Probing GPDs in Ultraperipheral Collisions

Jakub Wagner

Theoretical Physics Department National Center for Nuclear Research Warsaw, Poland

GDR PH-QCD Annual meeting 15-18 December 2014, Palaiseau

Deep Inelastic Scattering $e p \rightarrow e X$

In the Björken limit i.e. when the photon virtality $Q^2=-q^2$ and the squared hadronic c.m. energy $(p+q)^2$ become large, with the ratio $x_B=\frac{Q^2}{2p\cdot q}$ fixed, the cross section factorizes into a hard partonic subprocess calculable in the perturbation theory, and a parton distributions.

- Parton distributions encode the distribution of longitudinal momentum and polarization carried by quarks, antiquarks and gluons within fast moving hadron
- PDFs don't provide infomation about how partons are distributed in the transverse plane and ...
- about how important is the orbital angular momentum in making up the total spin of the nucleon.
- Recently growing interest in the exclusive scattering processes, which
 may shed some light on these issues through the generalized parton
 distributions (GPDs) .

DVCS

The simplest and best known process is Deeply Virtual Compton Scattering: $e\,p\,
ightarrow\,e\,p\,\gamma$

Factorization into GPDs and perturbative coefficient function - on the level of amplitude.

DIS: $\sigma = PDF \otimes partonic cross section$

DVCS: $\mathcal{M} = GPD \otimes partonic amplitude$

GPDs

- GPDs enter factorization theorems for hard exclusive reactions (DVCS, deeply virtual meson production, TCS etc.), in a similar manner as PDFs enter factorization theorems for inclusive (DIS, etc.)
- ▶ GPDs are functions of x, t, ξ, μ_F^2
- ► First moment of GPDs enters the Ji's sum rule for the angular momentum carried by partons in the nucleon,
- ▶ 2+1 imaging of nucleon,
- Deeply Virtual Compton Scattering (DVCS) is a golden channel for GPDs extraction,

DVCS - what else, and why

- ▶ Difficult: exclusivity, 3 variables, GPD enter through convolutions, only GPD(ξ, ξ, t) accesible through DVCS at LO!
- universality,
- ▶ flavour separation,

Meson production - additional information (and difficulties),

So, in addition to spacelike DVCS ...

Figure : Deeply Virtual Compton Scattering (DVCS) : $lN \to l'N'\gamma$

Figure : Timelike Compton Scattering (TCS): $\gamma N \to l^+ l^- N'$

Why TCS:

- universality of the GPDs
- another source for GPDs extraction M.Boër talk yesterday, and M.Boër&M.Guidal: arXiv:1412.2036
- spacelike-timelike crossing,
- first step towards DDCVS,

General Compton Scattering:

$$\gamma^*(q_{in})N(p) \to \gamma^*(q_{out})N'(p')$$

variables, describing the processes of interest in this generalized Bjorken limit, are the scaling variable ξ and skewness $\eta > 0$:

$$\xi = -\frac{q_{out}^2 + q_{in}^2}{q_{out}^2 - q_{in}^2} \eta \,, \quad \eta = \frac{q_{out}^2 - q_{in}^2}{(p + p') \cdot (q_{in} + q_{out})} \,.$$

- $\qquad \text{DDVCS:} \quad q_{in}^2 < 0 \,, \quad q_{out}^2 > 0 \,, \qquad \eta \neq \xi$
- $\qquad \text{DVCS:} \qquad q_{in}^2 < 0 \,, \qquad q_{out}^2 = 0 \,, \qquad \eta = \xi > 0 \label{eq:power_state}$

Coefficient functions and Compton Form Factors

CFFs are the GPD dependent quantities which enter the amplitudes. They are defined through relations:

$$\mathcal{A}^{\mu\nu}(\xi,\eta,t) = -e^2 \frac{1}{(P+P')^+} \, \bar{u}(P') \left[g_T^{\mu\nu} \left(\mathcal{H}(\xi,\eta,t) \, \gamma^+ + \mathcal{E}(\xi,\eta,t) \, \frac{i\sigma^{+\rho} \Delta_{\rho}}{2M} \right) + i\epsilon_T^{\mu\nu} \left(\widetilde{\mathcal{H}}(\xi,\eta,t) \, \gamma^+ \gamma_5 + \widetilde{\mathcal{E}}(\xi,\eta,t) \, \frac{\Delta^+ \gamma_5}{2M} \right) \right] u(P) \,,$$

,where:

$$\begin{split} & \mathcal{H}(\boldsymbol{\xi},\boldsymbol{\eta},\boldsymbol{t}) & = & + \int_{-1}^{1} dx \left(\sum_{q} T^{q}(x,\boldsymbol{\xi},\boldsymbol{\eta}) H^{q}(x,\boldsymbol{\eta},t) + T^{g}(x,\boldsymbol{\xi},\boldsymbol{\eta}) H^{g}(x,\boldsymbol{\eta},t) \right) \\ & \widetilde{\mathcal{H}}(\boldsymbol{\xi},\boldsymbol{\eta},\boldsymbol{t}) & = & - \int_{-1}^{1} dx \left(\sum_{q} \widetilde{T}^{q}(x,\boldsymbol{\xi},\boldsymbol{\eta}) \widetilde{H}^{q}(x,\boldsymbol{\eta},t) + \widetilde{T}^{g}(x,\boldsymbol{\xi},\boldsymbol{\eta}) \widetilde{H}^{g}(x,\boldsymbol{\eta},t) \right). \end{split}$$

LO and NLO Coefficient functions

DVCS vs TCS at LO

$$D^{VCS}T^{q} = -e_{q}^{2} \frac{1}{x+\eta-i\varepsilon} - (x \to -x) = (^{TCS}T^{q})^{*}$$

$$D^{VCS}\tilde{T}^{q} = -e_{q}^{2} \frac{1}{x+\eta-i\varepsilon} + (x \to -x) = -(^{TCS}\tilde{T}^{q})^{*}$$

$$D^{VCS}Re(\mathcal{H}) \sim P \int \frac{1}{x\pm \eta} H^{q}(x,\eta,t) , \quad D^{VCS}Im(\mathcal{H}) \sim i\pi H^{q}(\pm \eta,\eta,t)$$

DDVCS at LO

$$^{DDVCS}T^{q} = -e_{q}^{2} \frac{1}{x + \xi - i\varepsilon} - (x \to -x)$$

$$^{DDVCS}Re(\mathcal{H}) \sim P \int \frac{1}{x \pm \xi} H^{q}(x, \eta, t), \quad ^{DVCS}Im(\mathcal{H}) \sim i\pi H^{q}(\pm \xi, \eta, t)$$

But this is only true at LO. At NLO all GPDs hidden in the convolutions.

▶ DVCS vs TCS at NLO

The results for DVCS and TCS cases are simply related:

$$^{TCS}T(x,\eta) = \pm \left(^{DVCS}T(x,\xi=\eta) + i\pi \cdot C_{coll}(x,\xi=\eta)\right)^* ,$$

D.Mueller, B.Pire, L.Szymanowski, J.Wagner, Phys.Rev.D86.

Compton Form Factors - DVCS - $Re(\mathcal{H})$

Figure : The real part of the *spacelike* Compton Form Factor $\mathcal{H}(\xi)$ multiplied by $\xi,$ as a function of ξ in the double distribution model based on Kroll-Goloskokov (upper left) and MSTW08 (upper right) parametrizations, for $\mu_F^2=Q^2=4\,\mathrm{GeV}^2$ and $t=-0.1\,\mathrm{GeV}^2,$ at the Born order (dotted line), including the NLO quark corrections (dashed line) and including both quark and gluon NLO corrections (solid line).

Compton Form Factors - DVCS - $Im(\mathcal{H})$

Figure : The imaginary part of the *spacelike* Compton Form Factor $\mathcal{H}(\xi)$ multiplied by ξ , as a function of ξ in the double distribution model based on Kroll-Goloskokov (upper left) and MSTW08 (upper right) parametrizations, for $\mu_F^2 = Q^2 = 4\,\mathrm{GeV}^2$ and $t = -0.1\,\mathrm{GeV}^2$, at the Born order (dotted line), including the NLO quark corrections (dashed line) and including both quark and gluon NLO corrections (solid line).

Few words about factorization scale (PRELIMINARY).

Figure : Left column - $Re(\mathcal{H}(\xi))$, right column - $Im(\mathcal{H}(\xi))$, $Q^2=4\,\mathrm{GeV}^2$, $\mu_F^2=Q^2,Q^2/2,Q^2/3$

Few words about factorization scale (PRELIMINARY).

Figure : Full NLO result. Left column - $\xi \cdot Re(\mathcal{H}(\xi))$, right column - $\xi \cdot Im(\mathcal{H}(\xi))$, $Q^2=4\,\mathrm{GeV}^2,\,\mu_F^2=Q^2,Q^2/2,Q^2/3$

Figure : Left column - $\xi \cdot Re(\mathcal{H}(\xi))$, right column - $\xi \cdot Im(\mathcal{H}(\xi))$. Dotted - LO with $Q^2 = mu_F^2$, Solid NLO with $Q^2 = \mu_F^2/2$.

Compton Form Factors - TCS - $Re(\mathcal{H})$

Figure : The real part of the *timelike* Compton Form Factor ${\mathcal H}$ multiplied by $\eta,$ as a function of η in the double distribution model based on Kroll-Goloskokov (upper left) and MSTW08 (upper right) parametrizations, for $\mu_F^2=Q^2=4~{\rm GeV}^2$ and $t=-0.1~{\rm GeV}^2.$ Below the ratios of the NLO correction to LO result of the corresponding models.

Compton Form Factors - TCS - $Im(\mathcal{H})$

Figure : The imaginary part of the *timelike* Compton Form Factor ${\mathcal H}$ multiplied by $\eta,$ as a function of η in the double distribution model based on Kroll-Goloskokov (upper left) and MSTW08 (upper right) parametrizations, for $\mu_F^2=Q^2=4~{\rm GeV}^2$ and $t=-0.1~{\rm GeV}^2.$ Below the ratios of the NLO correction to LO result of the corresponding models.

Few words about factorization scale (PRELIMINARY).

Figure : Left column - $Re(\mathcal{H}(\xi))$, right column - $Im(\mathcal{H}(\xi))$, $Q^2 = 4 \, \mathrm{GeV}^2$, $\mu_F^2 = Q^2, Q^2/2, Q^2/3$

Few words about factorization scale (PRELIMINARY).

Figure : Full NLO result. Left column - $\xi \cdot Re(\mathcal{H}(\xi))$, right column - $\xi \cdot Im(\mathcal{H}(\xi))$, $Q^2=4\,\mathrm{GeV}^2$, $\mu_F^2=Q^2,Q^2/2,Q^2/3$

TCS and Bethe-Heitler contribution to exclusive lepton pair photoproduction.

Figure : The Feynman diagram for the Bethe-Heitler amplitude.

Berger, Diehl, Pire, 2002

Figure : Kinematical variables and coordinate axes in the γp and $\ell^+\ell^-$ c.m. frames.

Interference

B-H dominant for not very high energies:

Figure : LO (dotted) and NLO (solid) TCS and Bethe-Heitler (dash-dotted) contributions to the cross section as a function of t for $Q^2=\mu^2=4\,\mathrm{GeV}^2$ integrated over $\theta\in(\pi/4;3\pi/4)$ and over $\phi\in(0;2\pi)$ for $E_\gamma=10\,\mathrm{GeV}(\eta\approx0.11)$.

The interference part of the cross-section for $\gamma p \to \ell^+ \ell^- p$ with unpolarized protons and photons is given by:

$$\frac{d\sigma_{INT}}{dQ'^2 dt d\cos\theta d\varphi} \sim \cos\varphi \cdot \operatorname{Re} \mathcal{H}(\eta, t)$$

Linear in GPD's, odd under exchange of the l^+ and l^- momenta \Rightarrow angular distribution of lepton pairs is a good tool to study interference term.

JLAB 6 GeV data

Rafayel Paremuzyan PhD thesis

Figure : e^+e^- invariant mass distribution vs quasi-real photon energy. For TCS analysis $M(e^+e^-)>1.1\,{\rm GeV}$ and $s_{\gamma p}>4.6\,{\rm GeV^2}$ regions are chosen. Left graph represents e1-6 data set, right one is from e1f data set.

Theory vs experiment

R.Paremuzyan and V.Guzey:

$$R = \frac{\int d\phi \cos\phi \int d\theta \,d\sigma}{\int d\phi \int d\theta \,d\sigma}$$

Figure : Thoeretical prediction of the ratio ${\cal R}$ for various GPDs models. Data points after combining both e1-6 and e1f data sets.

Jefferson Lab PAC 39 Proposal

Timelike Compton Scattering and J/ψ photoproduction on the proton in e^+e^- pair production with CLAS12 at 11 GeV

```
I. Albayrak, <sup>1</sup> V. Burkert, <sup>2</sup> E. Chudakov, <sup>2</sup> N. Dashyan, <sup>3</sup> C. Desnault, <sup>4</sup> N. Gevorgyan, <sup>3</sup> Y. Ghandilyan, <sup>3</sup> B. Guegan, <sup>4</sup> M. Guidal*, <sup>4</sup> V. Guzey, <sup>2</sup>, <sup>5</sup> K. Hicks, <sup>6</sup> T. Horn*, <sup>1</sup> C. Hyde, <sup>7</sup> Y. Ilieva, <sup>8</sup> H. Jo, <sup>4</sup> P. Khetarpal, <sup>9</sup> F.J. Klein, <sup>1</sup> V. Kubarovsky, <sup>2</sup> A. Marti, <sup>4</sup> C. Munoz Camacho, <sup>4</sup> P. Nadel-Turonski*, <sup>1</sup>, <sup>2</sup> S. Niccolai, <sup>4</sup> R. Paremuzyan, <sup>4</sup>, <sup>3</sup> B. Pire, <sup>10</sup> F. Sabatié, <sup>11</sup> C. Salgado, <sup>12</sup> P. Schweitzer, <sup>13</sup> A. Simonyan, <sup>3</sup> D. Sokhan, <sup>4</sup> S. Stepanyan, <sup>5</sup> L. Szymanowski, <sup>14</sup> H. Voskanyan, <sup>3</sup> J. Wagner, <sup>14</sup> C. Weiss, <sup>2</sup> N. Zachariou, <sup>8</sup> and the CLAS Collaboration. <sup>1</sup> Catholic University of America, Washington, D.C. 20064 <sup>2</sup> Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 <sup>3</sup> Yerevan Physics Institute, 375036 Yerevan, Armenia <sup>4</sup> Institut de Physique Nucleaire d'Orsay, INSP3, BP 1, 91406 Orsay, France <sup>5</sup> Hampton University, Hampton, Virginia 23668 <sup>6</sup> Ohio University, Athens, Ohio 45701
```

Approved experiment at Hall B, and LOI for Hall A.

Ultraperipheral collisions

$$\sigma^{AB} = \int dk_A \frac{dn^A}{dk_A} \sigma^{\gamma B}(W_A(k_A)) + \int dk_B \frac{dn^B}{dk_B} \sigma^{\gamma A}(W_B(k_B))$$

where $k_{A,B} = \frac{1}{2} x_{A,B} \sqrt{s}$.

BH cross section at UPC

Figure : (a) The BH cross section integrated over $\theta \in [\pi/4, 3\pi/4]$, $\varphi \in [0, 2\pi]$, $Q'^2 \in [4.5, 5.5] \, \mathrm{GeV}^2$, $|t| \in [0.05, 0.25] \, \mathrm{GeV}^2$, as a function of γp c.m. energy squared s. (b) σ_{TCS} as a function of γp c.m. energy squared s, for GRVGJR2008 NLO parametrizations, for different factorization scales $\mu_F^2 = 4$ (dotted), 5 (dashed), 6 (solid) GeV^2 .

For very high energies σ_{TCS} calculated with $\mu_F^2=6\,{\rm GeV^2}$ is much bigger then with $\mu_F^2=4\,{\rm GeV^2}$. Also predictions obtained using LO and NLO GRVGJR2008 PDFs differ significantly.

Figure : The differential cross sections (solid lines) for $t=-0.2\,\mathrm{GeV^2},~Q'^2=5\,\mathrm{GeV^2}$ and integrated over $\theta=[\pi/4,3\pi/4]$, as a function of φ , for $s=10^7\,\mathrm{GeV^2}$ (a), $s=10^5\,\mathrm{GeV^2}$ (b), $s=10^3\,\mathrm{GeV^2}$ (c) with $\mu_F^2=5\,\mathrm{GeV^2}$. We also display the Compton (dotted), Bethe-Heitler (dash-dotted) and Interference (dashed) contributions.

UPC Rate estimates

The pure Bethe - Heitler contribution to σ_{pp} , integrated over $\theta = [\pi/4, 3\pi/4]$, $\phi = [0, 2\pi]$, $t = [-0.05\,\mathrm{GeV^2}, -0.25\,\mathrm{GeV^2}]$, $Q'^2 = [4.5\,\mathrm{GeV^2}, 5.5\,\mathrm{GeV^2}]$, and photon energies $k = [20, 900]\,\mathrm{GeV}$ gives:

$$\sigma_{pp}^{BH}=2.9 \mathrm{pb}$$
 .

The Compton contribution (calculated with NLO GRVGJR2008 PDFs, and $\mu_F^2=5\,{\rm GeV^2}$) gives:

$$\sigma_{pp}^{TCS}=1.9 \mathrm{pb}$$
 .

LHC: rate $\sim 10^5$ events/year with nominal luminosity ($10^{34}\,{\rm cm}^{-2}{\rm s}^{-1})$

UPC in the fixed target mode - AFTER@LHC

work in progress with J.-P. Lansberg and L.Szymanowski

- $\gamma_{
 m lab}^{
 m beam} \simeq 7000 \; (E_p = 7000 \; {
 m GeV})$
- $ightharpoonup E_{\gamma}^{
 m max} \simeq \gamma_{
 m lab}^{
 m beam} imes 30 \; {
 m MeV} \; (1/(R_{
 m Pb}+R_p) \simeq 30 \; {
 m MeV})$
- ightharpoons $\sqrt{s_{\gamma p}}=\sqrt{2m_pE_{\gamma}}$ up to 20 GeV
- ▶ No pile-up

System	target thickness	$\sqrt{s_{NN}}$	\mathcal{L}_{AB}^{a}	E_A^{lab}	E_B^{lab}	$\gamma^{\text{c.m.s.}}$	$\gamma^{A \leftrightarrow B}$	$\frac{\hbar c}{R_A + R_B}$	$E_{\gamma \text{ max}}^{A/B \text{ rest}}$	$\sqrt{s_{\gamma_N}^{\max}}$	E ^{c.m.s.} _{γ max}	$\sqrt{s_{\gamma \gamma}^{\text{max}}}$
	(cm)	(GeV)	$(pb^{-1}yr^{-1})$	(GeV)	(GeV)	$\left(\frac{\sqrt{s_{NN}}}{2m_N}\right)$	$\left(\frac{s_{NN}}{2m_N^2}\right)$	(MeV)	(GeV)	(GeV)	(GeV)	(GeV)
AFTER												
pp	100	115	2.0×10^{4}	7000	m_N	61.2	7450	140	1050	44	8.5	17
pPb	1	115	1.6×10^{2}	7000	m_N	61.2	7450	26	190	19	1.6	3.2
pd	100	115	2.4×10^{4}	7000	m_N	61.2	7450	70	520	31	4.3	8.5
PbPb	1	72	$7. \times 10^{-3}$	2760	m_N	38.3	2940	14	40	9	0.5	1.0
Pbp	100	72	1.1	2760	m_N	38.3	2940	26	76	12	1.0	2.0
Arp	100	77	1.1	3150	m_N	40.9	3350	41	140	16	1.7	3.4
Op	100	81	1.1	3500	m_N	43.1	3720	52	190	19	2.2	4.5
RHIC												
pp	N/A	200	1.2×10^{1}	100	100	106.4	22600	140	3150	77	15	30
AuAu	N/A	200	2.8×10^{-3}	100	100	106.4	22600	14	320	24	1.5	3.0
SPS												
InIn		17		160	m_N	9.22	170	17	2.9	2.5	0.15	0.31
PbPb		17		160	m_N	9.22	170	14	2.4	2.1	0.13	0.26

^aFor Arp and Op luminosity with AFTER, we conservatively assumed the same extracted flux of Ar and O as for Pb, i.e. 2×10^5 Pb/s.

Attempt at CERN-SPS: "In-In Ultra Peripheral Collisions in NA60" by P. Ramalhete (PhD), 2009

A closer look at the photon flux (as fct of the final-state kin.)

A closer look at the photon flux (as fct of the final-state kink), on p

 $y_{\rm Lab} = y_{\rm cms} + 4.8(4.3)$ for 7 TeV (2.76 TeV) beam

 $\Rightarrow Pb\mathbf{p}$ is preferred with an acceptance $y_{\mathrm{Lab}} \in [2:5]$

Timelike Compton Scattering vs. Bethe Heitler pair production

▶ Bethe Heitler $(\gamma p \rightarrow \ell \ell p)$

$$\frac{d\sigma_{BH}^{\gamma p}}{dQ^2 dt \, d(\cos \theta) \, d\varphi} \approx \frac{\alpha_{em}^3}{2\pi s^2 - t} \, \frac{1 + \cos^2 \theta}{\sin^2 \theta} \, \times \left[\left(F_1^2 - \frac{t}{4M^2} F_2^2 \right) \frac{2}{\tau^2} \, \frac{\Delta_T^2}{-t} \, + (F_1 + F_2)^2 \, \right]$$

Interference with Timelike Compton Scattering
$$\frac{d\sigma_{INT}^{\gamma p}}{dQ^2 dt \, d(\cos\theta) \, d\varphi} \approx \\ -\frac{\alpha_{SM}^2}{d\pi s^2} \frac{\sqrt{t_0 - t}}{-tQ} \frac{\sqrt{1 - \eta^2}}{\eta} \left(\cos\varphi \, \frac{1 + \cos^2\theta}{\sin\theta}\right) \operatorname{Re} \left[F_1 \mathcal{H} - \eta(F_1 + F_2) \, \tilde{\mathcal{H}} - \frac{t}{4M^2} \, F_2 \, \mathcal{E}\right]$$
 where $\{\mathcal{H}, \tilde{\mathcal{H}}, \mathcal{E}\}(\eta, t) = \int_{-t}^{t} dx \, T(x, \eta) \, \{\mathcal{H}, \tilde{\mathcal{H}}, \mathcal{E}\}(x, \eta, t)$

Timelike Compton Scattering vs. Bethe Heitler pair production

▶ Bethe Heitler $(\gamma p \rightarrow \ell \ell p)$ [Should coincide with EPA $\otimes \gamma \gamma \rightarrow \ell^+ \ell^-$]

$$\frac{d\sigma_{BH}^{\gamma p}}{dQ^{2} dt d(\cos \theta) d\varphi} \approx \frac{\sigma_{em}^{3}}{2\pi s^{2}} \frac{1}{-t} \frac{1 + \cos^{2} \theta}{\sin^{2} \theta} \times \left[\left(F_{1}^{2} - \frac{t}{4M^{2}} F_{2}^{2} \right) \frac{2}{\tau^{2}} \frac{\Delta_{T}^{2}}{-t} + (F_{1} + F_{2})^{2} \right]$$

► Interference with Timelike Compton Scattering

$$\frac{d\sigma_{INT}^{\gamma p}}{dQ^2 dt d(\cos \theta) \, d\varphi} \approx \frac{\gamma}{-\frac{\alpha_{em}^3}{4\pi s^2} \, \frac{\sqrt{t_0 - t}}{-tQ}} \, \frac{\sqrt{1 - \eta^2}}{\eta} \, \left(\cos \varphi \, \frac{1 + \cos^2 \theta}{\sin \theta}\right) \operatorname{Re} \, \left[F_1 \mathcal{H} - \eta(F_1 + F_2) \, \tilde{\mathcal{H}} - \frac{t}{4M^2} \, F_2 \, \mathcal{E}\right]$$
 where $\{\mathcal{H}, \tilde{\mathcal{H}}, \mathcal{E}\}(\eta, t) = \int_{-1}^{1} \, dx \, T(x, \eta) \, \{H, \tilde{H}, E\}(x, \eta, t)$

Timelike Compton Scattering vs. Bethe Heitler pair production

▶ Bethe Heitler $(\gamma p \rightarrow \ell \ell p)$ [Should coincide with EPA $\otimes \gamma \gamma \rightarrow \ell^+ \ell^-$]

$$\frac{d\sigma_{BH}^{1P}}{dQ^2 dt d(\cos \theta) d\varphi} \approx \frac{\alpha_{em}^3}{2\pi s^2} \frac{1}{-t} \frac{1 + \cos^2 \theta}{\sin^2 \theta} \times \left[\left(F_1^2 - \frac{t}{4M^2} F_2^2 \right) \frac{2}{\tau^2} \frac{\Delta_T^2}{-t} + (F_1 + F_2)^2 \right]$$

Interference with Timelike Compton Scattering
$$\frac{d\sigma_{INT}^{\gamma p}}{dQ^2 \, dt \, d(\cos\theta) \, d\varphi} \approx \\ -\frac{\alpha_{em}^3}{4\pi s^2} \, \frac{\sqrt{t_0 - t}}{-tQ} \, \frac{\sqrt{1 - \eta^2}}{\eta} \, \left(\cos\varphi \, \frac{1 + \cos^2\theta}{\sin\theta}\right) \operatorname{Re} \, \left[F_1 \mathcal{H} - \eta(F_1 + F_2) \, \tilde{\mathcal{H}} - \frac{t}{4M^2} \, F_2 \, \mathcal{E}\right]$$
 where $\{\mathcal{H}, \tilde{\mathcal{H}}, \mathcal{E}\}(\eta, t) = \int_{-1}^{1} \, dx \, T(x, \eta) \, \{H, \tilde{H}, E\}(x, \eta, t)$

First results for $\sigma^{p\mathrm{Pb}}$ and $\sigma^{\mathrm{Pb}p}$

Gluon GPDs in the UPC production of heavy mesons

Work in progress with D.Yu.Ivanov and L.Szymanowski

Figure 1: Kinematics of heavy vector meson photoproduction.

D. Yu. Ivanov , A. Schafer , L. Szymanowski and G. Krasnikov - Eur.Phys.J. C34 (2004) 297-316

The amplitude ${\mathcal M}$ is given by factorization formula:

$$\mathcal{M} \sim \left(\frac{\langle O_1 \rangle_V}{m^3}\right)^{1/2} \int_{-1}^1 dx \left[T_g(x,\xi) F^g(x,\xi,t) + T_q(x,\xi) F^{q,S}(x,\xi,t) \right],$$

$$F^{q,S}(x,\xi,t) = \sum_{q=u,d,s} F^q(x,\xi,t).$$

where m is a pole mass of heavy quark, $\langle O_1 \rangle_V$ is given by NRQCD through leptonic meson decay rate.

Hard scattering kernels

$$T_g(x,\xi) = \frac{\xi}{(x-\xi+i\varepsilon)(x+\xi-i\varepsilon)} \mathcal{A}_g\left(\frac{x-\xi+i\varepsilon}{2\xi}\right),$$
$$T_q(x,\xi) = \mathcal{A}_q\left(\frac{x-\xi+i\varepsilon}{2\xi}\right).$$

► LO

$${\cal A}_g^{(0)}(y)=lpha_S\,,$$
 In the first paper it was : $~lpha_S(1+\epsilon)$ ${\cal A}_q^{(0)}(y)=0\,.$

NLO $T_q(x,\xi)$ - unchanged, and in $T_q(x,\xi)$ one has to correct:

$$\left(\log\frac{4m^2}{\mu_F^2}-1\right)\to \left(\log\frac{4m^2}{\mu_F^2}\right)$$

Erratum is being written, but phenomenological consequences unchanged.

Photoproduction amplitude and cross section - LO

Figure : (left) Imaginary part of the amplitude $\mathcal M$ and (right) photoproduction cross section as a function of $W=\sqrt{s_{\gamma p}}$ for $\mu_F^2=M_{J/\psi}^2\times\{0.5,1,2\}.$

Photoproduction amplitude and cross section - LO and NLO.

Figure : Photoproduction cross section as a function of $W=\sqrt{s_{\gamma p}}$ for $\mu_F^2=M_{J/\psi}^2\times\{0.5,1,2\}$ - LO and NLO

Photoproduction cross section

NLO/LO for large W:

$$\sim \frac{\alpha_S(\mu_R)N_c}{\pi} \ln\left(\frac{1}{\xi}\right) \ln\left(\frac{\frac{1}{4}M_V^2}{\mu_F^2}\right)$$

What to do ??? (PMS??, BLM??, resummation?,...?)

Figure : Photoproduction cross section as a function of $W=\sqrt{s_{\gamma p}}$ for $\mu_F^2=M_{J/\psi}^2\times\{0.5,1,2\}$ - LO and NLO. Thick lines for LO and NLO for $\mu_F^2=1/4M_{J/\psi}^2$.

UPC cross section

Cross section for Ultraperipheral p-Pb collision in the EPA, $\sqrt{s}=5~{\rm TeV}$ as a function of y.

(left) LO and NLO $\mu_F^2=M_{J/\psi}^2\times\{0.5,1,2\}.$ (right) LO and NLO for $\mu_F^2=1/4M_{J/\psi}^2.$

Summary

- GDPs enter factorization theorems for hard exclusive reactions (DVCS, deeply virtual meson production etc.), in a similar manner as PDFs enter factorization theorem for DIS - Ji's sum rule, "tomographic" 3D images
- DVCS is a golden channel, a lot of new experiments planned to measure DVCS - JLAB 12, COMPASS, EIC(?)
- ,but we want to descibe other exclusve processes TCS, double DVCS, DVMP, photoproduction of heavy mesons...
- TCS already measured at JLAB 6 GeV, but much richer and more interesting kinematical region available after upgrade to 12 GeV, maybe possible at COMPASS.
- Ultraperipheral collisions at hadron colliders opens a new way to measure GPDs,
- \blacktriangleright NLO corrections very important, also important for GPD extraction at $\xi \neq x.$
- ▶ Situation for Υ should be better higher factorization scale, and ξ not that small (comparing to J/Ψ).