ•◦0,−1(2k − 1)

W = t◦ +
∑

k≥1
gkZ◦•0,−1(2k − 1) .

B = t• +B(B + 2W ) , W = t◦ +W (W + 2B)

Parametrization of t• and t◦ by B and W via

t• = B(1−B − 2W ) , t◦ = W (1−W − 2B)

Ck =
∑
q≥0

αqLk(2q) with αq = B
t•

(
δq,0 −

∑
k≥q+1

gkL0(2k − 2q − 2)

)

α0 =
B

t•
(1−B −W ), α1 = −B

t•
, C0 = α0 + α1(B+W ), C1 = α1

√
BW

0 = C0 +

p∑

k=1

Ck

(
xk +

1

xk

)

0 = 1− 2(B +W )− cW
(
x+

1

x

)
c ≡

√
B/W

Parametrization of B and W by x and c via

B =
c2x

c+ 2x+ 2c2x+ c x2
, W =

x

c+ 2x+ 2c2x+ c x2

B2i = B
(1− x2i)(1− γx2i+3)

(1− γx2i+1)(1− x2i+2)
, W2i+1 = W

(1− γx2i+1)(1− x2i+4)

(1− x2i+2)(1− γx2i+3)

with γ = c+x
1+c x
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Example
Quadrangulations

Faces with degree 4 only: gk = δk,2
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∑
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∑

k≥1
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∑
q≥0

αqLk(2q) with αq = B
t•

(
δq,0 −

∑
k≥q+1

gkL0(2k − 2q − 2)

)

α0 =
B

t•
(1−B −W ), α1 = −B

t•
, C0 = α0 + α1(B+W ), C1 = α1

√
BW

0 = C0 +

p∑

k=1

Ck

(
xk +

1

xk

)

0 = 1− 2(B +W )− cW
(
x+

1

x

)
c ≡

√
B/W
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x

c+ 2x+ 2c2x+ c x2
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Example
Quadrangulations

This leads to the expansions

B1 = t• + t•(t• + t◦) + t•(2t
2
• + 5t•t◦ + 2t2◦) + t•(5t

3
• + 22t2•t◦ + 22t•t

2
◦ + 5t3◦) + · · ·

B2 = t• + t•(t• + 2t◦) + t•(2t
2
• + 9t•t◦ + 6t2◦) + t•(5t

3
• + 37t2•t◦ + 57t•t

2
◦ + 20t3◦) + · · ·

B3 = t• + t•(t• + 2t◦) + t•(2t
2
• + 10t•t◦ + 6t2◦) + t•(5t

3
• + 44t2•t◦ + 65t•t

2
◦ + 20t3◦) + · · ·

and

G•(1) = t•t◦(t• + t◦) + t•t◦(2t
2
• + 5t•t◦ + 2t2◦) + t•t◦(5t

3
• + 22t2•t◦ + 22t•t

2
◦ + 5t3◦) + · · ·

G•(2) = t2•t◦ + 4t2•t◦(t• + t◦) + 5t2•t◦(3t
2
• + 7t•t◦ + 3t2◦) + t2•t◦(56t3• + 221t2•t◦ + 221t•t

2
◦ + 56t3◦)) + · · ·

G•(3) = t2•t
2
◦ + t2•t

2
◦(7t• + 8t◦) + t2•t

2
◦(37t2• + 95t•t◦ + 47t2◦) + t2•t

2
◦(176t3• + 746t2•t◦ + 829t•t

2
◦ + 244t3◦) + · · ·
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Another bivariate two-point function
t• t◦

1

0

32

3

2

3

2

1

2

2

1

2

3

4

3
2

2

2

2

1 4

Consider a pointed rooted quadrangulation with a boundary of length 2n
and assign a weight t◦ or t• per vertex according to whether or not it is a
local maximum for the distance to the pointed vertex.
Call Jn(d) the corresponding g.f. with root/pointed vertex distance ≤ d
and Jn ≡ Jn(0).

Apply the Ambjørn-Budd rule (inverse of Schaeffer’s rule)Get a general rooted map with a boundary (of half the original boundary
length)Use the standard equivalence between general maps and quadrangulations.Get a bicolored quadrangulation with a boundary of the same length as
the original quadrangulation

d = 0 is preserved, therefore

Jn = F •n
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If we now make a slice decomposition on the initial configurations
t• t◦
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0

we are led to consider (two) new types of i-slices

i i−1

1 ≤ ` ≤ i
`− 1

apex

i i−1

apex

Qi Pi

geodesic

unique geodesic

t•

t◦

t•

t◦

t•

t•t◦or

t•t•

Interest: knowing Pi and Qi allows to immediately get the
distance-dependent two-point function for planar maps with a weight t•
per vertex and t◦ per face !

and Jn is a sum over paths with the new weight distribution:

0
2n

0

i

j−1

Pi

i−1

j
Qj

so that

∑

n≥0
F •nz

n =
∑

n≥0
Jnz

n =
1

1− (Q1 − P1)z − P1z

1−(Q2−P2)z− P2z
1−···
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The Pi and Qi were computed by Ambjørn and Budd as the solution of
the recursive system of equations

Pi = t• + Pi(Pi−1 +Qi +Qi+1), Qi = t◦ +Qi(Pi−1 + Pi) + PiQi+1

They get

Qi = Q
(1− yi)(1− α2yi+3)

(1− αyi+1)(1− αyi+2)
, Pi = P

(1− yi)(1− αyi+3)

(1− yi+1)(1− αyi+2)
,

where
Q = t◦ +Q(Q+ 2P ), P = t• + P (P + 2Q),

while y and α are obtained by inverting the relations

t• =
y(1− αy)3(1− αy3)

(1 + y + αy − 6αy2 + αy3 + α2y3 + α2y4)2

t◦ =
αy(1− y)3(1− α2y3)

(1 + y + αy − 6αy2 + αy3 + α2y3 + α2y4)2
.
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Instead, we can decide to use the theory for our new type of continued
fractions.
We have (see Di Francesco and Kedem 2010)

Qi − Pi =
H

(0)
i−1

H
(0)
i

/H
(1)
i

H
(1)
i−1

Pi =
H

(1)
i+1

H
(1)
i

/H
(0)
i

H
(0)
i−1

in terms of the “Hankel”-type determinants

H
(0)
i = det(F •n+m−i−2)0≤n,m≤i H

(1)
i = det(F •n+m−i−1)0≤n,m≤i

Problem: Requires F •n for negative n !!

For finite continued fractions, the F •n for n negative are related to the Fn

for n positive (see Di Francesco Kedem) and this fixes the Pi and Qi.

For infinite continued fractions, the F •n for n negative are free !!
The knowledge of F •n for n ≥ 0 is not sufficient to deduce Pi and Qi.
Indeed, expanding the continued fraction as a power series to equate its
coefficients with the F •n , we immediately see that the system is
underdeterminated.

Still, we may decide to use the same relation as for the finite continued
fraction case to define the F •n for n negative from the Fn for n positive
(why this choice ??).
We then get a particular solution for Pi and Qi and it precisely reproduces
the Ambjørn-Budd formulas.
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Thank You
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An integrable system with three colors
System of equations for bicolored quadrangulations:
Bi = t• +Bi(Wi−1 +Bi +Wi+1), Wi = t◦ +Wi(Bi−1 +Wi +Bi+1)

Solution:

B2i = B
(1− x2i)(1− γx2i+3)

(1− γx2i+1)(1− x2i+2)
, W2i+1 = W

(1− γx2i+1)(1− x2i+4)

(1− x2i+2)(1− γx2i+3)

where B and W are parametrizations of t• and t◦ via

t• = B −B(B + 2W ), t◦ = W −W (W + 2B)

while γ = c+x
1+cx with c =

√
B/W and 0 = 1− 2(B+W )−

√
BW

(
x+ 1

x

)
,

i.e. c and x are themselves parametrizations of B and W via

B =
c2x

c+ 2x+ 2c2x+ c x2
, W =

x

c+ 2x+ 2c2x+ c x2

System of equations for tricolored triangulations:
Ti= t•+Ti(Ui−1+Vi+1), Ui= t◦+Ui(Vi−1+Ti+1), Vi= t +Vi(Ti−1+Ui+1)
Solution:

T3i = T
(1−x3i)(1−αx3i+4)

(1−αx3i+1)(1−x3i+3)
, U3i+2 = U

(1−x3i+2/γ)(1−x3i+6)

(1−x3i+3)(1−x3i+5/γ)

V3i+1 = V
(1−αx3i+1)(1−x3i+5/γ)

(1−x3i+2/γ)(1−αx3i+4)

where T,U and V are parametrizations of t•, t◦ and t via

t• = T − T (U + V ) t◦ = U − U(V + T ) t = V − V (T + U)

while α and γ are expressed in terms of three quantities c, d and x via

α =
d+ c x+ x2

1 + d x+ c x2
γ =

1 + d x+ c x2

c+ x+ d x2

while c, d and x are themselves parametrizations of T,U and V via

T =
c d x

(c+ x)(1 + d x)
U =

d x

(c+ x)(d+ c x)
V =

c x

(d+ c x)(1 + d x)
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c+ x+ d x2

while c, d and x are themselves parametrizations of T,U and V via

T =
c d x

(c+ x)(1 + d x)
U =

d x

(c+ x)(d+ c x)
V =

c x

(d+ c x)(1 + d x)
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An integrable system with three colors

System of equations for bicolored quadrangulations:
Bi = t• +Bi(Wi−1 +Bi +Wi+1), Wi = t◦ +Wi(Bi−1 +Wi +Bi+1)

Solution:

B2i = B
(1− x2i)(1− γx2i+3)

(1− γx2i+1)(1− x2i+2)
, W2i+1 = W

(1− γx2i+1)(1− x2i+4)

(1− x2i+2)(1− γx2i+3)

where B and W are parametrizations of t• and t◦ via

t• = B −B(B + 2W ), t◦ = W −W (W + 2B)

while γ = c+x
1+cx with c =

√
B/W and 0 = 1− 2(B+W )−

√
BW

(
x+ 1

x

)
,

i.e. c and x are themselves parametrizations of B and W via

B =
c2x

c+ 2x+ 2c2x+ c x2
, W =

x

c+ 2x+ 2c2x+ c x2

System of equations for tricolored triangulations:
Ti= t•+Ti(Ui−1+Vi+1), Ui= t◦+Ui(Vi−1+Ti+1), Vi= t +Vi(Ti−1+Ui+1)
Solution:

T3i = T
(1−x3i)(1−αx3i+4)

(1−αx3i+1)(1−x3i+3)
, U3i+2 = U

(1−x3i+2/γ)(1−x3i+6)

(1−x3i+3)(1−x3i+5/γ)

V3i+1 = V
(1−αx3i+1)(1−x3i+5/γ)

(1−x3i+2/γ)(1−αx3i+4)

where T,U and V are parametrizations of t•, t◦ and t via

t• = T − T (U + V ) t◦ = U − U(V + T ) t = V − V (T + U)

while α and γ are expressed in terms of three quantities c, d and x via

α =
d+ c x+ x2

1 + d x+ c x2
γ =

1 + d x+ c x2

c+ x+ d x2

while c, d and x are themselves parametrizations of T,U and V via

T =
c d x

(c+ x)(1 + d x)
U =

d x

(c+ x)(d+ c x)
V =

c x

(d+ c x)(1 + d x)
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A formula for F •n
d• ≤ d⇔ {d• = 0 or 1 ≤ d• ≤ d} F •n(d) = F •n + F •n(1→ d)

where F •n(1→ d) is the g.f. for maps with 1 ≤ d• ≤ d

F •n(1→ d) = 1
t•

∑
j≥1

Z••+d,d+2j(2n)
∑
k≥1

gkZ
•◦
d+2j,d−1(2k − 1)
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d

d+2j d−1

(1 ≤ ` ≤ d) `− 1

×

×

×

×

×

` + 2j

×
d−1

d+2j

× e1e2

e2

gk

×

F •n(1→ d) = 1
t•

∑
j≥1

Z••+d,d+2j(2n)
∑
k≥1

gkZ
•◦
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F •n = Z••+d,d (2n)− 1

t•

∑

j≥1
Z••+d,d+2j(2n)

∑

k≥1
gkZ

•◦
d+2j,d−1(2k − 1)

- The l.h.s. is independent of d (so the r.h.s. is a conserved quantity)
- We can shift path heights by d and send d→∞, which allows us to
express F •n in terms of B and W via

F •n = Z••+0,0 (2n)− 1

t•

∑

j≥1
Z••+0,2j (2n)

∑

k≥1
gkZ•◦2j,−1(2k − 1)

and, after simple manipulations, we arrive at

F •n =
∑
q≥0

αqẐ••+0,0 (2n+ 2q) αq = B
t•

(
δq,0 −

∑
k≥q+1

gkL0(2k − 2q − 2)

)
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