Some surprises in $\mathrm{e}^{+} \mathrm{e}^{-}$-> Hadrons

Baryon Timelike Form Factors close to threshold Non Breit-Wigner Charmonium Lineshape

Annual Meeting of the GRD PH-QCD

December $15^{\text {th }}-17^{\text {th }}, 2014$, Paris

Outline

- Charged Baryon cross section at threshold:
> Jump at threshold (Coulomb Enhancement)
> Unexpected $\mathrm{G}\left(4 \mathrm{M}^{2}{ }_{\mathrm{B}}\right) \sim 1$ (?)
> Unexpected flat cross section above threshold (no Sommerfeld Resumm?)
> Unexpected analyticity violation at threshold (?!)
D Neutral Baryon cross section at threshold:
> Unexpected jump at threshold (Coulomb at quark level?) ?!
- Charmonium Lineshape:
> Imaginary Decay Width
> A charmonium model for non Breit-Wigner lineshape
> A proposal for PANDA

Cross sections and analyticity

Time-like: had. helicity $=\left\{\begin{array}{l}1 \Rightarrow\left|G_{E}\right| \\ 0 \Rightarrow\left|G_{M}\right|\end{array} \quad \quad G_{E}\left(4 M_{\mathcal{B}}^{2}\right)=G_{M}\left(4 M_{\mathcal{B}}^{2}\right)\right.$

$$
\text { e } \left.e^{\mathcal{B}} \cdot \frac{\text { Elastic scattering }}{d \sigma} \frac{\alpha^{2} E_{e}^{\prime} \cos ^{2} \frac{\theta}{2}}{d \Omega}=\frac{E_{e}^{3} \sin ^{4} \frac{\theta}{2}}{4 \theta_{E}^{2}}\left[G_{E}^{2}-\tau\left(1+2(1-\tau) \tan ^{2} \frac{\theta}{2}\right) G_{M}^{2}\right] \frac{1}{1-\tau}\right] \tau=\frac{q^{2}}{4 M_{\mathcal{B}}^{2}}
$$

$$
e^{e^{-}}=e^{\theta+} \cdot \frac{\text { Annihilation }}{\left.\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta C}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right] \right\rvert\, \beta=\sqrt{1-\frac{1}{\tau}}}
$$

The Coulomb Factor

Coulomb effects predominant at threshold

Strong interactions: short range, while Coulomb long range: Coulomb acts on hadrons and pointlike Coulomb should be applied

Sommerfeld Enhancement and Resummation Factors

Coulomb Factor \mathcal{C} for S-wave only:

Partial wave FF: $\quad G_{S}=\frac{2 G_{M} \sqrt{q^{2} / 4 M^{2}}+G_{E}}{3} \quad G_{D}=\frac{G_{M} \sqrt{q^{2} / 4 M^{2}}-G_{E}}{3}$

- Cross section:

$$
\sigma\left(q^{2}\right)=2 \pi \alpha^{2} \beta \frac{4 M^{2}}{\left(q^{2}\right)^{2}}\left[\mathcal{C}\left|G_{S}\left(q^{2}\right)\right|^{2}+2\left|G_{D}\left(q^{2}\right)\right|^{2}\right]
$$

$$
\mathcal{C}=\mathcal{E} \times \mathcal{R}
$$Enhancement factor: $\mathcal{E}=\pi \alpha / \beta$

Step at threshold: $\quad \sigma\left(4 M^{2}\right)=\frac{\pi^{2} \alpha^{3}}{2 M^{2}} \frac{\beta}{\beta}\left|G_{S}\left(4 M^{2}\right)\right|^{2}=0.85\left|G_{S}\left(4 M^{2}\right)\right|^{2} \mathrm{nb}$

- Resummation factor:

$$
\mathcal{R}=1 /[1-\exp (-\pi \alpha / \beta)]
$$

Few MeV above threshold:

$$
\mathcal{C} \simeq 1 \Rightarrow \sigma\left(q^{2}\right) \propto \beta\left|G_{S}\left(q^{2}\right)\right|^{2}
$$

BABAR 2013: $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow p \bar{p}:$ jump at threshold

ISR: non vanishing ε at threshold BaBar: indeed jump at threshold but ε anomalous as well as the cross section
Λ_{c} : can check it at threshold

Proton form factor at $q^{2}=4 M_{p}^{2}$

Extrapolating the flat cross section (neglecting for a while the very first point, waiting for Λ_{c})

$$
\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)\left(4 M_{p}^{2}\right)=0.83 \pm 0.05 \mathrm{nb} \quad B A B A R
$$

$$
\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)\left(4 M_{p}^{2}\right)=\frac{\pi^{2} \alpha^{3}}{2 M_{p}^{2}} \frac{\beta}{\beta^{\prime}}\left|G^{p}\left(4 M_{p}^{2}\right)\right|^{2}=0.85\left|G^{p}\left(4 M_{p}^{2}\right)\right|^{2} \mathrm{nb}
$$

$$
\left|G^{p}\left(4 M_{p}^{2}\right)\right| \equiv 1
$$

$$
\left|G^{p}\left(4 M_{p}^{2}\right)\right|=0.99 \pm 0.04 \text { (stat) } \pm 0.03 \text { (syst) }
$$

Proton form factor at $q^{2}=4 M_{p}^{2}$

$$
\left|G^{p}\left(4 M_{p}^{2}\right)\right| \equiv 1
$$

At $q^{2}=4 M_{p}^{2}$ protons behave

 as pointlike fermions!Sommerfeld Resummation Factor
Needed?

BABAR: $\left|G_{\text {eif }}^{P}\right|$ with and without resummation [PRD73,01200]

Sommerfeld pointlike R implies a rising cross section, while it is flat Hence $G_{\text {eff }}$ sharp decrease is an artefact (just the inverse of R)? No narrow resonance below threshold ?

An explanation: $\alpha_{\mathrm{em}}->\alpha_{\mathrm{s}}$ (many gluons exchange, not only photons)?

Neutral Baryon cross sections non zero at threshold unlike the expectation

Cross section should vanish at threshold, due to vanishing phase space (cancelled by Coulomb enhancement factor if the baryon is charged).

Baryons at threshold do not behave as expected

$\mathbf{R}\left(\mathrm{q}^{2}\right)=\mathrm{GE}\left(\mathrm{q}^{2}\right) / \mathrm{GM}\left(\mathrm{q}^{2}\right)$ from space to timelike

Uncontested assumption: $\mathbf{R}\left(\mathbf{4}^{\mathbf{2}}\right)=\mathbf{1}$, but !!

$R\left(q^{2}\right)$ in the complex plane

Analyticity Violation in $\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{B}$ B ?

December $16^{\text {th }}, 2014$, Paris

Why to waste your time

- Always postulated that in $\mathrm{e}^{+} \mathrm{e}^{-}->$Baryon Antibaryon at threshold : angular distribution is isotropic, due to FF analiticity
- Exactly at threshold in the c.m. difficult in the case of $\mathrm{e}^{+} \mathrm{e}^{-}->p \bar{p}$
$>$ PS 170 by means of $p \bar{p}->\mathrm{e}^{+} \mathrm{e}^{-}$(atomic uncert.-> normalization)
> BaBar by means of ISR (limited in statistics)
- SND $\mathrm{e}^{+} \mathrm{e}^{-->} n n$ (in principle closer to threshold than $p p$)
- Heavy baryons weak decay $->$ feasible at threshold (BESIII) !
- $\Lambda \bar{\Lambda}$
(BESIII: anomalous at threshold)
- $\Lambda_{c} \overline{\Lambda_{c}} \quad$ (BESIII tested $\mathrm{JP}^{\mathrm{P}}=1 / 2^{+}$)

BaBar and BESIII present results

BESIII Λ_{c} and BaBar $p \bar{p}$ statistics not yet enough, But, together, a trend is pointed out (a baryon common feature? Quantitatively not necessarily the same)

BaBar: $\quad W=1877-1950 \mathrm{MeV}$

$$
\beta=0.20
$$

VERY PRELIMINARY

$\pi \alpha$
Coulomb
dominance

Why it should be isotropic : $\mathrm{G}_{\mathrm{E}}\left(4 \mathrm{M}^{2} \Lambda c\right)=\mathrm{G}_{\mathrm{M}}\left(4 \mathrm{M}^{2} \Lambda c\right)$

- $J_{\mu} \sim F_{D} \gamma_{\mu}+F_{P} i \sigma_{\mu \nu} q_{v} /\left(2 M_{B}\right)$
- (lowest order QED : $\mathrm{F}_{\mathrm{D}}=1, \mathrm{~F}_{\mathrm{P}}=0$)
- Time-like: Outgoing Baryon spin antiparallel: G_{E} Outgoing Baryon spin parallel: G_{M}
- $\mathbf{G}_{\mathbf{E}}=\mathbf{F}_{\mathrm{D}}+\mathbf{F}_{\mathbf{P}} / \tau, \quad \tau=\left(\mathbf{2} \mathbf{M}_{\mathbf{B}}\right)^{\mathbf{2}} / \mathbf{Q}^{\mathbf{2}}$ (time-like $\mathrm{Q}^{2}>0$) $G_{M}=F_{D}+F_{P}$
- $d \sigma / d \cos \theta=\pi \alpha^{2} /\left(2 M_{B}{ }^{2}\right) \beta C_{0}\left[\left|G_{M}\right|^{2}\left(1+\cos ^{2} \theta\right)+\tau\left|G_{E}\right|^{2} \sin ^{2} \theta\right]$
- Standard understanding: at threshold ($\tau=1$):
- $G_{E}=G_{M}=F_{D}+F_{P}$
- Isotropy. S wave only

Why it could be anisotropic : $G_{E}\left(4 M_{\Lambda c}\right) \neq G_{M}\left(4 M_{\Lambda c}\right)$

- Assume $G_{E}\left(4 M_{\Lambda c}\right) \neq G_{M}\left(4 M_{\Lambda c}\right)$, always possible to define F_{D} and F_{P} so that $G_{E}=F_{D}+F_{P} / \tau, G_{M}=F_{D}+F_{P}$
- But F_{D} and F_{P} no more analytic (continous) through the threshold
- $\mathrm{F}_{\mathrm{D}}=\left(\mathrm{G}_{\mathrm{M}}-\mathrm{G}_{\mathrm{E}}\right) /(\tau-1)$
- $\mathrm{F}_{\mathrm{P}}=\left(\tau \mathrm{G}_{\mathrm{E}}-\mathrm{G}_{\mathrm{M}}\right) /(\tau-1)$
- F_{D} and F_{P} not analytic equivalent to $G_{E}\left(4 M_{\Lambda c}\right) \neq G_{M}\left(4 M_{\Lambda c}\right)$,
- Coulomb interactions not analytic at threshold:

```
|G}\mp@subsup{\mathbf{S}}{}{\mathrm{ Coulomb }}\mp@subsup{|}{}{2}~\pi\alpha/
```


More data expected soon from BESIII

at neutral and charged baryon threshold
in particular at the $\Lambda_{c} \bar{\Lambda}_{c}$ threshold
(jump + almost pointlike FF + flat above + anisotropy ?)

Imaginary Charmonium Decay Widths ?

Vector Quarkonium Decay Mechanisms

(a) $e^{+} e^{-} \rightarrow \mathrm{J} / \psi \rightarrow$ hadrons via strong mechanism (b) via em mechanism
(c) non-resonant $e^{+} e^{-} \rightarrow$ hadrons via a virtual photon.
pQCD regime: all amplitudes real (apart BW resonance behaviour), while data are as if there is an additional (i) in front of the BW

J/ $\Psi \quad$ Vector + Pseudoscalar SU3 and SU3 Breaking Amplitudes

Use reduced amplitudes $B=B_{0} / P^{*} 3$

Process $J / \psi \rightarrow$	Amplitude
$\rho^{+} \pi^{-}, \rho^{0} \pi^{0}, \rho^{-} \pi^{+}$	$g+e$
$K^{*+} K^{-}, K^{*-} K^{+}$	$g(1-s)+e$
$K^{* 0} \bar{K}^{0}, \bar{K}^{* 0} K^{0}$	$g(1-s)-2 e$
$\omega \eta$	$(g+e) X_{\eta}+\sqrt{2} r g\left(\sqrt{2} X_{\eta}+Y_{\eta}\right)$
$\omega \eta^{\prime}$	$(g+e) X_{\eta^{\prime}}+\sqrt{2} r g\left(\sqrt{2} X_{\eta},+Y_{\eta^{\prime}}\right)$
$\phi \eta$	$(g(1-2 s)-2 e) Y_{\eta}+r g\left(\sqrt{2} X_{\eta}+Y_{\eta}\right)$
$\phi \eta^{\prime}$	$(g(1-2 s)-2 e) Y_{\eta},+r g\left(\sqrt{2} X_{\eta^{\prime}}+Y_{\eta^{\prime}}\right)$
$\rho^{0} \eta$	$3 e X_{\eta}$
$\rho^{0} \eta^{\prime}$	$3 e X_{\eta}^{\prime}$
$\omega \pi^{0}$	$3 e$
$\phi \pi^{0}$	0

J/ Ψ
 Vector + Pseudoscalar

Parameter		Fit
SU_{3} strong Amplitude	g	7.22 ± 0.38
SU_{3} breaking strange	s	0.18 ± 0.04
SU_{3} breaking DOZI	r	-0.04 ± 0.02
E.M. Amplitude	e	0.75 ± 0.04
Phase	f	81.51 ± 6.75

Vector + Pseudoscalar Decay

Decay	Amplitude	PDGX104	FitX104	$\Delta \chi^{2}$
$\rho^{0} \pi^{0}$	$g \mathrm{e}^{\mathrm{iq}}+\mathrm{e}$	169.0 ± 15.0	133.00	1.13
$\mathrm{K}^{*}+\mathrm{K}^{-}$	$\mathrm{g}(1-\mathrm{s}) \mathrm{e}^{\mathrm{ib}}+\mathrm{e}$	51.2 ± 3.0	51.5	0.01
$\mathrm{K}^{*} \mathrm{~K}^{0}$	$\mathrm{g}(1-\mathrm{s}) \mathrm{e}^{\text {ip }}-2 \mathrm{e}$	43.9 ± 3.1	48.5	0.48
$\omega \eta$	$(g X+d) e^{i \phi}+e X$	17.4 ± 2.0	18.5	0.06
$\phi \eta$	$(g(1-2 s) Y+d) e^{i \phi}-2 e Y$	7.5 ± 0.8	3.9	4.02
$\rho \eta$	3 e	1.9 ± 0.2	2.2	0.30
$\omega \pi$	3 e	4.5 ± 0.5	4.1	0.11
$\omega \eta^{\prime}$	$\left(g X^{\prime}+d^{\prime}\right) e^{\text {i¢ }}+e X^{\prime}$	7.0 ± 7.0	11.9	0.10
$\phi \eta^{\prime}$	$\left(\mathrm{g}(1-2 \mathrm{~s}) \mathrm{Y}^{\prime}+\mathrm{d}^{\prime}\right) \mathrm{e}^{\mathrm{id}-2 e Y^{\prime}}$	4.0 ± 0.7	6.1	1.87
$\rho \eta$	3 eX	1.1 ± 0.2	1.1	0.04

Pseudoscalar + Pseudoscalar Decay

\square It is possible to avoid $\pi \pi$ and complications from s quark by means of KK BR's and $\left|\mathrm{E}^{\mathrm{KK}}\right|$ only

- $\mathrm{B}^{+-}=|\mathrm{S}|^{2}+\left|\mathrm{E}^{+-}\right|^{2}+2|S|\left|\mathrm{E}^{+-}\right| \cos \Phi$

$$
B^{S L}=|S|^{2}+\left|E^{\text {SL }}\right|^{2}-2|S|\left|E^{S L}\right| \cos \Phi
$$

$\square\left|\mathrm{E}^{+}\right|^{2}=\mathrm{B}^{\mu \mu} \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{K}^{+} \mathrm{K}^{-}\right) / \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}->\mu \mu\right)$
$\left|E^{\text {SL }}\right|^{2} \sim 0$, since
$\sigma\left(\right.$ ee $\left.->K_{S} K_{L}\right) \ll \sigma\left(e e->K^{+} K^{-}\right)$
$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{L}}\right) \sim 0.6 \mathrm{pb}$ at J/ Ψ
$\mathrm{B}^{+-} \quad=(2.37 \pm 0.31) 10^{-4} \quad \mathrm{~B}^{\mathrm{SL}}=(1.66 \pm 0.26) 10^{-4}$
$\left|\mathrm{E}^{+}\right|^{2}=(1.3 \pm 0.6) 10^{-4}$ from BaBar
$\Phi=83.7^{0} \pm 9.0^{0}$

Experimental evidences for $\Psi(3770)$ imaginary strong decay widths

$\boldsymbol{\psi}^{\prime \prime}(3770)$:

* non DDbar (small) -> throught the interfence with continuum
* For a wide resonance Φ from interference at the peak :

$$
\Phi \sim-2\left|A_{3 g}\right| / \Gamma_{\text {tot }} \sin \Phi \times \text { continuum }
$$

* CLEOc and BESIII: $\Phi \sim \mathbf{- 9 0}{ }^{\circ}$, since continuum sign

decay	continuum	$\Psi '$ (3770)	sign	
$\rho \pi$	13.1 ± 2.8	7.4 ± 1.3	-	CLEOc, PRD 73(2006)012002
$\phi \eta$	2.1 ± 1.6	4.5 ± 0.7	+	CLEOc, PRD 73(2006)012002
$p \bar{p}$	0.74 ± 0.08	0.4 ± 0.02	-	BESIII Y.Liang, Nov (2012)

Model independent (BESIII) from interference in \mathbf{q}^{2} behavior

$$
s_{\text {born }}=\left|A_{3 \gamma}+A_{E M}+A_{\text {cont }}\right|^{2}=\left|\left|A_{3 \gamma}\right| \mathrm{e}^{1 \varphi}+\left|A_{E M}+\mathrm{e}^{i \varphi} \mathrm{~A}_{\text {cont }}\right|\right|^{2}
$$

Actually $\Phi_{\text {meas }}=\Phi-d_{\text {cont }}$ and $\left|\Phi_{\text {meas }}\right|$ only is measured, since it is difficult to get the sign

In the $\mu \mu$ case full interference between $A_{E M}$ and $A_{\text {cont }}$ observed, as expected, by MARKI(1975), BESII (1995), KDER(2010)
($1 / 2 \gamma$ propagators : $\varphi^{\prime}=180^{\circ}$)
Results on $\mu \mu$ and hadronic strong/em decay will come soon, from BESIII

Open Issues related to Unitarity

\square No explanation for imaginary strong decay J/ Ψ widths has been put forward until now
$\square \mathrm{J} / \Psi$ description as a Breit Wigner might have some difficulties, dealing with imaginary decay widths
\square Optical theorem: Im $\mathrm{T}_{\mathrm{el}}=\mathrm{W} / 8 \pi \cdot \sigma_{\text {tot }}$ implies $\mathrm{Im} \mathrm{T}_{\mathrm{el}}>0$
$\square \Gamma(J / \Psi->p \bar{p})$ imaginary: $\operatorname{Im} \mathrm{T}_{\mathrm{el}}(p \bar{p}->\mathrm{J} / \Psi->p \bar{p})<0$
$\square \bar{p}$ continuum could restore unitarity, even if unrelated to $\mathrm{J} / \Psi(?)$
\square Looking for a different J/ Ψ description
$\square \sigma_{\text {el }}(p \bar{p}->\mathrm{J} / \Psi$-> hadrons) : a test of the following model

A model to explain imaginary widths

Yochiro Nambu

Quarkonium OZI breaking decay as Freund and Nambu (PRL 34(1975), 1645)

\square Quarkonium as a superposition of

- A narrow V (coupled to the virtual photon, but not directly to hadrons)
- A wide one (a glueball O) (not coupled to leptons i.e. to a virtual photon, but strongly coupled to hadrons)
f is the coupling between v and \mathcal{O}

$+$

iterated in f

Quarkonium OZI breaking decay as Freund and Nambu (PRL 34(1975), 1645)

\square Quarkonium as a superposition of V and O :

$$
\begin{aligned}
A_{\text {strong }} & =G_{e} V^{-1} \mathrm{fO}^{-1} G_{f}+G_{e} V^{-1} f O^{-1} f V^{-1} f O^{-1} G_{f}+\text { iterations } \\
& =G_{e} V^{-1} f O^{-1} G_{f} /\left(1-V^{-1} O^{-1} f^{2}\right)=G_{e} f G_{f} /\left(V O-f^{2}\right)
\end{aligned}
$$

- $\quad A_{e m}=G_{e} V^{-1} G_{l}+G_{e} V^{-1} \mathrm{fO}^{-1} \mathrm{fV}^{-1} \mathrm{G}_{\mathrm{I}}+$ iterations

$$
=G_{e} O G_{f} /\left(V O-f^{2}\right)
$$

\square An infinity of radial O recurrences (with exceptions?)
\square A similar model mainly used to study $\operatorname{Br}\left(\psi^{\prime}\right) / \operatorname{Br}(J / \psi)$ anomalies S. J. Brodsky, G. P. Lepage, S. F. Tuan, PRL 59, 621(1987) W.S. Hou, C.Y. Ko, NTUTH-97-11, 1997

Narrow V and wide glueball O superposition

P.J.Franzini, F.J.Gilman, PR D32, 237 (1985)

$$
A_{\text {strong }}=\frac{\sqrt{\Gamma_{e e}} M_{V} M_{O} f \sqrt{\Gamma_{O}}}{\left(M_{V}^{2}-W^{2}-i M_{V} \Gamma_{V}\right)\left(M_{O}^{2}-W^{2}-i M_{O} \Gamma_{O}\right)-M_{V} M_{O} f^{2}}
$$

$$
\text { assuming } \quad \Gamma_{O} \gg \Gamma_{J / \psi}, f^{2 \sim} G_{o}\left(\Gamma_{J / \psi}-G_{V}\right)
$$

$$
A_{\text {strong }} \sim \frac{(i) \sqrt{B_{e e}} M_{V} f \sqrt{B_{h}}}{M_{J / \Psi}^{2}-W^{2}-i M_{J / \Psi} \Gamma_{J / \Psi}} \quad A_{e m}=\frac{\sqrt{B_{e e}} M_{V} \Gamma_{J / \Psi} \sqrt{B_{e m}}}{M_{J / \Psi}^{2}-W^{2}-i M_{J / \Psi} \Gamma_{J / \Psi}}
$$

- The additional 90° phase is naturally achieved
$\square \mathrm{J} / \psi$ shape reproduced if: $\quad|f| \sim 0.012 \mathrm{GeV}, \mathrm{M}_{\mathrm{O}} \sim \mathrm{M}_{\mathrm{J} / \psi}, \Gamma_{\mathrm{O}} \sim 0.5 \mathrm{GeV}$
\square different only far from the J / ψ (no contradiction with BES, PR 54(1996)1221)
$\square \psi$ "(3770) decay phases agree with Nambu suggestion.
ψ ' unclear; ψ ' $->\mathrm{J} / \psi \pi \pi$ (?)

SND $\Phi \rightarrow \pi^{+} \pi^{-} \pi^{0}$

SND measured $\Phi \rightarrow \pi^{+} \pi^{-} \pi^{0}$.
ϕ interferes with ω and ω ' tails:
$\varphi \sim 180^{\circ}$ (interference dip after the Φ)

Fit SND Φ and continuum data with

$$
\begin{aligned}
f & =-0.016 \mathrm{GeV} \\
\mathrm{M}_{\mathrm{O}} & =1.34 \mathrm{GeV} \quad \text { (like } \mathrm{J} / \Psi!) \\
\Gamma_{\mathrm{O}} \sim 0.5 \mathrm{GeV} &
\end{aligned}
$$

SND data on 3T and present model prediction

BaBar $\pi^{+} \pi^{-} \pi^{0}$
 PR D 70, 072004(2004)

Masses and widths

$$
\begin{gathered}
M_{\omega^{\prime}}=(1350 \pm \mathbf{2 0} \pm \mathbf{2 0}) \mathrm{MeV} / c^{2} \\
\Gamma_{\omega^{\prime}}=(450 \pm 70 \pm \mathbf{7 0}) \mathrm{MeV} / \mathrm{c}^{2} \\
M_{\omega^{\prime \prime}}=(\mathbf{1 6 6 0} \pm \mathbf{1 0} \pm \mathbf{2}) \mathrm{MeV} / c^{2} \\
\Gamma_{\omega^{\prime \prime}}=(230 \pm 30 \pm \mathbf{2 0}) \mathrm{MeV} / c^{2}
\end{gathered}
$$

BaBar found indeed an unexpected resonance ($\omega^{\prime}, \mathrm{O}$?)
at 1.35 GeV , wide 0.45 GeV

A proposal for PANDA:

a J/ Ψ scan

A Proposal for PANDA

\square Expected $\sigma(p \bar{p}->\mathrm{J} / \Psi \rightarrow$ hadrons $) \sim 1 \mu \mathrm{~b}$ while $\sigma(p \bar{p}->$ hadrons $) \sim 70 \mathrm{mb}$
\square No J/ Ψ exclusive production evidence in present data (too small cross section $+p \bar{p}$ c.m. energy spread)

Different mechanism in inclusive or exclusive production:
> Inclusive production: direct coupling to gluons or virtual photon
> Exclusive production: hadronic -> apply FN model

A Proposal for PANDA

Contributions to $p p$-> J/ Ψ-> hadrons, according to the FN model

A Proposal for PANDA

\square According to the FN approach

$$
\sigma_{F N}=\frac{\left.B_{p}\left[\left(M_{J / \Psi}^{2}-W^{2}\right)^{2}+\left(M_{J / \Psi} \Gamma_{V}\right)^{2}\right)\right] B_{h}}{\left(M_{J / \Psi}^{2}-W^{2}\right)^{2}+\left(M_{J / \Psi} \Gamma_{J / \Psi}\right)^{2}}
$$

Taking into account that $\Gamma_{V} \ll \Gamma_{\vartheta / Y}$

\square To be compared to a Breit Wigner

$$
\sigma_{B W}=\frac{B_{p} \Gamma_{J / \Psi}^{2} B_{h}^{\mathrm{M}^{2}}{ }^{\mathrm{J} / \mathrm{Y}}}{\left(M_{J / \Psi}^{2}-W^{2}\right)^{2}+\left(M_{J / \Psi} \Gamma_{J / \Psi}\right)^{2}}
$$

A Proposal for PANDA

PANDA good inv. mass resolution: small beam energy spread and no ISR

Conclusions

$\square B \bar{B}$ cross section unexpected features at threshold:
> Jump followed by a flat behavior
> Pointlike cross section
> Analyticity violation (?)
> Jump also in the case of neutral baryon (?)
[Charmonium lineshape:
> Imaginary Decay Widths
> A model for a non Breit-Wigner charmonium lineshape
> A proposal for PANDA

Hope you acknowledge that Even if it might be not true it is well conceived (italian common saying)

