

Jets in QCD medium

ÉCOLE POLYTECHNIQUE

Jet quenching

 $R_{AA}(p_{\rm T}) = \frac{d\sigma^{AA}/dp_{\rm T}}{< N_{\rm coll} > d\sigma^{pp}/dp_{\rm T}}$

CMS detector & coordinate system

R_{AA} Results from PbPb Collisions

- Initial-state and final-state effects combined
- Need R_{pPb} for the interpretation of the suppression

CMS: <u>EPJC 72 (2012) 1945</u>, <u>PLB 715 (2012) 66</u>, <u>PLB 710 (2012) 256</u>, HIN-12-014, HIN-13-004, HIN-12-004, HIN-12-003

Jets in CMS

Jets in CMS

R_{AA} Results from PbPb Collisions

- Initial-state and final-state effects combined
- Need R_{pPb} for the interpretation of the suppression

CMS: <u>EPJC 72 (2012) 1945</u>, <u>PLB 715 (2012) 66</u>, <u>PLB 710 (2012) 256</u>, HIN-12-014, HIN-13-004, HIN-12-004, HIN-12-003

R_{AA} Results from PbPb Collisions

- Initial-state and final-state effects combined
- Need R_{pPb} for the interpretation of the suppression

CMS: <u>EPJC 72 (2012) 1945</u>, <u>PLB 715 (2012) 66</u>, <u>PLB 710 (2012) 256</u>, HIN-12-014, HIN-13-004, HIN-12-004, HIN-12-003

Nuclear Effects in pPb and PbPb Spectra

Challenge: pPb at a different energy than pp and pPb

Hadron and jet R_{pPb}

CMS: HIN-14-001

R_{pPb} and R_{PbPb}

Charged Particles

Anti-k_T R=0.3 Jets

CMS: <u>EPJC 72 (2012) 1945</u>, HIN-12-004, HIN-12-017, HIN-14-001

Relation to x

Modification to rapidity of jets previously observed, except,

- absolute normalization not known
- limited p_T range \rightarrow Crucial for understanding the various effects

More: b-jets

- Dramatic energy loss for jets in PbPb collisions
- Virtually no modification seen in pPb collisions
- We observe virtually no modification as a function of jet flavor

CMS PAS HIN-14-001

Summary

ÉCOLE POLYTECHNIQUE

Thanks

Comparison to other experiments

ATLAS: ATLAS-CONF-2014-029

Nuclear PDFs

François Arleo and Jean-Philippe Guillet http://lapth.cnrs.fr/npdfgenerator/

2013 pPb Luminosity

CMS Integrated Luminosity, pPb, 2013, $\sqrt{\,{\rm s}}=$ 5.02 TeV/nucleon

Particle Flow

~ 65% charged hadrons, ~ 25% photons, ~ 10 % neutral hadrons

- Using the silicon tracker (vs. HCAL) to measure charged hadrons
 - \circ Improves resolution, avoids non-linearity
 - Decreases sensitivity to the fragmentation pattern of jets
 - Used extensively in ALEPH, CMS and proposed for the ILC

POLYTECHNIOUE

Iterative Pileup Subtraction

ÉCOLE POLYTECHNIQUE