

Longitudinal target-spin asymmetries for deeply virtual Compton scattering at CLAS

Erin Seder

: total squared momentum transfer to the nucleon

soft part described by 4 GPDs at LO

 $H, E(x, \xi, t)$

 $\tilde{H}, \tilde{E}(x,\xi,t)$

t

Soft

12/15/14 2 t

Generalized Parton Distributions

3

Accessing GPDs through DVCS

Accessing GPDs through DVCS

Accessing GPDs through DVCS

Polarized electron beam, unpolarized proton target (BSA): $\Delta \sigma_{LU} \sim \sin(\phi) \Im m\{F_1 \mathcal{H} + \frac{x_B}{2 - x_B} (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E}\} d\phi \qquad \Longrightarrow \qquad \Im m\{\mathcal{H}_p, \tilde{\mathcal{H}}_p, \mathcal{E}_p\}$

Unpolarized electron beam, longitudinally polarized proton target (TSA): $\Delta \sigma_{UL} \sim \sin(\phi) \Im m\{F_1 \tilde{\mathcal{H}} + \frac{x_B}{2 - x_B} (F_1 + F_2) (\mathcal{H} + \frac{x_B}{2} \mathcal{E}) + ...\} d\phi \qquad \Longrightarrow \qquad \Im m\{\tilde{\mathcal{H}}_p, \mathcal{H}_p\}$

Polarized electron beam, longitudinally polarized proton target (DSA): $\Delta \sigma_{LL} \sim (A + B\cos(\phi)) \Re e\{F_1 \tilde{\mathcal{H}} + \frac{x_B}{2 - x_B} (F_1 + F_2) (\mathcal{H} + \frac{x_B}{2} \mathcal{E}) + ...\} d\phi \implies \Re e\{\mathcal{H}_p, \tilde{\mathcal{H}}_p\}$

The more DVCS observables measured in the same kinematic regions = more constraints for GPD extraction.

Jefferson Lab & CLAS @ 6GeV

Previous CLAS DVCS Measurements

8

EG1-DVCS CLAS Experiment

EG1-DVCS CLAS Experiment

Polarized Target

Solid beads of ¹⁴NH₃ Kept at 1 K in a 5 T magnetic field

Continuously polarized via DNP Average proton polarization ~79%

Event Selection $(ep \rightarrow e' p' \gamma)$

11

Event Selection $(ep \rightarrow e' p' \gamma)$

"Deep Inelastic Scattering" regime:

 $Q^2 > 1 (GeV/c)^2$ Momentum transfer squared of the electron Mass of the system recoiling against $W > 2 GeV / c^2$ the scattered electron $E_{v} > 1 \, GeV \ (Q^2 >> -t)$ detected photon energy **18000 ⊢** Missing mass squared of $ep \rightarrow ep\gamma$ of events with epy detected 16000 14000 12000 10000 Large nuclear background 8000 estimate with carbon data 6000 4000 2000 -0.5 0.5 3.5 3 Missing Mass² ep->epX (GeV/c²)² ν / π

Jefferson Lab

Event Selection $(ep \rightarrow e' p' \gamma)$

 $\theta(\mathbf{y}-\mathbf{X})$ – angle between detected and expected photon

 $\Delta \varphi$ – difference in calculated φ angle 1) using e, e', p' 2) using e, e', γ

pPerp – missing (x,y) momentum of ep->epy

12/15/14

13

Nuclear Background

Kinematic Binning

π⁰ Contamination

$$ep \rightarrow ep\pi^0 \rightarrow ep\gamma\gamma$$

 $>\pi^0$ electroproduction events where 1 of the π^0 decay photons has sufficiently high energy can reconstruct to appear as a single-photon electroproduction event

≻Event selection cuts reduce but not eliminate this contamination to single-photon events

>The fraction of the epy data which are actually $ep\pi^0$ events for each polarization configuration in each kinematic bin is estimated by the correction factor:

$$Bkgr_{\pi^{0}} = \left(\frac{N_{MC}^{ep\pi^{0}(\gamma)}}{N_{MC}^{ep\pi^{0}(\gamma\gamma)}}\right) * \left(\frac{N_{DATA}^{ep\pi^{0}}}{N_{DATA}^{ep\gamma}}\right) * \left(\frac{D_{f}^{ep\pi^{0}}}{D_{f}^{ep\gamma}}\right)$$
Acceptance ratio of single detected photon π^{0} events in MC simulation

The correction factor is applied on data as:

$$N^{\downarrow\uparrow} = (1 - Bkgr_{\pi^0}^{\downarrow\uparrow}) \frac{N_{ep\gamma}^{\downarrow\uparrow}}{FC^{\downarrow\uparrow}}$$

Ratio of $ep\pi^0$ to $ep\gamma$ events in data (scaled by respective nuclear background dilution factors)

π⁰ Contamination

Proton Polarization

Through Elastic Scattering

 $A_{meas} = (P_h P_t) A_{theory}$

- ↑/↓ Electron Helicity State
 - \uparrow / \downarrow Proton Polarization State

е

Proton Polarization

SISA

12/15/14 19

Transverse Corrections

What we measure and call longitudinal asymmetry is actually, when considered from the virtual-photon perspective, a combination of longitudinal and transverse asymmetries

Applied a model-dependent correction to obtain the TSA and DSA with respect to the virtual photon direction using the relationship^[1]:

20

Systematics

Target-Spin Asymmetry

Fit function: $\frac{\alpha_{UL}\sin(\phi)}{1+\beta\cos(\phi)} \longleftarrow \frac{\Delta\sigma}{\sigma_{total}}$

Comparison with Existing World Data

The full 4-D A_{UL} (x_B , Q^2 , t, ϕ) measurements are publically available in CLAS Physics Database:

Measurement E139M1 http://clas.sinp.msu.ru/jlab/

12/15/14 24

Beam-Spin

Asymmetry $\alpha_{LU}\sin(\phi)$ Fit function: $1 + \beta \cos(\phi)$ α_{LU} $= 1.52 (GeV/c)^{2}$ 0.4 = 0.179 $\langle x_{B} \rangle = 0.255$ 0.3 0.2 0.1 0 $\langle Q^2 \rangle = 2.41 (GeV/c)^2$ 0.4 $< x_{B} > = 0.255$

Target-Spin Asymmetry $\underline{\alpha}_{UL}\sin(\phi)$ Fit function: $\overline{1 + \beta \cos(\phi)}$ $\alpha_{\rm UL}$ $<Q^2> = 1.52 (GeV/c)^2$ $\langle Q^2 \rangle = 1.97 (GeV/c)^2$ 0.4 $< x_{\rm B} > = 0.179$ $< x_{\rm B} > = 0.255$ 0.3 0.2 0.1 0 $\langle Q^2 \rangle = 2.41 (GeV/c)^2$ $\langle Q^2 \rangle = 2.6 (GeV/c)^2$ 0.4 $< x_{\rm B} > = 0.255$ $x_{n} > = 0.345$ 0.3 0.2 0.1 0 $\langle Q^2 \rangle = 3.31 (GeV/c)^2$ 0.4 🗕 🕂 🕂 $< x_{\rm B} > = 0.453$ 0.3 ••••• VGG 0.2 WWW KMM

---- GK

----- GGL

1.5

 $-t (GeV/c)^2$

0.3

0.2

0.1

0.4

0.3

0.2

0.1

0

0

 $< X_{\rm R}$

0

0.1

0

0

0.5

Compton Form Factors (CFFs)

 $A_{LU}(x_B, Q^2, t, \phi)$, $A_{UL}(x_B, Q^2, t, \phi)$, and $A_{LL}(x_B, Q^2, t, \phi)$ processed using a fitting procedure : $\Im m(\tilde{\mathcal{E}})$ set to zero, as $\Im m(\tilde{\mathcal{E}})$ is assumed to be purely real (parametrized, in the VGG model, by the pion

the values of the real and imaginary parts of the 7 other Compton Form Factors are allowed to vary within ±5 times the values predicted by the VGG model

(t-slope of $\Im m(\mathcal{H})$) > (t-slope of $\Im m(\mathcal{H})$)

pole $(1/(t - m2\pi)))$

hinting that the axial charge (linked to $\Im m(\mathcal{H})$) might be more "concentrated" in the center of the nucleon than the electric charge (linked to $\Im m(\mathcal{H})$).

[12] F.-X. Girod et al., Phys. Rev. Lett. 100, 162002 (2008). [14] S. Chen et al., Phys. Rev. Lett. 97, 072002 (2006).

Summary

➤ GPDs provide a unique tool to study the internal dynamics of the nucleon.

> Their unambiguous extraction from experimental data requires many measurements including DVCS spin observables across large regions of phase space.

➤ The eg1-dvcs experiment was the first DVCS-dedicated longitudinally polarized target experiment performed with the CLAS detector.

> The simultaneous presence of a polarized beam and longitudinally polarized target allowed extraction of 3 polarization observables: beam-spin, target- spin and double-spin asymmetries, over a wide Q^2 , x_B , and -t phase space.

➤ The measurement of the 3 DVCS observables in the same kinematic regions provides more constraints than previously available for GPD extraction.

➤ The Future: JLab12 GeV and CLAS upgrades increases the available kinematic regions essential for the continuation of the DVCS program for high precision studies of nucleon structure in the valence region.

Proton Polarization

coils wrapped around target cups very useful for relative polarization monitoring drawback: the target material closest to the coils does not receive beam non-uniformity of the polarization unknown → not used for final polarization values

0

Potentiometer

TopTarget positive