A bivariate two-point function for planar bicolored maps

Emmanuel Guitter (IPhT, CEA Saclay)

June 9, 2015

common work with É. Fusy

$6,13,20, \ldots$

$6,13,20, \cdots$

next 27

$6,13,20, \cdots$

next 27 (2022)

$$
6,13,20, \cdots
$$

next 27 (2022)

may be $26!$ (2021) (see OEIS ${ }^{\circledR}$)

A109235 Floor(n*(e^2-1)/($\left.\mathrm{e}^{\wedge} 2-2 * \mathrm{e}-1\right)$).

$6,13,20,26,33,40,46,53,60,67,73$,

Planar bicolored maps

- Rooted planar map
\rightarrow canonical drawing in the plane

Planar bicolored maps

- Rooted planar map
\rightarrow canonical drawing in the plane
- bicolored in black and white \rightarrow the map is bipartite (all faces of even degree)
black-rooted (resp. white-rooted)
\rightarrow if the root vertex is black (resp. white)

Planar bicolored maps

- Rooted planar map
\rightarrow canonical drawing in the plane
- bicolored in black and white \rightarrow the map is bipartite (all faces of even degree)
black-rooted (resp. white-rooted)
\rightarrow if the root vertex is black (resp. white)
- with a boundary of length $2 n$
\rightarrow the external face is of degree $2 n$ here $2 n=6$

Planar bicolored maps

- Rooted planar map
\rightarrow canonical drawing in the plane
- bicolored in black and white \rightarrow the map is bipartite (all faces of even degree)
black-rooted (resp. white-rooted)
\rightarrow if the root vertex is black (resp. white)
- with a boundary of length $2 n$
\rightarrow the external face is of degree $2 n$
$\mathcal{M}_{n}^{\bullet}$ the set of black-rooted bicolored maps with a boundary of length $2 n$

"Bivariate" generating function

 weight t. per black vertext 。 per white vertex

+ a standard control on the degree of the faces: weight g_{k} per face of degree $2 k$

$$
F_{n}^{\bullet}\left(t_{\bullet}, t_{\circ} ; g_{1}, g_{2}, \ldots\right)=\frac{1}{t_{\bullet}} \sum_{M \in \mathcal{M}_{n}^{\bullet}} w(M)
$$

$$
w(M)=t_{0}^{\# \text { black vert. } t_{0}^{\# w h i t e ~ v e r t . ~}}
$$

$$
\times \prod_{\substack{\text { inner } \\ \text { faces } F}} g_{\frac{1}{2} \text { degree }(F)}
$$

NB: By convention, no weight for the external face \& no weight for the root vertex

The g.f. for black-rooted bicolored maps is $G^{\bullet}=t \bullet \sum_{n \geq 1} g_{n} F_{n}^{\bullet}$

The two-point function

Pointed black-rooted map \equiv black rooted map with an extra marked vertex of arbitrary (black or white) color

The distance-dependent two-point function

Def: $G^{\bullet}(d)$ is the g.f. of pointed black-rooted maps whose black (resp. white) extremities of the root edge are at distance d (resp. $d-1$) from the pointed vertex

There is a direct connection between $G^{\bullet}(d)$ and F_{n}^{\bullet}

Pointed rooted maps

- Pointed black-rooted map with a boundary of length $2 n$

Pointed rooted maps

- Pointed black-rooted map with a boundary of length $2 n$
- $\mathcal{M}_{n}^{\bullet}(d)$ set of these maps such that the distance d 。 from the root vertex to the pointed vertex satisfies

$$
d \bullet \leq d
$$

and all boundary vertices are at distance $\geq d_{\bullet}$. from the pointed vertex

Pointed rooted maps

- Pointed black-rooted map with a boundary of length $2 n$
- $\mathcal{M}_{n}^{\bullet}(d)$ set of these maps such that the distance d_{\bullet} from the root vertex to the pointed vertex satisfies

$$
d_{\bullet} \leq d
$$

and all boundary vertices are at distance $\geq d_{\bullet}$. from the pointed vertex

- Call $F_{n}^{\bullet}(d)=\sum_{M \in \mathcal{M}_{n}^{\bullet}(d)} \frac{1}{t_{\circ}(M)} w(M)$ with now the convention that the pointed vertex receives no weight (and no longer the root vertex)

Pointed rooted maps

- Pointed black-rooted map with a boundary of length $2 n$
- $\mathcal{M}_{n}^{\bullet}(d)$ set of these maps such that the distance d 。 from the root vertex to the pointed vertex satisfies

$$
d \bullet \leq d
$$

and all boundary vertices are at distance $\geq d_{\bullet}$. from the pointed vertex

- Call $F_{n}^{\bullet}(d)=\sum_{M \in \mathcal{M}_{n}^{\bullet}(d)} \frac{1}{t_{\circ}(M)} w(M)$ with now the convention that the pointed vertex receives no weight (and no longer the root vertex)
- $d=0 \Leftrightarrow$ pointed vertex $=$ root vertex

$$
\mathcal{M}_{n}^{\bullet}=\mathcal{M}_{n}^{\bullet}(0) \text { and } F_{n}^{\bullet}=F_{n}^{\bullet}(0)
$$

Enumeration by slice decomposition

- Take $M \in \mathcal{M}_{n}^{\bullet}(d)$ and draw the leftmost geodesic (\equiv shortest) path from a boundary vertex to the pointed vertex

Enumeration by slice decomposition

- Take $M \in \mathcal{M}_{n}^{\bullet}(d)$ and draw the leftmost geodesic (\equiv shortest) path from a boundary vertex to the pointed vertex
- Repeat the construction for all boundary vertices

Enumeration by slice decomposition

- Take $M \in \mathcal{M}_{n}^{\bullet}(d)$ and draw the leftmost geodesic (\equiv shortest) path from a boundary vertex to the pointed vertex
- Repeat the construction for all boundary vertices

- Label each boundary vertex by $i=$ distance to $\bigcirc+\left(d-d_{\bullet}\right)$.
- for each sequence $i-1 \rightarrow i$, the geodesic follows the boundary
- each sequence $i \rightarrow i-1$ gives rise to a new domain $=$ " i-slice"

Path of length $2 n$ made of ± 1 steps, with total height change 0 , each "descending step" $i \rightarrow i-1$ equipped with an i-slice

Slices

black-rooted i-slice

white-rooted i-slice

- left boundary $=$ geodesic, of length $\ell, \quad 1 \leq \ell \leq i$
- right boundary $=$ unique geodesic, of length $\ell-1$
$\mathrm{NB}: i$ is only an upper bound on the length of the left boundary of the slice

Call $B_{i} \equiv B_{i}\left(t_{\bullet}, t_{\circ},\left\{g_{k}\right\}_{k \geq 1}\right)$ (resp. $\left.W_{i}\right)$ the g.f. for black-rooted (resp. white-rooted) i-slices
For a proper counting, put no weights on the right boundary

B_{i} and W_{i} are solution of the (non linear) system

$$
\begin{aligned}
& B_{i}=t_{\bullet}+\sum_{k \geq 1} g_{k} Z_{i, i-1}^{\bullet \circ}\left(2 k-1,\left\{B_{j}\right\}_{j \geq 1},\left\{W_{j}\right\}_{j \geq 1}\right) \\
& W_{i}=t_{\circ}+\sum_{k \geq 1} g_{k} Z_{i, i-1}^{\circ \bullet}\left(2 k-1,\left\{B_{j}\right\}_{j \geq 1},\left\{W_{j}\right\}_{j \geq 1}\right) \\
& \quad \text { for } i \geq 1 \text { with } B_{0}=W_{0}=0 .
\end{aligned}
$$

where $Z_{i, i-1}^{\bullet \circ}\left(2 k-1,\left\{B_{j}\right\}_{j \geq 1},\left\{W_{j}\right\}_{j \geq 1}\right)$ denotes the g.f. for paths of length $2 k-1$ from black height i to white height $i-1$ with weights B_{j} (resp. W_{j}) attached to each descending step $j \rightarrow j-1$ starting at a black (resp. a white) vertex

B_{i} and W_{i} are solution of the (non linear) system

$$
\begin{aligned}
& B_{i}=t_{\bullet}+\sum_{k \geq 1} g_{k} Z_{i, i-1}^{\bullet \circ}\left(2 k-1,\left\{B_{j}\right\}_{j \geq 1},\left\{W_{j}\right\}_{j \geq 1}\right) \\
& W_{i}=t_{\circ}+\sum_{k \geq 1} g_{k} Z_{i, i-1}^{\circ \bullet}\left(2 k-1,\left\{B_{j}\right\}_{j \geq 1},\left\{W_{j}\right\}_{j \geq 1}\right) \\
& \quad \text { for } i \geq 1 \text { with } B_{0}=W_{0}=0 .
\end{aligned}
$$

\rightarrow two independent systems:

- one relating W_{i} with odd i and B_{i} with even i
- one relating W_{i} with even i and B_{i} with odd i
\rightarrow how to solve them ?

B_{i} and W_{i} are solution of the (non linear) system

$$
\begin{aligned}
& B_{i}=t_{\bullet}+\sum_{k \geq 1} g_{k} Z_{i, i-1}^{\bullet \circ}\left(2 k-1,\left\{B_{j}\right\}_{j \geq 1},\left\{W_{j}\right\}_{j \geq 1}\right) \\
& W_{i}=t_{\circ}+\sum_{k \geq 1} g_{k} Z_{i, i-1}^{\circ \bullet}\left(2 k-1,\left\{B_{j}\right\}_{j \geq 1},\left\{W_{j}\right\}_{j \geq 1}\right) \\
& \quad \text { for } i \geq 1 \text { with } B_{0}=W_{0}=0 .
\end{aligned}
$$

We can shift all the path heights by i (i.e. consider paths from 0 to -1) provided we attach weights B_{j+i} and W_{j+i} to $j \rightarrow j-1$ steps

Sending $i \rightarrow \infty, B_{i}$ and W_{i} tend to B and W respectively, which are slice g.f. with no bound on the boundary length, determined by the (closed) system

$$
\begin{aligned}
& B=t_{\bullet}+\sum_{k \geq 1} g_{k} \mathbb{Z}_{0,-1}^{\bullet \circ}(2 k-1 ; B, W) \\
& W=t_{\circ}+\sum_{k \geq 1} g_{k} \mathbb{Z}_{0,-1}^{\circ \bullet}(2 k-1 ; B, W) .
\end{aligned}
$$

The path g.f. \mathbb{Z} now involve homogeneous weights: B (resp. W) attached to any descending step starting with a black (resp. a white) vertex

Back to F_{n}^{\bullet}

The slice decomposition allows us to relate B_{i}, W_{i} and F_{n}^{\bullet} :

- We have

$$
F_{n}^{\bullet}(d)=Z_{d, d}^{\bullet \bullet+}\left(2 n,\left\{B_{i}\right\}_{i \geq 1},\left\{W_{i}\right\}_{i \geq 1}\right)
$$

where $Z_{d, d}^{\bullet \bullet+}\left(2 n,\left\{B_{i}\right\}_{i \geq 1},\left\{W_{i}\right\}_{i \geq 1}\right)$ denotes the g.f. for paths of length $2 n$ from black height d to black height d, remaining above d, with weight B_{i} (resp. W_{i}) attached to any descending step $i \rightarrow i-1$ starting at a black (resp. a white) vertex

Back to F_{n}^{\bullet}

The slice decomposition allows us to relate B_{i}, W_{i} and F_{n}^{\bullet} :

- We have

$$
F_{n}^{\bullet}(d)=Z_{d, d}^{\bullet \bullet+}\left(2 n,\left\{B_{i}\right\}_{i \geq 1},\left\{W_{i}\right\}_{i \geq 1}\right)
$$

- In particular

$$
F_{n}^{\bullet}=Z_{0,0}^{\bullet \bullet+}\left(2 n,\left\{B_{i}\right\}_{i \geq 1},\left\{W_{i}\right\}_{i \geq 1}\right)
$$

Back to F_{n}^{\bullet}

The slice decomposition allows us to relate B_{i}, W_{i} and F_{n}^{\bullet} :

- We have

$$
F_{n}^{\bullet}(d)=Z_{d, d}^{\bullet \bullet+}\left(2 n,\left\{B_{i}\right\}_{i \geq 1},\left\{W_{i}\right\}_{i \geq 1}\right)
$$

- In particular

$$
F_{n}^{\bullet}=Z_{0,0}^{\bullet \bullet+}\left(2 n,\left\{B_{i}\right\}_{i \geq 1},\left\{W_{i}\right\}_{i \geq 1}\right)
$$

and therefore

$$
\sum_{n \geq 0} F_{n}^{\bullet} z^{n}=\frac{1}{1-z \frac{W_{1}}{1-z \frac{B_{2}}{1-z \frac{W_{3}}{1-z \frac{B_{4}}{1-\cdots}}}}}
$$

NB: involves only W_{i} with odd i and B_{i} with even i

Slice generating functions can be obtained from F_{n}^{\bullet}

Indeed, a standard result of the continued fraction theory (here of Stieltjes-type) says that

$$
B_{2 i}=\frac{h_{i}^{(0)}}{h_{i-1}^{(0)}} / \frac{h_{i-1}^{(1)}}{h_{i-2}^{(1)}}
$$

$$
W_{2 i-1}=\frac{h_{i-1}^{(1)}}{h_{i-2}^{(1)}} / \frac{h_{i-1}^{(0)}}{h_{i-2}^{(0)}}
$$

in terms of the Hankel determinants

$$
h_{i}^{(0)}=\operatorname{det}\left(F_{n+m}^{\bullet}\right)_{0 \leq n, m \leq i}
$$

$$
h_{i}^{(1)}=\operatorname{det}\left(F_{n+m+1}^{\bullet}\right)_{0 \leq n, m \leq i}
$$

To compute the other parity, simply exchange t_{\bullet} and t_{\circ}

Back to the two-point function

Back to the two-point function

$$
B_{d}=t_{\bullet}+\sum_{\ell \leq d} \frac{G^{\bullet}(\ell)}{\left(\delta_{\ell, \text { even }} t_{\bullet}+\delta_{\ell, \text { odd }} t_{\circ}\right)}
$$

Back to the two-point function

$$
B_{d}=t_{\bullet}+\sum_{\ell \leq d} \frac{G^{\bullet}(\ell)}{\left(\delta_{\ell, \text { even }} t_{\bullet}+\delta_{\ell, \text { odd }} t_{\circ}\right)}
$$

The twopoint function can be obtained from the slice g.f.

$$
G^{\bullet}(d)=t_{\circ}\left(B_{d}^{\bullet}-B_{d-1}^{\bullet}\right), \quad t_{\circ}=\left(\delta_{d, \text { even }} t_{\bullet}+\delta_{d, \text { odd }} t_{\circ}\right)
$$

The recipe

(1) Take a known formula for F_{n}^{\bullet}
(2) Compute the Hankel determinants to get a formula for B_{d} (and W_{d})
(3) Deduce $G^{\bullet}(d)$

(1) An expression for F_{n}^{\bullet}

F_{n}^{\bullet} can be expressed in terms of B and W via 1

$$
F_{n}^{\bullet \bullet}=\sum_{q \geq 0} \alpha_{q} \hat{\mathbb{Z}}_{0,0}^{\bullet \bullet+}(2 n+2 q) \quad \alpha_{q}=\frac{B}{t_{\bullet}}\left(\delta_{q, 0}-\sum_{k \geq q+1} g_{k} L_{0}(2 k-2 q-2)\right)
$$

involving a linear combination of g.f. for paths of length $2 n, 2 n+2,2 n+4, \cdots$. Here, in $\overparen{\mathbb{Z}}$, we decided to distribute the weights in a more symmetric way by setting $b \equiv \sqrt{B}$ and $w \equiv \sqrt{W}$

${ }^{1}$ can be proved slice decomposition - see the good authors

... and introduced

$$
L_{k}(2 n) \equiv \hat{\mathbb{Z}}_{i, i-2 k}^{\bullet \bullet}(2 n) \quad\left(L_{k}(2 n)=L_{-k}(2 n), \quad L_{k}(2 n)=\hat{\mathbb{Z}}_{i, i-2 k}^{\circ \circ}(2 n)\right)
$$

(2) Computing the Hankel determinant

Start with $h_{i}^{(1)}$:
$h_{i}^{(1)}=\operatorname{det}_{0 \leq n, m \leq i}\left(F_{n+m+1}^{\bullet}\right)$ where $F_{n+m+1}^{\bullet}=\sum_{q \geq 0} \alpha_{q} \hat{\mathbb{Z}}_{0,0}^{\bullet \bullet+}(2 n+2 m+2+2 q)$

$$
A_{2 k-1,2 \ell-1}^{\circ \circ+}(2 q)
$$

$\hat{\mathbb{Z}}_{0,0}^{\bullet \bullet+}(2 m+2 n+2+2 q)=\sum_{k=1}^{m+1} \sum_{\ell=1}^{n+1} \hat{\mathbb{Z}}_{0,2 k-1}^{\bullet++}(2 m+1) A_{2 k-1,2 \ell-1}^{\circ \circ+}(2 q) \hat{\mathbb{Z}}_{2 \ell-1,0}^{\circ \bullet+}(2 n+1)$

(2) Computing the Hankel determinant

Start with $h_{i}^{(1)}$:
$h_{i}^{(1)}=\operatorname{det}_{0 \leq n, m \leq i}\left(F_{n+m+1}^{\bullet}\right)$ where $F_{n+m+1}^{\bullet}=\sum_{q \geq 0} \alpha_{q} \hat{\mathbb{Z}}_{0,0}^{\bullet \bullet+}(2 n+2 m+2+2 q)$

Reflection principle (to preserve the weights b and w, make a vertical reflection of the last part)

$h_{i}^{(1)}=W^{i+1}(B W)^{\frac{i(i+1)}{2}} \operatorname{det}_{1 \leq k, \ell \leq i+1}\left(C_{k-\ell}-C_{k+\ell}\right)$ where $C_{k}=\sum_{q \geq 0} \alpha_{q} L_{k}(2 q)$

From now on, assume faces with degree at most $2 p+2$
$\Rightarrow \alpha_{q}=0$ for $q>p \quad \Rightarrow C_{k}=0$ for $|k|>p$

Then it is a standard result that the wanted determinant can be expressed in terms of the roots x_{a} of the characteristic equation

$$
0=\sum_{k=-p}^{p} C_{k} x^{k}=C_{0}+\sum_{k=1}^{p} C_{k}\left(x^{k}+\frac{1}{x^{k}}\right)
$$

(which yields $2 p$ solutions, $\left(x_{a}\right)_{1 \leq a \leq p}$ and $\left.\left(1 / x_{a}\right)_{1 \leq a \leq p}\right)$, namely
$D_{i} \equiv \operatorname{det}_{1 \leq k, \ell \leq i+1}\left(C_{k-\ell}-C_{k+\ell}\right)=(-1)^{p(i+1)} C_{p}^{i+1} \frac{\operatorname{det}_{1 \leq a, a^{\prime} \leq p}\left(x_{a}^{i+1+a^{\prime}}-x_{a}^{-\left(i+1+a^{\prime}\right)}\right)}{\operatorname{det}_{1 \leq a, a^{\prime} \leq p}\left(x_{a}^{a^{\prime}}-x_{a}^{-a^{\prime}}\right)}$
from which $h_{i}^{(1)}$ follows immediately

Heuristic explanation

Kernel of $\left(C_{k-\ell}-C_{k+\ell}\right)_{1 \leq k, \ell \leq i+1}$

- $\sum_{\ell \in \mathbb{Z}} C_{k-\ell} x_{a}^{\ell}=\sum_{\ell \in \mathbb{Z}} C_{k-\ell} x_{a}^{-\ell}=0, \quad a=1, \cdots, p$

Heuristic explanation

Kernel of $\left(C_{k-\ell}-C_{k+\ell}\right)_{1 \leq k, \ell \leq i+1}$

- $\sum_{\ell \in \mathbb{Z}} C_{k-\ell} x_{a}^{\ell}=\sum_{\ell \in \mathbb{Z}} C_{k-\ell} x_{a}^{-\ell}=0, \quad a=1, \cdots, p$
- $\sum_{\ell \geq 1}\left(C_{k-\ell}-C_{k+\ell}\right) v_{\ell}=\sum_{\ell \geq 1} C_{k-\ell} v_{\ell}-\sum_{\ell \leq-1} C_{k-\ell} v_{-\ell}=\sum_{\ell \in \mathbb{Z}} C_{k-\ell} v_{\ell}$ provided $v_{-\ell}=-v_{\ell}$ for all ℓ. Choose:

$$
v_{\ell}^{(a)}=x_{a}^{\ell}-x_{a}^{-\ell} \quad \ell \geq 1 \quad \text { then } \sum_{\ell \geq 1}\left(C_{k-\ell}-C_{k+\ell}\right) v_{\ell}^{(a)}=0
$$

Heuristic explanation

Kernel of $\left(C_{k-\ell}-C_{k+\ell}\right)_{1 \leq k, \ell \leq i+1}$

- $\sum_{\ell \in \mathbb{Z}} C_{k-\ell} x_{a}^{\ell}=\sum_{\ell \in \mathbb{Z}} C_{k-\ell} x_{a}^{-\ell}=0, \quad a=1, \cdots, p$
- $\sum_{\ell \geq 1}\left(C_{k-\ell}-C_{k+\ell}\right) v_{\ell}=\sum_{\ell \geq 1} C_{k-\ell} v_{\ell}-\sum_{\ell \leq-1} C_{k-\ell} v_{-\ell}=\sum_{\ell \in \mathbb{Z}} C_{k-\ell} v_{\ell}$ provided $v_{-\ell}=-v_{\ell}$ for all ℓ. Choose:

$$
v_{\ell}^{(a)}=x_{a}^{\ell}-x_{a}^{-\ell} \quad \ell \geq 1 \quad \text { then } \sum_{\ell \geq 1}\left(C_{k-\ell}-C_{k+\ell}\right) v_{\ell}^{(a)}=0
$$

- To satisfy $\sum_{\ell=1}^{i+1}\left(C_{k-\ell}-C_{k+\ell}\right) v_{\ell}=0$ for $1 \leq k \leq i+1$, simply take a linear comb. of the $v_{\ell}^{(a)}$ such that $v_{i+2}=v_{i+3}=\cdots=v_{i+p+1}=0$. A non-zero such combination exists if:

$$
d_{i} \equiv \operatorname{det}_{1 \leq a, a^{\prime} \leq p} v_{i+a^{\prime}+1}^{(a)}=0
$$

In other words $d_{i}=0 \Rightarrow D_{i}=0$

- However d_{i} also vanishes whenever
- $x_{a}=x_{a^{\prime}}$ for some $a \neq a^{\prime}$ (as it implies $v_{\ell}^{(a)}=v_{\ell}^{\left(a^{\prime}\right)}$)
- $x_{a}=1 / x_{a^{\prime}}$ for any a, a^{\prime} (as it implies $v_{\ell}^{(a)}=-v_{\ell}^{\left(a^{\prime}\right)}$) and in particular (for $a=a^{\prime}$) when $x_{a}= \pm 1$ (in which case $v_{\ell}^{(a)}=0$). These cases correspond precisely to the zeros of

$$
d_{-1}=\operatorname{det}_{1 \leq a, a^{\prime} \leq p} v_{a^{\prime}}^{(a)}=\frac{\prod_{a=1}^{p}\left(x_{a}^{2}-1\right) \prod_{1 \leq a<a^{\prime} \leq p}\left(x_{a}-x_{a^{\prime}}\right)\left(1-x_{a} x_{a^{\prime}}\right)}{\prod_{a=1}^{p} x_{a}^{p}}
$$

and we must suppress them by dividing d_{i} by d_{-1}.
In other words $D_{i} \propto d_{i} / d_{-1}$

$$
D_{i} \propto \frac{d_{i}}{d_{-1}}
$$

- We obtain the proportionality constant by ensuring that the $\left(x_{1} x_{2} \cdots x_{p}\right)^{i+1}$ term coincides on both sides

$$
D_{i} \propto \frac{d_{i}}{d_{-1}}
$$

- We obtain the proportionality constant by ensuring that the $\left(x_{1} x_{2} \cdots x_{p}\right)^{i+1}$ term coincides on both sides

$$
\begin{gathered}
D_{i}=(-1)^{p(i+1)} C_{p}^{i+1} \frac{\operatorname{det}_{1 \leq a, a^{\prime} \leq p}\left(x_{a}^{i+1+a^{\prime}}-x_{a}^{-\left(i+1+a^{\prime}\right)}\right)}{\operatorname{det}_{1 \leq a, a^{\prime} \leq p}\left(x_{a}^{a^{\prime}}-x_{a}^{-a^{\prime}}\right)} \\
\left.h_{i}^{(1)}=W^{i+1}(B W)^{\frac{i(i+1)}{2}}(-1)^{p(i+1)} C_{p}^{i+1} \frac{\operatorname{det}_{1 \leq a, a^{\prime} \leq p}\left(x_{a}^{i+1+a^{\prime}}-x_{a}^{-\left(i+1+a^{\prime}\right)}\right)}{\operatorname{det}_{1 \leq a, a^{\prime} \leq p}\left(x_{a}^{a^{\prime}}-x_{a}^{-a^{\prime}}\right)}\right)
\end{gathered}
$$

Computing the Hankel determinant II

$h_{i}^{(0)}$ much more involved: $h_{i}^{(0)}=(B W)^{\frac{i(i+1)}{2}} \operatorname{det}_{0 \leq k, \ell \leq i}\left(\sum_{q \geq 0} \alpha_{q} A_{2 \times, 2 \ell}^{+}(2 q)\right)$

$$
A_{2 k, 2 \ell}^{\bullet \bullet+}(2 q)=L_{k-\ell}(2 q)-c L_{k+\ell+1}(2 q)+\left(c^{2}-1\right) \sum_{m \geq 2} L_{k+\ell+m}(2 q)(-c)^{m-2}
$$

$$
\text { where } c \equiv \frac{b}{w}=\sqrt{\frac{B}{W}}
$$

$$
h_{i}^{(0)} \propto \bar{D}_{i} \equiv \operatorname{det}_{0 \leq k, \ell \leq i}\left(C_{k-\ell}-c C_{k+\ell+1}+\left(c^{2}-1\right) \sum_{m \geq 2} C_{k+\ell+m}(-c)^{m-2}\right)
$$

Heuristic argument

$\sum_{\ell \geq 0}\left(C_{k-\ell}-c C_{k+\ell+1}+\left(c^{2}-1\right) \sum_{m \geq 2} C_{k+\ell+m}(-c)^{m-2}\right) w_{\ell}$

$$
\begin{aligned}
& =\sum_{\ell \geq 0} C_{k-\ell} w_{\ell}+\sum_{\ell \leq-1} C_{k-\ell}\left(-c w_{-\ell-1}+\left(c^{2}-1\right) \sum_{m=2}^{-\ell}(-c)^{m-2} w_{-\ell-m}\right) \\
& =\sum_{\ell \in \mathbb{Z}} C_{k-\ell} w_{\ell} \quad \text { provided, for } \ell \leq-1
\end{aligned}
$$

$$
w_{\ell}=-c w_{-\ell-1}+\left(c^{2}-1\right) \sum_{m=2}^{-\ell}(-c)^{m-2} w_{-\ell-m}
$$

which, by recursion is equivalent to

$$
\left(w_{\ell}+w_{-\ell-2}\right)+c\left(w_{\ell+1}+w_{-\ell-1}\right)=0
$$

Choose now:

$$
w_{\ell}^{(a)}=\frac{c+x_{a}}{1+c x_{a}} x_{a}^{\ell}-x_{a}^{-\ell-1} \quad \ell \geq 0
$$

Then $\bar{d}_{i} \equiv \operatorname{det}_{1 \leq a, a^{\prime} \leq p} w_{i+a^{\prime}}^{(a)}=0 \Rightarrow \bar{D}_{i}=0$ and, eventually

$$
\bar{D}_{i} \propto \frac{\bar{d}_{i}}{d_{-1}}
$$

We end up with

$$
\begin{aligned}
& h_{i}^{(0)}=(B W)^{\frac{i(i+1)}{2}}(-1)^{p(i+1)} C_{p}^{i+1} \prod_{a=1}^{p}\left(1+c x_{a}\right) \frac{\operatorname{det}_{1 \leq a, a^{\prime} \leq p}\left(\gamma_{a} x_{a}^{i+a^{\prime}}-x_{a}^{-\left(i+1+a^{\prime}\right)}\right)}{\operatorname{det}_{1 \leq a, a^{\prime} \leq p}\left(x_{a}^{a^{\prime}}-x_{a}^{-a^{\prime}}\right)} \\
& \text { where } \gamma_{a}=\frac{c+x_{a}}{1+c x_{a}}
\end{aligned}
$$

\rightarrow can be proved rigorously

Final formula

Final formulas for slice g.f.

$$
\begin{aligned}
& B_{2 i}=B \frac{\operatorname{det}_{1 \leq a, a^{\prime} \leq p}\left(x_{a}^{i+a^{\prime}-1}-x_{a}^{-\left(i+a^{\prime}-1\right)}\right) \underset{1 \leq a, a^{\prime} \leq p}{\operatorname{det}}\left(\gamma_{a} x_{a}^{i+a^{\prime}}-x_{a}^{-\left(i+a^{\prime}+1\right)}\right)}{\operatorname{det}_{1 \leq a, a^{\prime} \leq p}\left(\gamma_{a} x_{a}^{i+a^{\prime}-1}-x_{a}^{-\left(i+a^{\prime}\right)}\right) \operatorname{det}_{1 \leq a, a^{\prime} \leq p}\left(x_{a}^{i+a^{\prime}}-x_{a}^{-\left(i+a^{\prime}\right)}\right)} \\
& W_{2 i+1}=W \frac{\operatorname{det}_{1 \leq a, a^{\prime} \leq p}\left(\gamma_{a} x_{a}^{i+a^{\prime}-1}-x_{a}^{-\left(i+a^{\prime}\right)}\right) \operatorname{det}_{1 \leq a, a^{\prime} \leq p}^{\operatorname{det}}\left(x_{a}^{i+a^{\prime}+1}-x_{a}^{-\left(i+a^{\prime}+1\right)}\right)}{1 \leq a, a^{\prime} \leq p}\left(x_{a}^{i+a^{\prime}}-x_{a}^{-\left(i+a^{\prime}\right)}\right) \operatorname{det}_{1 \leq a a^{\prime} \leq p}\left(\gamma_{a} x_{a}^{i+a^{\prime}}-x_{a}^{-\left(i+a^{\prime}+1\right)}\right) \\
& \text { where } \gamma_{a}=\frac{c+x_{a}}{1+c x_{a}}
\end{aligned}
$$

For the other parity, change $W \leftrightarrow B$, i.e. $c \leftrightarrow 1 / c$, i.e. $\gamma_{a} \leftrightarrow 1 / \gamma_{a}$
(3) The expression for the two-point function $G^{\bullet}(d)$ follows immediately

Example

Quadrangulations
Faces with degree 4 only: $g_{k}=\delta_{k, 2}$

$$
\begin{aligned}
& B=t_{\bullet}+\sum_{k \geq 1} g_{k} \mathbb{Z}_{0,-1}^{\bullet \circ}(2 k-1) \\
& W=t_{\circ}+\sum_{k \geq 1} g_{k} \mathbb{Z}_{0,-1}^{\bullet \bullet}(2 k-1) .
\end{aligned}
$$

Example

Quadrangulations
Faces with degree 4 only: $g_{k}=\delta_{k, 2}$

$$
\begin{aligned}
& B=t_{\bullet}+\sum_{k \geq 1} g_{k} \mathbb{Z}_{0,-1}^{\bullet \bullet}(2 k-1) \\
& W=t_{\bullet}+\sum_{k \geq 1} g_{k} \mathbb{Z}_{0,-1}^{\circ \bullet}(2 k-1) .
\end{aligned}
$$

$$
B=t_{\bullet}+B(B+2 W), \quad W=t_{\bullet}+W(W+2 B)
$$

Parametrization of t_{\bullet} and t_{0} by B and W via

$$
t_{\bullet}=B(1-B-2 W), \quad t_{\circ}=W(1-W-2 B)
$$

Example

Quadrangulations
Faces with degree 4 only: $g_{k}=\delta_{k, 2}$

$$
C_{k}=\sum_{q \geq 0} \alpha_{q} L_{k}(2 q) \text { with } \alpha_{q}=\frac{B}{t_{\bullet}}\left(\delta_{q, 0}-\sum_{k \geq q+1} g_{k} L_{0}(2 k-2 q-2)\right)
$$

Parametrization of t_{\bullet} and t_{\circ} by B and W via

$$
t_{\bullet}=B(1-B-2 W), \quad t_{\circ}=W(1-W-2 B)
$$

Example

Quadrangulations
Faces with degree 4 only: $g_{k}=\delta_{k, 2}$

$$
C_{k}=\sum_{q \geq 0} \alpha_{q} L_{k}(2 q) \text { with } \alpha_{q}=\frac{B}{t_{\bullet}}\left(\delta_{q, 0}-\sum_{k \geq q+1} g_{k} L_{0}(2 k-2 q-2)\right)
$$

$\alpha_{0}=\frac{B}{t_{\bullet}}(1-B-W), \alpha_{1}=-\frac{B}{t_{\bullet}}, C_{0}=\alpha_{0}+\alpha_{1}(B+W), C_{1}=\alpha_{1} \sqrt{B W}$
Parametrization of t_{\bullet} and t_{\circ} by B and W via

$$
t_{\bullet}=B(1-B-2 W), \quad t_{\circ}=W(1-W-2 B)
$$

Example

Quadrangulations
Faces with degree 4 only: $g_{k}=\delta_{k, 2}$

$$
0=C_{0}+\sum_{k=1}^{p} C_{k}\left(x^{k}+\frac{1}{x^{k}}\right)
$$

$\alpha_{0}=\frac{B}{t_{\bullet}}(1-B-W), \alpha_{1}=-\frac{B}{t_{\bullet}}, C_{0}=\alpha_{0}+\alpha_{1}(B+W), C_{1}=\alpha_{1} \sqrt{B W}$
Parametrization of t_{\bullet} and t_{\circ} by B and W via

$$
t_{\bullet}=B(1-B-2 W), \quad t_{\circ}=W(1-W-2 B)
$$

Example

Quadrangulations

Faces with degree 4 only: $g_{k}=\delta_{k, 2}$

$$
0=C_{0}+\sum_{k=1}^{p} C_{k}\left(x^{k}+\frac{1}{x^{k}}\right)
$$

$$
\begin{gathered}
0=1-2(B+W)-c W\left(x+\frac{1}{x}\right) \quad c \equiv \sqrt{B / W} \\
\alpha_{0}=\frac{B}{t_{\bullet}}(1-B-W), \alpha_{1}=-\frac{B}{t_{\bullet}}, C_{0}=\alpha_{0}+\alpha_{1}(B+W), C_{1}=\alpha_{1} \sqrt{B W}
\end{gathered}
$$

Parametrization of t_{\bullet} and t_{\circ} by B and W via

$$
t_{\bullet}=B(1-B-2 W), \quad t_{\circ}=W(1-W-2 B)
$$

Example

Quadrangulations
Faces with degree 4 only: $g_{k}=\delta_{k, 2}$

$$
0=C_{0}+\sum_{k=1}^{p} C_{k}\left(x^{k}+\frac{1}{x^{k}}\right)
$$

$$
0=1-2(B+W)-c W\left(x+\frac{1}{x}\right) \quad c \equiv \sqrt{B / W}
$$

$\alpha_{0}=\frac{B}{t_{\bullet}}(1-B-W), \alpha_{1}=-\frac{B}{t_{\bullet}}, C_{0}=\alpha_{0}+\alpha_{1}(B+W), C_{1}=\alpha_{1} \sqrt{B W}$
Parametrization of t_{\bullet} and t_{\circ} by B and W via

$$
t_{\bullet}=B(1-B-2 W), \quad t_{\circ}=W(1-W-2 B)
$$

Parametrization of B and W by x and c via

$$
B=\frac{c^{2} x}{c+2 x+2 c^{2} x+c x^{2}}, \quad W=\frac{x}{c+2 x+2 c^{2} x+c x^{2}}
$$

Example

Quadrangulations
Faces with degree 4 only: $g_{k}=\delta_{k, 2}$

$$
\begin{array}{r}
B_{2 i}=B \frac{\left(1-x^{2 i}\right)\left(1-\gamma x^{2 i+3}\right)}{\left(1-\gamma x^{2 i+1}\right)\left(1-x^{2 i+2}\right)}, W_{2 i+1}=W \frac{\left(1-\gamma x^{2 i+1}\right)\left(1-x^{2 i+4}\right)}{\left(1-x^{2 i+2}\right)\left(1-\gamma x^{2 i+3}\right)} \\
\text { with } \gamma=\frac{c+x}{1+c x}
\end{array}
$$

Parametrization of t_{\bullet} and t_{\circ} by B and W via

$$
t_{\bullet}=B(1-B-2 W), \quad t_{\circ}=W(1-W-2 B)
$$

Parametrization of B and W by x and c via

$$
B=\frac{c^{2} x}{c+2 x+2 c^{2} x+c x^{2}}, \quad W=\frac{x}{c+2 x+2 c^{2} x+c x^{2}}
$$

Example

Quadrangulations

This leads to the expansions

$$
\begin{aligned}
& B_{1}=t_{\bullet}+t_{\bullet}\left(t_{\bullet}+t_{\circ}\right)+t_{\bullet}\left(2 t_{\bullet}^{2}+5 t_{\bullet} t_{\circ}+2 t_{\circ}^{2}\right)+t_{\bullet}\left(5 t_{\bullet}^{3}+22 t_{\bullet}^{2} t_{\circ}+22 t_{\bullet} t_{\circ}^{2}+5 t\right. \\
& B_{2}=t_{\bullet}+t_{\bullet}\left(t_{\bullet}+2 t_{\circ}\right)+t_{\bullet}\left(2 t_{\bullet}^{2}+9 t_{\bullet} t_{\circ}+6 t_{\circ}^{2}\right)+t_{\bullet}\left(5 t_{\bullet}^{3}+37 t_{\bullet}^{2} t_{\circ}+57 t_{\bullet} t_{\circ}^{2}+2\right. \\
& B_{3}=t_{\bullet}+t_{\bullet}\left(t_{\bullet}+2 t_{\circ}\right)+t_{\bullet}\left(2 t_{\bullet}^{2}+10 t_{\bullet} t_{\circ}+6 t_{\circ}^{2}\right)+t_{\bullet}\left(5 t_{\bullet}^{3}+44 t_{\bullet}^{2} t_{\circ}+65 t_{\bullet} t_{\circ}^{2}+\right. \\
& \text { and }
\end{aligned}
$$

$$
G^{\bullet}(1)=t_{\bullet} t_{\circ}\left(t_{\bullet}+t_{\circ}\right)+t_{\bullet} t_{\circ}\left(2 t_{\bullet}^{2}+5 t_{\bullet} t_{\circ}+2 t_{\circ}^{2}\right)+t_{\bullet} t_{\circ}\left(5 t_{\bullet}^{3}+22 t_{\bullet}^{2} t_{\circ}+22 t_{\bullet} t_{\circ}^{2}\right.
$$

$$
G^{\bullet}(2)=t_{\bullet}^{2} t_{\circ}+4 t_{\bullet}^{2} t_{\circ}\left(t_{\bullet}+t_{\circ}\right)+5 t_{\bullet}^{2} t_{\circ}\left(3 t_{\bullet}^{2}+7 t_{\bullet} t_{\circ}+3 t_{\circ}^{2}\right)+t_{\bullet}^{2} t_{\circ}\left(56 t_{\bullet}^{3}+221 t_{\bullet}^{2}\right.
$$

$$
G^{\bullet}(3)=t_{\bullet}^{2} t_{\circ}^{2}+t_{\bullet}^{2} t_{\circ}^{2}\left(7 t_{\bullet}+8 t_{\circ}\right)+t_{\bullet}^{2} t_{\circ}^{2}\left(37 t_{\bullet}^{2}+95 t_{\bullet} t_{\circ}+47 t_{\circ}^{2}\right)+t_{\bullet}^{2} t_{\circ}^{2}\left(176 t_{\bullet}^{3}+7\right.
$$

Another bivariate two-point function

Consider a pointed rooted quadrangulation with a boundary of length $2 n$ and assign a weight t_{\circ} or t_{\bullet} per vertex according to whether or not it is a local maximum for the distance to the pointed vertex.
Call $J_{n}(d)$ the corresponding g.f. with root/pointed vertex distance $\leq d$ and $J_{n} \equiv J_{n}(0)$.

Another bivariate two-point function

Apply the Ambjørn-Budd rule (inverse of Schaeffer's rule)

Another bivariate two-point function

Get a general rooted map with a boundary (of half the original boundary length)

Another bivariate two-point function

Use the standard equivalence between general maps and quadrangulations.

Another bivariate two-point function

Get a bicolored quadrangulation with a boundary of the same length as the original quadrangulation

Another bivariate two-point function

$d=0$ is preserved, therefore

$$
J_{n}=F_{n}^{\bullet}
$$

If we now make a slice decomposition on the initial configurations

we are led to consider (two) new types of i-slices

Interest: knowing P_{i} and Q_{i} allows to immediately get the distance-dependent two-point function for planar maps with a weight t_{\bullet} per vertex and t_{\circ}. per face!
and J_{n} is a sum over paths with the new weight distribution:

so that

$$
\sum_{n \geq 0} F_{n}^{\bullet} z^{n}=\sum_{n \geq 0} J_{n} z^{n}=\frac{1}{1-\left(Q_{1}-P_{1}\right) z-\frac{P_{1} z}{1-\left(Q_{2}-P_{2}\right) z-\frac{P_{2} z}{1-\ldots}}}
$$

The P_{i} and Q_{i} were computed by Ambjørn and Budd as the solution of the recursive system of equations

$$
P_{i}=t_{\bullet}+P_{i}\left(P_{i-1}+Q_{i}+Q_{i+1}\right), \quad Q_{i}=t_{\circ}+Q_{i}\left(P_{i-1}+P_{i}\right)+P_{i} Q_{i+1}
$$

They get

$$
Q_{i}=Q \frac{\left(1-y^{i}\right)\left(1-\alpha^{2} y^{i+3}\right)}{\left(1-\alpha y^{i+1}\right)\left(1-\alpha y^{i+2}\right)}, \quad P_{i}=P \frac{\left(1-y^{i}\right)\left(1-\alpha y^{i+3}\right)}{\left(1-y^{i+1}\right)\left(1-\alpha y^{i+2}\right)}
$$

where

$$
Q=t_{\circ}+Q(Q+2 P), \quad P=t_{\bullet}+P(P+2 Q)
$$

while y and α are obtained by inverting the relations

$$
\begin{aligned}
& t_{\bullet}=\frac{y(1-\alpha y)^{3}\left(1-\alpha y^{3}\right)}{\left(1+y+\alpha y-6 \alpha y^{2}+\alpha y^{3}+\alpha^{2} y^{3}+\alpha^{2} y^{4}\right)^{2}} \\
& t_{\circ}=\frac{\alpha y(1-y)^{3}\left(1-\alpha^{2} y^{3}\right)}{\left(1+y+\alpha y-6 \alpha y^{2}+\alpha y^{3}+\alpha^{2} y^{3}+\alpha^{2} y^{4}\right)^{2}}
\end{aligned}
$$

Instead, we can decide to use the theory for our new type of continued fractions.
We have (see Di Francesco and Kedem 2010)

$$
Q_{i}-P_{i}=\frac{H_{i-1}^{(0)}}{H_{i}^{(0)}} / \frac{H_{i}^{(1)}}{H_{i-1}^{(1)}} \quad P_{i}=\frac{H_{i+1}^{(1)}}{H_{i}^{(1)}} / \frac{H_{i}^{(0)}}{H_{i-1}^{(0)}}
$$

in terms of the "Hankel"-type determinants

$$
H_{i}^{(0)}=\operatorname{det}\left(F_{n+m-i-2}^{\bullet}\right)_{0 \leq n, m \leq i} \quad H_{i}^{(1)}=\operatorname{det}\left(F_{n+m-i-1}^{\bullet}\right)_{0 \leq n, m \leq i}
$$

Problem: Requires F_{n}^{\bullet} for negative $n!!$

For finite continued fractions, the F_{n}^{\bullet} for n negative are related to the F_{n} for n positive (see Di Francesco Kedem) and this fixes the P_{i} and Q_{i}.

Instead, we can decide to use the theory for our new type of continued fractions.
We have (see Di Francesco and Kedem 2010)

$$
Q_{i}-P_{i}=\frac{H_{i-1}^{(0)}}{H_{i}^{(0)}} / \frac{H_{i}^{(1)}}{H_{i-1}^{(1)}}
$$

$$
P_{i}=\frac{H_{i+1}^{(1)}}{H_{i}^{(1)}} / \frac{H_{i}^{(0)}}{H_{i-1}^{(0)}}
$$

in terms of the "Hankel"-type determinants

$$
H_{i}^{(0)}=\operatorname{det}\left(F_{n+m-i-2}^{\bullet}\right)_{0 \leq n, m \leq i} \quad H_{i}^{(1)}=\operatorname{det}\left(F_{n+m-i-1}^{\bullet}\right)_{0 \leq n, m \leq i}
$$

Problem: Requires F_{n}^{\bullet} for negative n !!
For infinite continued fractions, the F_{n}^{\bullet} for n negative are free !! The knowledge of $F_{n}^{\bullet \bullet}$ for $n \geq 0$ is not sufficient to deduce P_{i} and Q_{i}. Indeed, expanding the continued fraction as a power series to equate its coefficients with the F_{n}^{\bullet}, we immediately see that the system is underdeterminated.

Instead, we can decide to use the theory for our new type of continued fractions.
We have (see Di Francesco and Kedem 2010)

$$
Q_{i}-P_{i}=\frac{H_{i-1}^{(0)}}{H_{i}^{(0)}} / \frac{H_{i}^{(1)}}{H_{i-1}^{(1)}}
$$

$$
P_{i}=\frac{H_{i+1}^{(1)}}{H_{i}^{(1)}} / \frac{H_{i}^{(0)}}{H_{i-1}^{(0)}}
$$

in terms of the "Hankel"-type determinants

$$
H_{i}^{(0)}=\operatorname{det}\left(F_{n+m-i-2}^{\bullet}\right)_{0 \leq n, m \leq i} \quad H_{i}^{(1)}=\operatorname{det}\left(F_{n+m-i-1}^{\bullet}\right)_{0 \leq n, m \leq i}
$$

Problem: Requires F_{n}^{\bullet} for negative n !!

Still, we may decide to use the same relation as for the finite continued fraction case to define the F_{n}^{\bullet} for n negative from the F_{n} for n positive (why this choice ??).
We then get a particular solution for P_{i} and Q_{i} and it precisely reproduces the Ambjørn-Budd formulas.

Thank You

An integrable system with three colors

System of equations for bicolored quadrangulations:

$$
B_{i}=t_{\bullet}+B_{i}\left(W_{i-1}+B_{i}+W_{i+1}\right), W_{i}=t_{\circ}+W_{i}\left(B_{i-1}+W_{i}+B_{i+1}\right)
$$

An integrable system with three colors

System of equations for bicolored quadrangulations:

$$
B_{i}=t_{\bullet}+B_{i}\left(W_{i-1}+B_{i}+W_{i+1}\right), W_{i}=t_{\circ}+W_{i}\left(B_{i-1}+W_{i}+B_{i+1}\right)
$$

Solution:

$$
B_{2 i}=B \frac{\left(1-x^{2 i}\right)\left(1-\gamma x^{2 i+3}\right)}{\left(1-\gamma x^{2 i+1}\right)\left(1-x^{2 i+2}\right)}, W_{2 i+1}=W \frac{\left(1-\gamma x^{2 i+1}\right)\left(1-x^{2 i+4}\right)}{\left(1-x^{2 i+2}\right)\left(1-\gamma x^{2 i+3}\right)}
$$

where B and W are parametrizations of t_{\bullet} and t_{\circ} via

$$
t_{\bullet}=B-B(B+2 W), \quad t_{\circ}=W-W(W+2 B)
$$

while $\gamma=\frac{c+x}{1+c x}$ with $c=\sqrt{B / W}$ and $0=1-2(B+W)-\sqrt{B W}\left(x+\frac{1}{x}\right)$, i.e. c and x are themselves parametrizations of B and W via

$$
B=\frac{c^{2} x}{c+2 x+2 c^{2} x+c x^{2}}, \quad W=\frac{x}{c+2 x+2 c^{2} x+c x^{2}}
$$

An integrable system with three colors

System of equations for tricolored triangulations:
$T_{i}=t_{\bullet}+T_{i}\left(U_{i-1}+V_{i+1}\right), U_{i}=t_{\circ}+U_{i}\left(V_{i-1}+T_{i+1}\right), V_{i}=t_{\circ}+V_{i}\left(T_{i-1}+U_{i+1}\right)$

An integrable system with three colors

System of equations for tricolored triangulations:
$T_{i}=t_{\bullet}+T_{i}\left(U_{i-1}+V_{i+1}\right), U_{i}=t_{\circ}+U_{i}\left(V_{i-1}+T_{i+1}\right), V_{i}=t_{\circ}+V_{i}\left(T_{i-1}+U_{i+1}\right)$
Solution:

$$
\begin{gathered}
T_{3 i}=T \frac{\left(1-x^{3 i}\right)\left(1-\alpha x^{3 i+4}\right)}{\left(1-\alpha x^{3 i+1}\right)\left(1-x^{3 i+3}\right)}, \quad U_{3 i+2}=U \frac{\left(1-x^{3 i+2} / \gamma\right)\left(1-x^{3 i+6}\right)}{\left(1-x^{3 i+3}\right)\left(1-x^{3 i+5} / \gamma\right)} \\
V_{3 i+1}=V \frac{\left(1-\alpha x^{3 i+1}\right)\left(1-x^{3 i+5} / \gamma\right)}{\left(1-x^{3 i+2} / \gamma\right)\left(1-\alpha x^{3 i+4}\right)}
\end{gathered}
$$

where T, U and V are parametrizations of t_{\bullet}, t_{\circ} and t_{\circ} via

$$
t_{\bullet}=T-T(U+V) \quad t_{\circ}=U-U(V+T) \quad t_{\circ}=V-V(T+U)
$$

while α and γ are expressed in terms of three quantities c, d and x via

$$
\alpha=\frac{d+c x+x^{2}}{1+d x+c x^{2}} \quad \gamma=\frac{1+d x+c x^{2}}{c+x+d x^{2}}
$$

while c, d and x are themselves parametrizations of T, U and V via

$$
T=\frac{c d x}{(c+x)(1+d x)} \quad U=\frac{d x}{(c+x)(d+c x)} \quad V=\frac{c x}{(d+c x)(1+d x)}
$$

A formula for F_{n}^{\bullet}

$d_{\bullet} \leq d \Leftrightarrow\left\{d_{\bullet}=0\right.$ or $\left.1 \leq d_{\bullet} \leq d\right\} \quad F_{n}^{\bullet}(d)=F_{n}^{\bullet}+F_{n}^{\bullet}(1 \rightarrow d)$
where $F_{n}^{\bullet}(1 \rightarrow d)$ is the g.f. for maps with $1 \leq d_{\bullet} \leq d$

A formula for F_{n}^{\bullet}

$d_{\bullet} \leq d \Leftrightarrow\left\{d_{\bullet}=0\right.$ or $\left.1 \leq d_{\bullet} \leq d\right\} \quad F_{n}^{\bullet}(d)=F_{n}^{\bullet}+F_{n}^{\bullet}(1 \rightarrow d)$ where $F_{n}^{\bullet}(1 \rightarrow d)$ is the g.f. for maps with $1 \leq d \bullet \leq d$

$$
F_{n}^{\bullet}(1 \rightarrow d)=\frac{1}{t_{\bullet}} \sum_{j \geq 1} Z_{d, d+2 j}^{\bullet \bullet+}(2 n) \sum_{k \geq 1} g_{k} Z_{d+2 j, d-1}^{\bullet \bullet}(2 k-1)
$$

$$
F_{n}^{\bullet}=Z_{d, d}^{\bullet \bullet+}(2 n)-\frac{1}{t_{\bullet}} \sum_{j \geq 1} Z_{d, d+2 j}^{\bullet \bullet+}(2 n) \sum_{k \geq 1} g_{k} Z_{d+2 j, d-1}^{\bullet \bullet}(2 k-1)
$$

- The I.h.s. is independent of d (so the r.h.s. is a conserved quantity)
- We can shift path heights by d and send $d \rightarrow \infty$, which allows us to express F_{n}^{\bullet} in terms of B and W via

$$
F_{n}^{\bullet}=\mathbb{Z}_{0,0}^{\bullet \bullet+}(2 n)-\frac{1}{t_{\bullet}} \sum_{j \geq 1} \mathbb{Z}_{0,2 j}^{\bullet \bullet+}(2 n) \sum_{k \geq 1} g_{k} \mathbb{Z}_{2 j,-1}^{\bullet \circ}(2 k-1)
$$

and, after simple manipulations, we arrive at

$$
F_{n}^{\bullet}=\sum_{q \geq 0} \alpha_{q} \hat{\mathbb{Z}}_{0,0}^{\bullet \bullet+}(2 n+2 q) \quad \alpha_{q}=\frac{B}{t_{\bullet}}\left(\delta_{q, 0}-\sum_{k \geq q+1} g_{k} L_{0}(2 k-2 q-2)\right)
$$

