SbQ SH-QCJ

Annual Meeting of the GDR PH-QCD (2014)

"Reloj blando en el momento de su primera explosión" (1954) Salvador Dalí

SOFT PHYSICS AT THE LHC

Boris HIPPOLYTE (IPHC, Université de Strasbourg)

GDR PH-QCD Annual Meeting 2014 | École Polytechnique, Palaiseau | Monday December the 15th

OUTLINE

5PG SH-OCD

- Evolution of the system in heavy-ion collisions
 - paradigm of binary scaling in pp vs. collective effects in AA
- Soft physics (global) observables:
 - size of the system(s)
 - flavour content and hadro-chemistry
 - → intermediate p_T and "in-medium" hadronisation
 - radial flow
 - hadronic phase
- Summary

EVOLUTION OF THE SYSTEM FOR HEAVY-ION COLLISIONS

Cd۲

3

PH-QC

• Initial pre-equilibrium state

.

EVOLUTION OF THE SYSTEM FOR HEAVY-ION COLLISIONS

GdZ

3

PH-QC

Rescattering then kinetic freeze-out.

EVOLUTION OF THE SYSTEM FOR HEAVY-ION COLLISIONS

GdZ

3

FINAL STATE AND GLOBAL PROPERTIES OF THE MEDIUM

• the A-A system at the LHC is denser, larger and longer lived than at RHIC

GDR PH-QCD Annual Meeting 2014 | École Polytechnique, Palaiseau | Monday December the 15th | B. Hippolyte

۵d۲

PH-QC

FINAL STATE AND GLOBAL PROPERTIES OF THE MEDIUM

• comparison of pp and p-A collisions with multiplicity similar to peripheral A-A

"Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC" ALICE Collaboration, Phys. Lett. B739 (2014) 139 Multiplicity intervals: $\langle N_{pions} \rangle$ and $\langle N_{ch} \rangle$

	Pb–Pb data			p–Pb data			pp data			
N _{pions} ^{rec}	(Cent)	$\langle N_{\rm pions} \rangle$	$\langle N_{\rm ch} \rangle$	Fraction	$\langle N_{\rm pions} \rangle$	$\langle N_{\rm ch} \rangle$	Fraction	$\langle N_{\rm pions} \rangle$	$\langle N_{\rm ch} \rangle$	
[3,5)	-	-	-	0.10	-	-	0.23	4.0	4.6	
[5,10)	-	-	-	0.20	8.5	9.8	0.31	7.7	8.6	
[10,15)	-	-	-	0.18	15	17	0.12	13	15	
[15,20)	-	-	-	0.14	20	23	0.05	18	20	
[20,30)	17%	26	36	0.17	29	33	0.03	24	27	
[30,40)	73%	37	50	0.07	40	45	0.003	34	37	3 sy
[40,50)	70%	49	64	0.03	51	57	1×10^{-4}	44	47	
[50,70)	66%	66	84	0.01	63	71	-	-	-	
[70, 100)	60%	95	118	-	-	-	-	-	-	
[100, 150)	53%	142	172	-				_	-	
[150, 200)	48%	213	253	-	n	1 -	1.0 GeV		-	
[200, 260)	43%	276	326	-	P				-	
[260, 320)	38%	343	403	-	p_{T}	> ().16 GeV	I/c	-	
[320,400)	33%	426	498	-				'	-	
[400, 500)	28%	534	622	-	$ \eta $	< ().8		-	
[500,600)	22%	654	760	-					-	
[600,700)	18%	777	901	-	-	-	-	-	-	
[700,850)	13%	931	1076	-	-	-	-	-	-	
[850, 1050)	7.4%	1225	1413	-	-	-	-	-	-	
[1050, 2000)	2.6%	1590	1830	-	-	-	-	-	-	

PH-Q

FINAL STATE AND GLOBAL PROPERTIES OF THE MEDIUM

• comparison of pp and p-A collisions with multiplicity similar to peripheral A-A

"Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC" ALICE Collaboration, Phys. Lett. B739 (2014) 139 Run from 3-pion cumulant (OS) correlation

*R*_{inv} from 3-pion cumulant (QS) correlation function Gaussian expansion (but also exponential and Edgeworth)

GDR PH-QCD Annual Meeting 2014 | École Polytechnique, Palaiseau | Monday December the 15th | B. Hippolyte

GdZ

PH-QC

FLAVOUR CONTENT AND HADRO-CHEMISTRY

- light flavours (u, d and s)
- energy dependence of hadron ratios for pp (baseline)

- *p*_T integrated ratios measured in pp collisions
- show no significant energy dependence at the LHC

FLAVOUR CONTENT AND HADRO-CHEMISTRY

- light flavours (u, d and s)
- system dependence of hadron ratios for pp, p-Pb et Pb-Pb

- evolution as expected from statistical thermal model (GC)
- suppression from re-interaction in the hadronic phase ?

FLAVOUR CONTENT AND HADRO-CHEMISTRY

- light flavours (u, d and s)
- extraction of global parameters using statistical thermal model

- Using THERMUS v3.0 (latest version with charm, beauty and hyper-nuclei)
- "THERMUS -- A Thermal Model Package for ROOT", S. Wheaton, J. Cleymans and M. Hauer, Comput. Phys. Commun. 180 (2009) 84-106

GDR PH-QCD Annual Meeting 2014 | École Polytechnique, Palaiseau | Monday December the 15th | B. Hippolyte

- "...requires the assumption of a thermalized parton phase... (which) may be appropriately called a quark-gluon plasma." Fries *et al.*, PRC 68, 044902 (2003)
- fully compatible with an explosive system and "sudden hadronisation" ?
- ➡ validate recombination with light quarks before invoking it for heavy flavours...

۲bJ

2H-Q(

observed for light flavour (pions and protons)

ALICE Collaboration, Phys. Lett. B736 (2014) 196

- \rightarrow comparison of A-A p_T spectra with binary scaled pp ones
- → suppression in central A-A collisions at high p_T
- → harder p_T spectra in pp collisions for pions

Cd**Z**

PH-QC3

• observed for strangeness (K^{0}_{s} and Λ)

- → evolution of A-A p_T spectra as a function of centrality
- ➡ ratio: increase from radial flow... decrease compared to recombination models

• observed for strangeness (K^{0}_{s} and Λ)

ALICE Collaboration, Phys. Rev. Lett. 111 (2013) 22, 222301

- \rightarrow evolution of A-A p_T spectra as a function of centrality
- ➡ ratio: increase from radial flow... decrease compared to recombination models

IDENTIFIED PT SPECTRA AND HADRONIC RESCATTERING

Comparison with hydro models: radial flow and kinetic freeze-out temperature Tkin

purely thermal

explosive

۵d۲

PH-QC

Large radial flow in top central events: $<\beta_T> = 0.65 \pm 0.02$ (~10% higher w.r.t. RHIC) increases with centrality

 T_{kin} = 95 MeV (same as RHIC within errors) decreases with centrality

model comparisons:

- VISH2+1 (viscous hydro)
- HKM (hydro+UrQMD)
- Kraków (viscous corr., lower the effective T_{ch})
- EPOS (hydro+UrQMD)

*p*_T (GeV/*c*) GDR PH-QCD Annual Meeting 2014 | École Polytechnique, Palaiseau | Monday December the 15th | B. Hippolyte

IDENTIFIED PT SPECTRA AND HADRONIC RESCATTERING

Comparison with hydro models: radial flow and kinetic freeze-out temperature Tkin

purely thermal

explosive

GdZ

PH-QC

Large radial flow in top central events: $<\beta_T> = 0.65 \pm 0.02$ (~10% higher w.r.t. RHIC) increases with centrality

 T_{kin} = 95 MeV (same as RHIC within errors) decreases with centrality

model comparisons:

- VISH2+1 (viscous hydro)
- HKM (hydro+UrQMD)
- Kraków (viscous corr., lower the effective T_{ch})
- EPOS (hydro+UrQMD)

*p*_T (GeV/*c*)
GDR PH-QCD Annual Meeting 2014 | École Polytechnique, Palaiseau | Monday December the 15th | B. Hippolyte

IDENTIFIED PT SPECTRA AND HADRONIC RESCATTERING

Comparison with hydro models: radial flow and kinetic freeze-out temperature Tkin

purely thermal

explosive

GdZ

PH-QC

Large radial flow in top central events: $<\beta_T> = 0.65 \pm 0.02$ (~10% higher w.r.t. RHIC) increases with centrality

T_{kin} = 95 MeV (same as RHIC within errors) decreases with centrality

model comparisons:

- VISH2+1 (viscous hydro)
- HKM (hydro+UrQMD)
- Kraków (viscous corr., lower the effective T_{ch})
- EPOS (hydro+UrQMD)

➡ the more peripheral the events are, the more challenging for the models !

REFERENCE COLLIDING SYSTEM(S) AND COMPARISONS

- the shapes of p_T spectra in A-A are compared to pp collisions
 - check consistency for ranges with overlapping PID capabilities

Excellent agreement between the different measurements !

REFERENCE COLLIDING SYSTEM(S) AND COMPARISONS

- the shapes of p_T spectra in A-A are compared to pp collisions
 - check consistency for ranges with overlapping PID capabilities
 - for instance CMS and ALICE for light flavoured hadrons at very low $\ensuremath{p_{\text{T}}}$
 - minimum bias pp often used as one reference for Pb-Pb

Caution: in pp, the p_T spectra shape changes more as a function of multiplicity than as a function of colliding energy...

Cd**Z**

PH-QCJ

REFERENCE COLLIDING SYSTEM(S) AND COMPARISONS

Cd**Z**

15

PH-QC

- the shapes of p_T spectra in A-A are compared to pp collisions
 - check consistency for ranges with overlapping PID capabilities
 - for instance CMS and ALICE for light flavoured hadrons at very low $\ensuremath{p_{\text{T}}}$
 - minimum bias pp often used as one reference for Pb-Pb

Caution: in pp, the p_T spectra shape changes more as a function of multiplicity than as a function of colliding energy...

COOLING AND HADRONIC PHASE

- Dense then dilute hadronic phase (3D+1 hydro + UrQMD results)
- Systematics on radial flow and kinetic freeze-out temperature Tkin
 - blast-wave parametrisation (as seen before...with known caveats...)

STAR Collaboration, Nucl. Phys. A757 (2005) 102 J.Speltz (for the STAR Collaboration), (poster QM'05)

GdZ

PH-Q

Caution: ~10 years ago, LQCD calculations T_c ~165 MeV

COOLING AND HADRONIC PHASE

- Dense then dilute hadronic phase (3D+1 hydro + UrQMD results)
- Systematics on radial flow and kinetic freeze-out temperature Tkin
 - blast-wave parametrisation (as seen before...with known caveats...)
 - from top RHIC... to LHC energies:

<u>Cd</u>

2H-QI

C.Andrei (for the ALICE Collaboration),

18

 $K^* \tau = 4.16 \text{ fm/c}$

 $\phi \tau = 46.3 \text{ fm/c}$

HADRONIC PHASE AND RESCATTERING AT THE LHC

- suppression for K*
- thermal yields for φ ... and (hyper) nuclei

Explosive system with little (no ?) effect on resonance and (hyper) nuclei yields

SUMMARY

19

- System produced in pp, p-A and A-A at the LHC:
 - System created in A-A collisions at the LHC is denser, hotter and longer lived
 - ➡ Evolution with similarities... but also differences
 - More differential analyses needed for isolating unambiguously collective effects
 - Question: are pp (multiplicity), p-A good reference systems ?
- Flavour content and hadro-chemistry at the LHC:
 - → T_{ch} (parameter) corresponds to T_c (LQCD) and γ_s = 1 for A-A ... and p-A
 - → Strangeness enhancement still valid... but yields in p-Pb (and pp) are increasing
- Probing "in-medium" hadronisation at intermediate *p*[⊤]
 - ➡ Baryon/meson increase essentially from radial flow (recombination ?)
- Radial flow and kinetic freeze-out evolution for pp and p-A (vs energy)
 - Interpretation using Blast-wave parametrisation: cooling and flow build-up
- Hadronic phase and rescattering at the LHC
 - Explosive system with little (no ?) effect on resonance and (hyper) nuclei yields