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Planar bicolored maps

@ Rooted planar map
— canonical drawing in the plane
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Planar bicolored maps

@ Rooted planar map
— canonical drawing in the plane
@ bicolored in black and white
— the map is bipartite (all faces of
even degree)

black-rooted (resp. white-rooted)
— if the root vertex is black (resp.
white)
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Planar bicolored maps

@ Rooted planar map
— canonical drawing in the plane
@ bicolored in black and white
— the map is bipartite (all faces of
even degree)

black-rooted (resp. white-rooted)
— if the root vertex is black (resp.
white)
@ with a boundary of length 2n
— the external face is of degree 2n
here 2n = 6
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Planar bicolored maps

@ Rooted planar map
— canonical drawing in the plane
@ bicolored in black and white
— the map is bipartite (all faces of
even degree)

black-rooted (resp. white-rooted)
— if the root vertex is black (resp.
white)

@ with a boundary of length 2n
— the external face is of degree 2n

M? the set of black-rooted bicolored
maps with a boundary of length 2n
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“Bivariate” generating function

weight t, per black vertex
t, per white vertex
+ a standard control on the degree of
the faces:
weight g per face of degree 2k

Fptetoig1,92,--.) = 1 > w(M)
Mems,

'U)(M) _ tféblack vert.to#white vert.

x I g1
ol 5degree(F)
faces F

v

NB: By convention, no weight for the external face & no weight for the
root vertex

The g.f. for black-rooted bicolored maps is G* =te > g Fon J

n>1
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The two-point function

Pointed black-rooted map = black rooted map with an extra marked
vertex of arbitrary (black or white) color

The distance-dependent two-point function

Def: G*(d) is the g.f. of pointed black-rooted maps whose black (resp.
white) extremities of the root edge are at distance d (resp. d — 1) from
the pointed vertex
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There is a direct connection between G*(d) and F ]

AN S

Emmanuel Guitter (IPhT, CEA Saclay) Bivariate two-point function (ltzykson conf., june 10-12, 2015)



Pointed rooted maps

@ Pointed black-rooted map with a boundary of length 2n
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Pointed rooted maps
@ Pointed black-rooted map with a boundary of length 2n

e M? (d) set of these maps such that the distance do from the root
vertex to the pointed vertex satisfies

de < d

and all boundary vertices are at distance > d, from the pointed vertex
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Pointed rooted maps
@ Pointed black-rooted map with a boundary of length 2n

e M? (d) set of these maps such that the distance do from the root
vertex to the pointed vertex satisfies

de < d
and all boundary vertices are at distance > d, from the pointed vertex

e Call F3(d) = y > mw(M)
eMe (d)
with now the convention that the
pointed vertex receives no weight

(and no longer the root vertex)
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Pointed rooted maps
@ Pointed black-rooted map with a boundary of length 2n

e M? (d) set of these maps such that the distance do from the root
vertex to the pointed vertex satisfies

de < d
and all boundary vertices are at distance > d, from the pointed vertex

e Call F3(d) = y > mw(M)
eMe (d)
with now the convention that the
pointed vertex receives no weight

(and no longer the root vertex)

@ d = 0 < pointed vertex = root vertex
M = M?(0) and E3 = F2(0)
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Enumeration by slice decomposition

o Take M € M?(d) and draw the leftmost geodesic (= shortest) path
from a boundary vertex to the pointed vertex
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Enumeration by slice decomposition

o Take M € M?(d) and draw the leftmost geodesic (= shortest) path
from a boundary vertex to the pointed vertex

@ Repeat the construction for all boundary vertices
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Enumeration by slice decomposition

o Take M € M?(d) and draw the leftmost geodesic (= shortest) path
from a boundary vertex to the pointed vertex

@ Repeat the construction for all boundary vertices

@ Label each boundary vertex by i = distance to © +(d — d).
- for each sequence i—1 — %, the geodesic follows the boundary
- each sequence ¢ — 7—1 gives rise to a new domain = “i-slice”
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distance +(d — d.)

path —s __

Path of length 2n made of +1 steps, with total height change 0, each
“descending step” i — i—1 equipped with an i-slice

Emmanuel Guitter (IPhT, CEA Saclay) Bivariate two-point function (ltzykson conf., june 10-12, 2015)



de = max{—(i—d)

slices

de < d < "height” ¢ of an i-slice such that £ <1
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Slices

black-rooted i-slice white-rooted i-slice

apex apex

unique geodesic

1<e<q
(-1

geodesic

7 i—1 1 1—1
- left boundary = geodesic, of length ¢, 1</ <
- right boundary = unique geodesic, of length /—1

NB: 7 is only an upper bound on the length of the left boundary of the slice
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Call B; = Bj(te,to,{gr}r>1) (resp. W;) the g.f. for black-rooted (resp.
white-rooted) i-slices
For a proper counting, put no weights on the right boundary

no weights
on the right
boundary
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B; and W; are solution of the (non linear) system

—to+zgk i,0— 1 —1 {B }J>1 {W }]>1)

k>1

Wi=to+ ) grZi51(2k — 1,{B;}j>1, {Wj}j>1)
k>1

for i > 1 with B0=W0=O.J
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where Z70 1 (2k — 1,{B;};>1,{W;};>1)
denotes the g.f. for paths of length

2k — 1 from black height i to white
height @ — 1 with weights B; (resp. W)
attached to each descending step

j — j — 1 starting at a black (resp. a

white) vertex

B; and W; are solution of the (non linear) system

_t'+zgk 10— 1 -1 {B }]>17{W }]>1)

k>1

Wi=to+ ) grZi51(2k = 1,{B;}jz1, {Wj}j>1)
k>1

for i > 1 with By = Wy = 0.
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— two independent systems:
- one relating W; with odd 7 and B;
with even

- one relating W; with even ¢ and B;
with odd ¢

— how to solve them ?

B; and W; are solution of the (non linear) system

Bi=te+ Y gk 25512k — 1,{B;}j>1,{W;};1)
k>1

Wi=to+ ) grZi51(2k — 1,{B;}j>1, {Wj}j>1)
k>1

for i > 1 with B():WOZO.J
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We can shift all the path heights by i (i.e. consider paths from 0 to —1)
provided we attach weights B, ; and W;,; to j — j — 1 steps

Sending i — oo, B; and W; tend to B and W respectively, which are slice
g.f. with no bound on the boundary length, determined by the (closed)
system

B=te+Y gZ§ (2k—1;B,W)
k>1

W =to+ Y guZi® (2k—1;B,W) .
k>1

The path g.f. Z now involve homogeneous weights: B (resp. W) attached
to any descending step starting with a black (resp. a white) vertex
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Back to F¢

The slice decomposition allows us to relate B;, W; and Fy:

o We have
Fa(d) = Z3% (20, {Bi}iz1, {Wi}iz1)

where Zc'l°d+(2n, {Bi}i>1,{Wi}i>1) denotes the g.f. for paths of
length 2n from black height d to black height d, remaining above d,
with weight B; (resp. W};) attached to any descending step i — i — 1
starting at a black (resp. a white) vertex
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Back to F¢

The slice decomposition allows us to relate B;, W; and Fy:
o We have
Fa(d) = Z3% (20, {Bi}iz1, {Wi}iz1)
@ In particular
Fr: = Z(;,.o+(2n» {Bi}izly {Wi}iZI)
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Back to F¢

The slice decomposition allows us to relate B;, W; and Fy:
o We have
Fa(d) = Z3% (20, {Bi}iz1, {Wi}iz1)
@ In particular
Fr: = Z(;,.o+(2n» {Bi}izla {Wi}iZI)

and therefore

1
o n __
> Frat = 7
n>0 1—2z
1—2 Bs
1 Wy
T |

NB: involves only W; with odd 7 and B; with even i
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Slice generating functions can be obtained from £

Indeed, a standard result of the continued fraction theory (here of
Stieltjes-type) says that

h(o)/h(l)l h(l) h’(O)l
Boi =~/ —av Woisi =~/ —ov
/D, W0,/ 4,

in terms of the Hankel determinants

h( ) — det( n+m)0<n m<i h( ) = det( n+m+1)0<n m<i

To compute the other parity, simply exchange t, and ¢,
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Back to the two-point function
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Back to the two-point function

distance
/-1

st

G*(0)
By =te
d bt ;1 (5€,evento + 5@,0ddto)
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Back to the two-point function

distance
/-1

st

G*(0)
By =te
d bt ;1 (5€,evento + 5@,0ddto)

The twopoint function can be obtained from the slice g.f.
G'(d) = to(B(; — B(;_l), U = (&i,evento + 6d,oddt0) }
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The recipe

@ Take a known formula for F;

@ Compute the Hankel determinants to get a formula for By (and W)

@ Deduce G*(d)
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@ An expression for F?

F? can be expressed in terms of B and W vial

Fr=3 aq25:0+(2n+2q) ag = g ((5%0 — > grkLo(2k —2q — 2))
=y k>q+1

involving a linear combination of g.f. for paths of length
2n,2n +2,2n+4,---. Here, in Z, we decided to distribute the weights in
a more symmetric way by setting b = v/B and w = VW

_ VB
bi )B

w =W

can be proved slice decomposition - see the good authors
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- and introduced

A~

Li(2n) = 27594 (2n)

~

Ly (2n) = Zj; 91 (2n))
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@ Computing the Hankel determinant
Start with hz(l):
hgl) = 0<det<‘(F7;+m+1) where F} | = Z an'?0+(2n +2m + 2+ 2q)

2m+1 2q 2n+1

VST
3?51,26—1(2(1)

25:0+(2m+2”+2+2q Z ZZBO;; 1 2m+1)A§Zi1’2£_1(2q)Z§Z+1 o(2n+1)
k=1 (=1
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@ Computing the Hankel determinant
Start with hz(l):
hgl) = 0<det<‘(F7:+m+1) where F} | = Z an'?0+(2n +2m + 2+ 2q)

2m+1 2q 2n+1

VST
3/?1,2@-1(2(1)

B = Wit (pw) 1<kdf<ti+1(zan;;tL%_lmq))
T a
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Reflection principle (to preserve the weights b and w, make a vertical

reflection of the last part)
2q

s
ASEE,%A(QQ) = Lk—é(QQ)_ (e S A 4

= Ly40(2q)

20+1
O — witt(pw)*s” - b - Li(2
h; W' (BW) 2 1§k(,iz%tz‘+1(0k_e Cr+¢) where Cy, ;aq ©(29)
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From now on, assume faces with degree at most 2p + 2

=a,=0forqg>p = C) =0for k] >p

Then it is a standard result that the wanted determinant can be expressed
in terms of the roots x, of the characteristic equation

p p
1
0= Z Ckﬂfk:CO—FZCk (l‘k—Fﬁ)

k=—p k=1

(which yields 2p solutions, (z4)1<a<p and (1/z4)1<a<p), Namely

. f —(it1+a’
det mz—l—l—i—a —x, (i+1+a ))

i i+11<a,a’<p
D;= _det (Cy¢—Cle) = (—1PUFDCIT ;
! 1§k,£§i+1( b=t=Cle) = (1) P det (2% —z")
1<a,a’<p

from which h{" follows immediately

7

23 / 38
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Heuristic explanation
Kernel of (Ci—p — Ck+g)1§k,g§i+1

° ZCk—Zx(l;:ZCk_ex;Z:(), a:17-..’p
LeL YI=v4
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Heuristic explanation
Kernel of (Cr—s — Crte)1<k<i+1

OZCk Zx ch; g:l? 0 a:17-..’p

(ez L€z
0 > (Crt = Cry)ve = Crpvg— Y Crvp =) Cryvy
>1 >1 <-1 ez
provided v_, = —wy for all £. Choose:
Uéa) = $£ - x;g L>1 then Z(C’k_g - Ck+g)véa) =0

£>1
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Heuristic explanation
Kernel of (Cx—¢ — Cite)1<ke<it1

OZCk Zx ch [‘T 0 a:]_,'..’p

ez, ez
© > (Chy—Cryp)ve= 3 Cryvg— > Crvy= ) Cpgvy
>1 >1 <—1 ez
provided v_, = —wy for all £. Choose:
véa) = zf; — :Ugé {>1 then Z(C’k_g — Ck_M)véa) =0
>1
i1

e Tosatisfy Y (Cx—y — Crip)vg =0 for 1 < k <i+ 1, simply take a
=1

linear comb. of the véa) such that v;42 = viy3 = -+ = Viypy1 = 0.

A non-zero such combination exists if:

= (@)  _
=, 8l =0

In other words d; = 0= D,; =0
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However d; also vanishes whenever

e 1, = z for some a # a’ (as it implies véa) = véa,))
e 2, =1/xy for any a,d’ (as it implies véa) = —véa )) and in

particular (for a = a’) when z, = £1 (in which case véa) =0).
These cases correspond precisely to the zeros of

p
[TE:-1) T (20— 7)1 - 2e2a)
d_1= det U((,l) _ a=1 1<a<a’<p

1<a,a’<p

P
IT =@
a=1

and we must suppress them by dividing d; by d_1.
In other words D; o< d;/d_
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@ We obtain the proportionality constant by ensuring that the
(z122 -+ 2,)" term coincides on both sides
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@ We obtain the proportionality constant by ensuring that the
(z122 -+ 2,)" term coincides on both sides

det (2 i+l+a’ _ x—(i+1+a’))
p(i+1) (vi+1153,0"<p ta ‘
D; = (-1)" c,

det (29 — 25
| et (2§ —2a®)

. 7 _(itlaa’
dett Z+1+a _ (i+1+a ))

h(l) W,L_,’_l(BW) 7‘(1+1) ( 1) (,L+1)CZ+1 1<a ll/<p : :
det (2% —z,")
1<a,a’<p

)
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Computing the Hankel determinant |l
det (Z agAgy, +0(2q))

(1+ )

1% much more involved: hz( ) = = (BW) 2

)

0<k <t

A% 50(2q) = Li—e(29) —

2042

= 3 (Liye1(29) — Akyes1(29) + QAIHZH(QQ)
U)Lk+€+1(2<J) ( - w) Arre+1(29)
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Aprep1(29) =

2042 2044

= % (Lkte+2(29) — Aprer2(29))

A5 50(29) = Li—0(29) — ¢ Lye41(29) + (¢ = 1) Z Lite4m(29)(—¢)™ 2

m>2
wherecz%:@/% J
h(o) x D; = det (C’;~C ¢ —cCryprr + ( Z Chttrm(—¢)™7?)
m>2
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Heuristic argument
> Okt = ¢Chipg1 + (= 1) 3 Crpppm(—)" %) wy

>0 m>2
—/
=> Cr_pwe+ >, Cpy(—cw_y_1+ ((22 -1 > (—C)m_2w_g_m)
>0 <—1 m=2
= > Cr_pwy provided, for £ < —1
LET
¢
wp=—cw_yp_ 1+ (2=1) 3 (=)™ 2w_4_p,
m=2

which, by recursion is equivalent to

(wg+w_p—9) + c(wey1 +w_p_1) =0
Choose now: e
(a) _ a ¢ ——1
’LUZ = mxa — Ty 14 2 0

Then d; =  det wgi)a, = 0= D; =0 and, eventually
1<a,a'<p

_ d;
D;
X d_l
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We end up with

det (yazit® —zg

(i+1+a’))

- p t
A0 —(B )@(_l)p(iﬂ)cﬁl H(1+Cxa) 1<a,a’<p , :
=1 det (2% —zs%)
“= 1<a,a’<p
here ¢t Za
wher = ——
e 1+cz,

— can be proved rigorously
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Final formula

Final formulas for slice g.f.

o ’_ 5 /_1 . ’ (s / 1
det (szra 1 _ Ta (i+a )) det <,Yaxz+a — (i+a'+ ))
B Bléa,a’Sp 1<a,a’<p
2i = . / — (8 / - ’ —(3 /
det (’ya:cﬁfa 1 G )> det (xf;ra — T, (e )>
1<a,a’<p 1<a,a’<p
s (’Vag;i-i-a’—l _ m;(i-l-a’)) det <l‘i+a’+1 _ m;(i—l—a’—l—l))
W py 1Saa'<p ¢ 1<a,a’<p \" *
2i+1= — 7 i
det (xf{"a — T, (e )> det ('yaxf{"a — T4 (s )>
1<a,a’<p 1<a,a’<p
c+x
where 7, = ———%
1+cz,
v

For the other parity, change W <> B, i.e. ¢ <> 1/c, i.e. 74 <> 1/7,

@ The expression for the two-point function G*(d) follows immediately
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Example

Quadrangulations

Faces with degree 4 only: g, = dx 2

B=te+ > gel§> 1(2k—1)
k>1

W=to+ > geZ§* 1(2k—1) .
k>1
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Example

Quadrangulations

Faces with degree 4 only: g, = dx 2

B=te+ > gel§> 1(2k—1)
k>1

W=to+ > geZ§* 1(2k—1) .
k>1

B=te+B(B+2W), W =t,+W((W+2B)
Parametrization of t, and t, by B and W via

e=B(1—-B-2W), to=W(1-W —2B)
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Example

Quadrangulations

Faces with degree 4 only: g, = dx 2

Cr = Z aqu(Qq) with Qq = g <5q,0 = Z gkLo(zk —2q — 2)) }

q>0 k>q+1

Parametrization of t, and t, by B and W via

te=B(1—B—2W), to=W(1—-W —2B)
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Example

Quadrangulations

Faces with degree 4 only: g, = dx 2

q>0 k>q+1

Cr = Z aqu(Zq) with Qq = g <5q,0 = Z gkLo(zk —2q — 2)) J

B B
Qo = t_(l —B-W), o1 = T Co =ag+ar(B+W), C1 = a1vBW

Parametrization of t, and t, by B and W via

«=B(1—-B-2W), to=W(1-W —2B)
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Example

Quadrangulations

Faces with degree 4 only: g, = dx 2

p
1
OZCO-i-ZCk(JSk-l-ﬁ) }

k=1

B B
Qo = t_(l —B-W), o1 = i Co =ap+ar(B+W), C1 = a1VBW

Parametrization of t, and t, by B and W via

«=B(1—-B-2W), to=W(1-W —2B)
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Example

Quadrangulations

Faces with degree 4 only: g, = dx 2

p
1
OZCO-i-ZCk(JSk-l-ﬁ) }

k=1

0:1—2(B+W)—CW(:1:+%) c=+/B/W
B

B
Qo = t_(l —B-W), o1 = i Co =ap+ar(B+W), C1 = a1VBW

Parametrization of t, and t, by B and W via

te=B(1—B—2W), to=W(1—-W —2B)
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Example

Quadrangulations

Faces with degree 4 only: g, = dx 2

p
1
OZCO-i-ZCk(JSk-l-ﬁ) }

k=1

0:1—2(B+W)—CW(:1:+%) c=+/B/W
B

B
Qo = t_(l —B-W), o1 = i Co =ap+ar(B+W), C1 = a1VBW

Parametrization of t, and t, by B and W via

te=B(1—B—2W), to=W(1—-W —2B)

Parametrization of B and W by z and ¢ via

621‘ T

, W=
c+ 2z + 2c2x + c2? c+ 2z + 2c2x + cx?
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Example

Quadrangulations

Faces with degree 4 only: g, = dx 2

(1 o l,2i)(1 o ,y$2z‘+3) (1 o ’yx2i+1)(1 _ x2i+4)

BZi =B (1 — 71:21'+1)(1 — 1‘2i+2)7 W2i+1 = W(l — $2i+2)(1 _ ,7332i+3)
with v = fifx

Parametrization of t, and t, by B and W via
te=B(1-—B-2W), to=W({1-W —2B)

Parametrization of B and W by z and ¢ via

621‘ T

, W=
c+ 2z + 2c2x + c2? c+ 2z + 2c2x + cx?
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Example

Quadrangulations

This leads to the expansions

By = te +te(te +to) + te(2t2 + Steto 4+ 2t2) + to(5t3 + 22t2t, + 22t4t2 + 5t
By = te + te(te + 2to) + te(2t2 + tolo + 612) + to(5ta + 3Ttote + HTtet2 +
B3 = te + te(te + 2to) + te(2t2 + 10teto + 6t2) + to(5t3 + 44t2t, + 65tet> +

and

G*(1) = tolo(te 4 to) + teto (22 + Steto + 2t2) + toto(5t3 4 22121, + 22tat?
G*(2) = t2to + dt2to(te + to) 4 Dt2to(3t2 + Ttato + 3t2) 4 t2t, (563 + 221t%
G*(3) = t2t2 + t2t2(Tte + 8to) + t2t2(37t2 + O5tot, + 4Tt2) + t2t2(176t3 4 7
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Another bivariate two-point function

Consider a pointed rooted quadrangulation with a boundary of length 2n
and assign a weight ¢, or t, per vertex according to whether or not it is a
local maximum for the distance to the pointed vertex.

Call J,,(d) the corresponding g.f. with root/pointed vertex distance < d
and J,, = J,,(0).
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Another bivariate two-point function

Apply the Ambjgrn-Budd rule (inverse of Schaeffer's rule)
142 7

141 i+1 i+l 1+1
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Another bivariate two-point function

Get a general rooted map with a boundary (of half the original boundary
length)
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Another bivariate two-point function

Use the standard equivalence between general maps and quadrangulations.
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Another bivariate two-point function

Get a bicolored quadrangulation with a boundary of the same length as
the original quadrangulation
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Another bivariate two-point function
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If we now make a slice decomposition on the initial configurations
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we are led to consider (two) new types of i-slices

apex apex

unique geodesic
1<0<i
(-1

geodesic [T, te

1 lf 1—1 er 1—1
toort, @ t. i
Interest: knowing P; and Q); allows to immediately get the

distance-dependent two-point function for planar maps with a weight ¢,
per vertex and ¢, per face !
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and J,, is a sum over paths with the new weight distribution:
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The P; and Q; were computed by Ambjgrn and Budd as the solution of
the recursive system of equations

P, =te+ Pi(P_1+ Qi+ Qit1), Qi =to+ Qi(Pi—1 + P;) + PiQix1
They get

(1-9)(1 —ay ™)
(1 _ yi-l-l)(l _ ayi+2)’

(1-9)(1 = a?y'™?)
(1 _ ay“‘l)(l _ ayi+2)’

Qi=0Q P=P

where
Q=1+ Q(Q+2P), P =t,+ P(P+2Q),

while y and « are obtained by inverting the relations
y(1 —ay)’(1 - ay’)
14y +ay — 6ay? + ay? + a?y® 4 a2y*)?

ay(1—y)*(1 — a®y’)
(1+y+ay — 6ay? + ay3 + a2y + ay*)?’

te =

lo
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Instead, we can decide to use the theory for our new type of continued
fractions.
We have (see Di Francesco and Kedem 2010)

(0) 1 1) 0
Q._p._Hi—l/Hi() P__Hi—i-l/Hi()
v vt 0 1 v 1 0
PRl B/ 5,
in terms of the “Hankel’-type determinants
H = det(Fyy s _5)o<nmsi HY = det(Faym_i_1)o<nmsi

Problem: Requires F; for negative n !!

For finite continued fractions, the F; for n negative are related to the F,
for n positive (see Di Francesco Kedem) and this fixes the P; and Q;.
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Instead, we can decide to use the theory for our new type of continued
fractions.
We have (see Di Francesco and Kedem 2010)

P, = :
Hi(O) Hi(i)l Hz‘(l)

Qi—F = 0
7Y

in terms of the “Hankel’-type determinants

H = det(Fy, ni_o)o<nmsi HY = det(Fp ni_1)o<nmsi

v

Problem: Requires F; for negative n !!

For infinite continued fractions, the F7 for n negative are free !!

The knowledge of F)y for n > 0 is not sufficient to deduce P; and Q.
Indeed, expanding the continued fraction as a power series to equate its
coefficients with the F;, we immediately see that the system is
underdeterminated.
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Instead, we can decide to use the theory for our new type of continued
fractions.
We have (see Di Francesco and Kedem 2010)

0 1 1 0
Qi— P = Hi(—)l/Hi( : p— Hi(+)1/Hi( :
PRl B/ 5,
in terms of the “Hankel’-type determinants
H” = det(Fp m_i—2)osnmsi HY = det(Fp ni_1)o<nmsi

Problem: Requires F; for negative n !!

Still, we may decide to use the same relation as for the finite continued
fraction case to define the F; for n negative from the Fj, for n positive
(why this choice 77).

We then get a particular solution for P; and (); and it precisely reproduces
the Ambjgrn-Budd formulas.
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Thank You
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An integrable system with three colors

System of equations for bicolored quadrangulations:
Bi =te+ Bi(Wi—1 + Bi + Wiy1), Wi =to+ Wi(Bi—1 +W; + Biy1)
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An integrable system with three colors
System of equations for bicolored quadrangulations:
B; =te + Bi(Wi—1 + Bi + Wiy1), Wi =to + Wi(Bi—1 + Wi + Bit1)

Solution:
21+1)(1 2i+4)

(1 _ $2i)(1 _ ,YxZHS) (
2it1 sigay Vet =W 2i+2 2i+3
(1 =y 1) (1 — 22+2) (1- w”)(l Y2 t3)
where B and W are parametrizations of ¢, and ¢, via
te=B—B(B+2W), to=W —W(W +2B)

while v = £2 with ¢ = \/B/W and 0 = 1 - 2(B+ W) —VBW (2 + 1),
i.e. ¢ and x are themselves parametrizations of B and W via

(3233' xT

, W=
c+ 2z + 2c2x + ca? c+ 2z + 2c2x + ca?

By =B
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An integrable system with three colors

System of equations for tricolored triangulations:
Ti=te+T;(Ui—1+Viy1), Ui=tot+Ui(Vi-1+Tit1), Vi=tet+Vi(Ti-1+Uit1)
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An integrable system with three colors
System of equations for tricolored triangulations:
Ti=te+T;(Ui—14+Vig1), Ui=to+U;(Vic1+T541), Vi=to+Vi(Ti—14+Uis1)
Solution:
(1-2%)(1—az® ) (=242 7) (1 a?+9)
(1—az3it1) (1 —g3i+3)’ (1—z3+3) (1— 2315 /)
(1—04:63i+1)(1—:53i+5/’7)
Vsip1 =V 3it2 3it+4
(L=a3+2 /7)) (1—az?*?)
where T, U and V are parametrizations of t,,t, and ¢, via
te =T —-T(U+YV) to=U—-UWV+T) to=V —-V(T+U)
while o and ~y are expressed in terms of three quantities ¢,d and x via
d+cz+ z? 1+dz+ca?
a:1+dx+cac2 7= c+x+daz?
while ¢, d and = are themselves parametrizations of T, U and V via
cdx dx cx

T3, =T Usiyo =U

= leroitdn) U T exadten) VT {dxen)(tdo)

39 / 38
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A formula for F;
de<de {d=00r1<d,<d} F*d)=F+Fl—d

where F3(1 — d) is the g.f. for maps with 1 < d, < d
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A formula for F;
de<de {d=00r1<d,<d} F*d)=F+Fl—d

where F3(1 — d) is the g.f. for maps with 1 < d, < d

Fa(l—d)= L X 235, (20) X k280,01 (2k — 1)
j>1 E>1
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Fp =233 (2 Z Z3%0;(2n) ngZc;in,d—l(2k -1)
]>1 k>1

- The l.h.s. is independent of d (so the r.h.s. is a conserved quantity)
- We can shift path heights by d and send d — oo, which allows us to
express Fy in terms of B and W via

Fr=1Z5% (2 ZZB’;; (2n) Y " grZ35 1 (2k — 1)
j>1 k>1

and, after simple manipulations, we arrive at

q>0 k>q+1

Z an.o+(2n+2q) Qg = g ((5,1,0 = Z gkL0(2/~c —2q — 2)) J
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