Quarkonia measurements in p-Pb and Pb-Pb collisions with ALICE

Antoine Lardeux IRFU - CEA Saclay

on behalf of the ALICE collaboration

Outline

- 1. Introduction
- 2. Quarkonia in p-Pb collisions
- 3. Quarkonia in Pb-Pb collisions
- 4. Conclusion

Why looking at quarkonia in heavy-ion collisions?

Quark gluon plasma → strongly-interacting QCD system

Q ar Q pairs are produced in the initial hard partonic collisions and $au_{Q ar Q} > au_{
m QGP}$.

Five quarkonium states from two families under study with ALICE:

Charmonia $J/\psi \quad \psi(2S)$

Bottomonia $\Upsilon(1S)$ $\Upsilon(2S)$ $\Upsilon(3S)$

1986 - Matsui & Satz: J/ψ suppression in heavy-ion collisions is a promising probe of QGP.

Heavy quarkonium states are expected to provide information on deconfinement and the QGP properties

Suppression mechanism

 $r > Debye radius \lambda_D(T) \rightarrow Dissociation$

Debye screening

An effective screening of the interquark force is induced by the high density of color charges in QGP

Different binding energy of quarkonium states → sequential suppression?

This could provide a measurement of the QGP initial temperature...

But also regeneration?

Large number of charm quarks created in central Pb-Pb collisions at LHC, $N_{cc} \approx 100$

Quarkonium production at phase boundary by statistical combinaison of uncorrelated Q and \overline{Q} quarks present in the medium

Peculiarity: low p_T production (< 3 GeV/c)

Secondary production via statistical combination thermal suppression of primary production

Charm, Energy Density

H. Satz, SaporeGravis 2013

Implication of regeneration:

- Evidence of thermalization
- Evidence of deconfinement
- Enhancement (or compensate suppression)
- Quarkonia as a QGP thermometer?

And Cold Nuclear Matter effects?

Shadowing: Modification of the Parton Distribution Functions, $f(x,Q^2)$, in the nuclei with respect to free nucleons:

$$f^N(x,Q^2) \times A \neq f^A(x,Q^2)$$

CGC: Saturation via Colour Glass Condensate

E_{loss}: Coherent parton energy loss

Nuclear absorption: Expected to be negligible at LHC (high coherence distance)

Cronin effect: Multiple parton scattering lead to p_T broadening

p-A collisions used to study CNM effects in the absence of a hot medium

What have we learned from SPS and RHIC?

Prompt J/ψ feed-down from higher charmonium states ~ 40%

Clear J/ψ suppression at SPS and RHIC energies with same magnitude!

Nuclear modification factor

$$R_{\rm AA} = \frac{N_{\rm AA}^{J/\psi}}{\langle N_{\rm coll} \rangle N_{\rm pp}^{J/\psi}}$$

= 1 → no medium effect

<1 → suppression

>1 → enhancement

At LHC energy?

Charmonia

- Abundantly produced About 200 times more J/ψ than Y(1S)
- Regeneration mechanism?

Bottomonia

- Smaller CNM effects than for charmonia (except at very Fwd/Bwd rapidity)
- Regeneration of bottomonia is much smaller than for charmonia
- No feed-down from open flavors

A Large Ion Collider Experiment (ALICE)

Quarkonia measurement down to $p_T = 0$

Rapidity in p-Pb (5.02 TeV)

$$-4.46 < y < -2.96$$

($\mu\mu$, Pb-going)
high x-Bjorken

$$2.03 < y < 3.53$$

($\mu\mu$, p-going)
low x-Bjorken

Rapidity in Pb-Pb (2.76 TeV)

$$2.5 < y < 4$$
 ($\mu\mu$)

Outline

- 1. Introduction
- 2. Quarkonia in p-Pb collisions
- 3. Quarkonia in Pb-Pb collisions
- 4. Conclusion

- Strong suppression at forward rapidity
- Similar suppression a mid- than at forward rapidity
- R_{p-Pb} is compatible with unity at backward rapidity

CEM production model at NLO, EPS09 shadowing at NLO

Fair agreement within uncertainties,

Tendency to underestimate suppression at forward rapidity

CGC [NPA 915 (2013) 1]

Disfavored

Arleo et al. [JHEP 1303 (2013) 122]

Contribution from coherent parton energy loss, With or without shadowing (EPS09)

Fair agreement over the full y-range

Ferreiro et al. [PRC 88, (2013) 047901]

Generic 2→2 production model at LO, EPS09 shadowing at LO

Fair agreement with measured R_{p-Pb} , Large nuclear absorption disfavored

Strong suppression at mid- and forward rapidity at the low p_T region $R_{\text{p-Pb}}$ increases with p_T , $\equiv 1$ for $p_T \gtrsim 5$ GeV/c

No suppression at backward rapidity: Small p_T dependence, compatible with unity

Shadowing only model describes trend of data but underestimates suppression at forward rapidity and $2.5 < p_T < 3 \text{ GeV/}c$

Coherent energy loss only does not describe the observed trends

Coherent energy loss w/ shadowing describes data at high p_T but overestimates suppression at forward rapidity and low p_T

CGC overestimates suppression at forward rapidity

Caveat:

 $Q_{\text{p-Pb}}$ stands for $R_{\text{p-Pb}}$ but it is called $Q_{\text{p-Pb}}$ to alert of possible biases in the determination of $< N_{\text{coll}}>$:

- multiplicity bias (depends on the estimator used)
- geometrical bias
- jet veto bias

Forward rapidity:

- Decrease of Q_{p-Pb} for increased event activity
- Clear trend vs p_T: stronger suppression at low-p_T

Backward rapidity:

- Increase of Q_{p-Pb} for increased event activity
- Clear trend vs p_T : stronger enhancement at high- p_T

Impact parameter dependent gluon shadowing effect? Need to understand the p_T and event-activity dependences in p-Pb

p-Pb: $\psi(2S)~vs~J/\psi$

Stronger ψ (2S) suppression than J/ψ ! (Already observed at RHIC)

Models including shadowing or/and energy loss underestimate the $\psi(2S)$ suppression - Similar prediction for both states

p-Pb: $\psi(2S)~vs~J/\psi$

Stronger ψ (2S) suppression than J/ψ ! (Already observed at RHIC)

Models including shadowing or/and energy loss underestimate the $\psi(2S)$ suppression - Similar prediction for both states

Good description by comover model with shadowing at both backward and forward rapidity

p-Pb: $\psi(2S)~vs~J/\psi$

Caveat:

 $Q_{\text{p-Pb}}$ stands for $R_{\text{p-Pb}}$ but it is called $Q_{\text{p-Pb}}$ to alert of possible biases in the determination of $\langle N_{\text{coll}} \rangle$:

- multiplicity bias (depends on the estimator used)
- geometrical bias
- jet veto bias

Backward rapidity:

- J/ψ and $\psi(2S)$ clear different behavior,
- $\psi(2S)$ is more suppressed in high multiplicity events

Forward rapidity:

- J/ψ and $\psi(2S)$ show a similar decreasing trend vs event activity

Need to understand the event-activity dependences in p-Pb

$p-Pb:\Upsilon(1S)$

- Consistent with no suppression at backward rapidity
- Indication of similar suppression than J/ψ at forward rapidity

Still missing measurement of the Y(2S) and Y(3S) with ALICE

Forward: Better agreement with E_{loss} and shadowing

Backward: Better agreement with E_{loss} only

Model comparisons suggest smaller anti-shadowing than assumed

Outline

- 1. Introduction
- 2. Quarkonia in p-Pb collisions
- 3. Quarkonia in Pb-Pb collisions
- 4. Conclusion

 J/ψ (inclusive) suppression with almost no centrality dependence for $N_{\text{part}} > 100$ for 2.5 < y < 4

Higher suppression at RHIC energy (200 GeV)

Similar J/ψ suppression at y~0 and y~3. Then a decreasing trend appears

Shadowing effects are of the same order of magnitude as the measured J/Ψ suppression except at very forward rapidity

The J/ψ suppression could be compensated by regeneration mechanisms?

 J/ψ (inclusive) suppression with almost no centrality dependence for $N_{\text{part}} > 100$ for 2.5 < y < 4

Higher suppression at RHIC energy (200 GeV)

All models including J/ψ recombination fairly reproduce the ALICE results. Large uncertainties in the calculations (shadowing, $d\sigma_{cc}/dy$)

Similar J/ψ suppression at y~0 and y~3. Then a decreasing trend appears

Shadowing effects are of the same order of magnitude as the measured J/Ψ suppression except at very forward rapidity

The J/ψ suppression could be compensated by regeneration mechanisms?

Very large difference in the J/ψ R_{AA} p_T dependence between RHIC and LHC both for central and forward results.

Very large difference in the J/ψ R_{AA} p_T dependence between RHIC and LHC both for central and forward results.

Models with large J/ψ regeneration (important at low- p_T) reproduce fairly well the results \rightarrow models slightly underestimate the measurements at low- p_T

Large $J/\psi R_{AA}$ at low- p_T fits well with a regeneration scenario

p-Pb & Pb-Pb: J/ψ

Factorize out CNM effects in the J/ψ R_{AA}

CNM evaluated as R_{p-Pb} x R_{Pb-p} (similar x-Bjorken coverage as Pb-Pb)

Assumptions: $-2 \rightarrow 1$ kinematics for J/ψ production $(g+g \rightarrow J/\psi)$

- CNM effects factorize in p-A and are dominated by shadowing

Strong suppression at high p_T due to the hot medium and increase of $S_{J/\psi}$ at low p_T

→ Observation that favors regeneration scenario in Pb-Pb

Elliptic flow (v_2)

Pressure gradients in a thermalized medium convert Initial spatial anisotropy into momentum-space anisotropy

$$\frac{dN}{d\phi} = N \left(1 + 2\mathbf{v}_2 \cos 2 \left(\phi - \psi \right) \right)$$

Strong elliptic flow observed for light particles and D mesons.

 \rightarrow Does the J/ψ inherit any of the fireball collective flow via regeneration?

Hint of non-zero $J/\psi v_2$ seen by ALICE (2.7 σ)

In agreement with regeneration mechanism

Pb-Pb: $\psi(2S)$ / J/ψ

 $\psi(2S)$ state is less bound than the J/ψ .

 \rightarrow statistical and transport models have rather different predictions for $\psi(2S)$ prod.

In most central Pb-Pb collisions, CMS measures a sizable enhancement Large uncertainties → interpretation of such effect still unclear.

More data! Wait LHC run-II ...

Pb-Pb: $\Upsilon(1S)$

Clear Y(1S) suppression, increasing from semi-peripheral to central Pb-Pb collisions

Y(1S) feed-down between 30-50%

The model underestimates the observed suppression but reproduce the centrality dependence

Stronger suppression at forward rapidity (ALICE) compare to mid-rapidity (CMS)

The model reproduces well the CMS data but underestimates the higher suppression observed at forward rapidity

Still missing measurement of the *Y*(2S) and *Y*(3S) with ALICE More data! Wait LHC run-II ...

Summary

p-Pb collisions

- Strong J/ψ suppression at mid- and forward rapidity, no suppression at backward rapidity
- Strong multiplicity dependence of J/ψ at mid- and forward rapidity
- Stronger $\psi(2S)$ suppression than J/ψ !
- Y(1S) consistent with no suppression at backward rapidity and similar suppression than J/ψ at forward

Pb-Pb collisions

- J/ψ (inclusive) suppression with almost no centrality dependence for $N_{part} > 100$ for 2.5<y < 4
- Lower suppression than at RHIC energy (200 GeV) and large difference in the p_T dependence
- Hint of non-zero $J/\psi v_2$ seen by ALICE (2.7 σ)
- Stronger Y(1S) suppression at forward than at mid-rapidity

Do quarkonia disappear sequentially (thermometer)? Regeneration mechanism?

Three arguments in favor of regeneration from J/ψ : LHC vs RHIC, low p_T less suppressed and non zero flow

Need to better understand the contribution of CNM effects in p-Pb data and extrapolate them for Pb-Pb data

More data for $\psi(2S)$ and bottomonia! Wait LHC run-II ...

Backup slides

And feed-down from higher states?

$\Upsilon(1S)$

