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Entanglement 

& C-theorems 

with Sinha; Casini, Huerta & Yale 



 Entanglement Entropy 

• in QFT, typically introduce a (smooth) boundary or entangling 

  surface      which divides the space into two separate regions 

• integrate out degrees of freedom in “outside” region 

• remaining dof are described by a density matrix 

A 

B 

calculate von Neumann entropy: 

• general tool; divide quantum system into two parts and use 

  entropy as measure of correlations between subsystems 



Zamolodchikov’s c-theorem (1986): 

• for unitary, Lorentz-inv. QFT’s in two dimensions, there exists 

  a positive-definite real function of the coupling constants       : 

• renormalization-group (RG) flows can seen as one-parameter 

  motion 

in the space of (renormalized) coupling constants 

with beta-functions as “velocities”  

1. monotonically decreasing along flows: 

2. “stationary” at fixed points :              : 

3. at fixed points, it equals central charge of corresponding CFT 



BECOMES 

Zamolodchikov's C-function adds a dimension to RG flows: 
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Simple consequence for any RG flow in d=2: 

Zamolodchikov's C-function adds a dimension to RG flows: 
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Entanglement & c-theorem? 

• Preskill ‘99: “Quantum information and physics: some future directions” 

QI may provide new insight into RG flows & c-theorem  

• Casini & Huerta ‘04: reformulate c-theorem for d=2 RG flows in 

    terms of entanglement entropy using unitarity, Lorentz inv. 

    and strong subaddivity inequality: 



(Holzhey, Larsen & Wilczek) 

(Casini & Huerta ‘04) 

RG flows Meet Entanglement: 

• for d=2 CFT:  
(Calabrese & Cardy) 

• c-theorem for d=2 RG flows can be established using unitarity,  

  Lorentz invariance and strong subaddivity inequality: 

isolate central charge with: 

• in general, define: 

  appears as proxy for energy scale 



(Casini & Huerta ‘04) 

RG flows Meet Entanglement: 

• interval A with endpoints e1 and e2 on some Cauchy surface 

• • A 

• by causality,      

    describes physics 

    in causal diamond 

• by unitarity, S(e1,e2) independent of details of Cauchy surface 

• by translation invariance (in vacuum), S(e1,e2) only depends on 

    proper distance between e1 and e2  



(Casini & Huerta ‘04) 

RG flows Meet Entanglement: 

• apply strong subaddivity inequality in following geometry: 

• 

• • 

• 

SSA 



RG flows Meet Entanglement: 

• define: 

• for d=2 CFT:  

(Calabrese & Cardy) 

• hence it follows that: 

(Holzhey, Larsen & Wilczek) 

• Casini & Huerta ‘04: reformulate c-theorem for d=2 RG flows in 

    terms of entanglement entropy using unitarity, Lorentz inv. 

    and strong subaddivity inequality: 
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• in 4 dimensions, have three central charges: 
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• in 4 dimensions, have three central charges: 

    -theorem:  proposed by Cardy (1988) 

• holographic field theories with Einstein gravity dual 

                                                        (Freedman et al ‘99; Giradello et al ‘98) 

• numerous nontrivial examples, eg, perturbative fixed points (Osborn ‘89), 

  SUSY gauge theories (Anselmi et al ‘98; Intriligator & Wecht ‘03) 
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• progress stalled; no proof found; . . . . 



and 

• do any of these obey a similar “c-theorem” under RG flows?    ie,  

d=2: 

d=4: 

C-theorems in higher dimensions?? 

• in 4 dimensions, have three central charges: 

    -theorem:  proposed by Cardy (1988) 

• holographic field theories with Einstein gravity dual 

                                                        (Freedman et al ‘99; Giradello et al ‘98) 

• numerous nontrivial examples, eg, perturbative fixed points (Osborn ‘89), 

  SUSY gauge theories (Anselmi et al ‘98; Intriligator & Wecht ‘03) 

where 

• progress stalled; no proof found; . . . . 

• past few years have seen a resurgence of interest and rapid progress 
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• RG flows in generalized holographic models with higher curvatures 

where 

found new holographic c-theorem: 

(RM & Sinha ‘10) 

gravitational couplings 

d = spacetime dimension of boundary theory 
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C-theorems in higher dimensions?? 

• RG flows in generalized holographic models with higher curvatures 

where 

found new holographic c-theorem: 

agrees with Cardy’s general conjecture!! 

(RM & Sinha ‘10) 

gravitational couplings 

d = spacetime dimension of boundary theory 

• precisely reproduces coefficient of A-type anomaly: 

(Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava; 

Imbimbo, Schwimmer, Theisen & Yankielowicz) 

• compare trace anomaly for CFT’s in even dimensions       (Deser & Schwimmer) 
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C-theorems in higher dimensions?? 

• RG flows in generalized holographic models with higher curvatures 

where 

found new holographic c-theorem: 

agrees with Cardy’s general conjecture!! 

(RM & Sinha ‘10) 

gravitational couplings 

d = spacetime dimension of boundary theory 

• precisely reproduces coefficient of A-type anomaly: 

(Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava; 

Imbimbo, Schwimmer, Theisen & Yankielowicz) 

• compare trace anomaly for CFT’s in even dimensions       (Deser & Schwimmer) 

What about odd d?? 



V 
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Entanglement C-theorem conjecture: 

• identify central charge with universal contribution in entanglement 

  entropy of ground state of CFT across sphere Sd-2 of radius R: 

• for RG flows connecting two fixed points 

for even d 

for odd d 

(RM & Sinha) 



Entanglement C-theorem conjecture: 
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connect to Cardy’s conjecture:              for any CFT in even d 
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Entanglement C-theorem conjecture: 

• identify central charge with universal contribution in entanglement 

  entropy of ground state of CFT across sphere Sd-2 of radius R: 

• for RG flows connecting two fixed points 

unified framework to consider c-theorem for odd or even d 

for even d 

for odd d 

connect to Cardy’s conjecture:              for any CFT in even d 

(RM & Sinha) 

behaviour discovered for holographic model but conjectured 

that result applies generally (outside of holography) 



F-theorem: 
(Jafferis, Klebanov, Pufu & Safdi) 

• examine partition function for broad classes of 3-dimensional 

  quantum field theories on three-sphere (SUSY gauge theories, 

  perturbed CFT’s & O(N) models) 

• in all examples, F= – log Z(S3)>0 and decreases along RG flows 

• coincides with entanglement c-theorem (Casini, Huerta & RM) 

conjecture: 

• also naturally generalizes to higher odd d 
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V 

V 
• conformal mapping:  
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F-theorem: 

• coincides with entanglement c-theorem (Casini, Huerta & RM) 

• consider SEE of d-dimensional CFT for sphere Sd–2 of radius R 

• conformal mapping:  

curvature ~ 1/R  and thermal state: 

• stress-energy fixed by trace anomaly – vanishes for odd d! 

• upon passing to Euclidean time with period         : 

for any odd d 

• focusing on renormalized or universal contributions, eg, 



• hence          decreases monotonically and  

• with SSA and “continuum” limit              

(Casini & Huerta ‘12) 
Entanglement proof of F-theorem: 

• F-theorem for d=3 RG flows established using unitarity, Lorentz 

  invariance and strong subadditivity 

• geometry more complex than d=2: consider many circles  

  intersecting on null cone 

• define: 

• for d=3 CFT:  S(R) =
2¼R

±
c0 ¡ 2¼a3

• no corner contribution from intersection in null plane 



A beautiful story but why is universal term in SEE universal? 

for even d 

for odd d 

• QFT intution: log divergences define physical cuts but finite p 

    polynomials subject to renormalization ambiguities 

(Schwimmer & Theisen) 



A beautiful story but why is universal term in SEE universal? 

for even d 

for odd d 

• QFT intution: log divergences define physical cuts but finite p 

    polynomials subject to renormalization ambiguities 

even d seems okay but odd d might be problematic? 

c a 

recall d=2 CFT: 
c 

d=4 CFT: 

(Calabrese & Cardy) 

(Holzhey, Larsen & Wilczek) 

(Solodukhin) 

(RCM & Sinha) d=2m CFT (with symmetry): 

(Schwimmer & Theisen) 



Why is universal term in SEE universal? 

(Schwimmer & Theisen) 

for even d 

for odd d 

• QFT intution: log divergences define physical cuts but finite p 

    polynomials subject to renormalization ambiguities 
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eg, shifting                                   constant term polluted by UV data 
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Why is universal term in SEE universal? 

(Schwimmer & Theisen) 

for even d 

for odd d 

• QFT intution: log divergences define physical cuts but finite p 

    polynomials subject to renormalization ambiguities 

even d seems okay but odd d might be problematic? 

sure but no scales in CFT, so no scale     !! 

scales from RG flow can appear in final SEE!! 

(eg, Hertzberg & Wilczek; Banerjee) 

eg, shifting                                   constant term polluted by UV data 



• in regulators, tension between Lorentz inv. and unitarity 

Why is universal term in SEE universal? 

(Schwimmer & Theisen) 

for even d 

for odd d 

• QFT intution: log divergences define physical cuts but finite p 

    polynomials subject to renormalization ambiguities 

even d seems okay but odd d might be problematic? 

sure but no scales in CFT, so no scale     !! 

scales from RG flow can appear in final SEE!! 

(eg, Hertzberg & Wilczek; Banerjee) 

latter emerge in            limit, but regulator exposed in SEE 

eg, shifting                                   constant term polluted by UV data 



(Liu & Mezei) 

• divergences determined by local geometry of entangling surface 

  with covariant regulator, eg, 

• can isolate finite term with appropriate manipulations, eg, 

d=3: 

d=4: 

“Renormalized” Entanglement Entropy: 
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Casini & Huerta 

(unfortunately, holographic experiments indicate             are 

  not good C-functions for d>3  ‒ not monotonic) 

“Renormalized” Entanglement Entropy: 



(Liu & Mezei) 

• divergences determined by local geometry of entangling surface 

  with covariant regulator, eg, 

• can isolate finite term with appropriate manipulations, eg, 

d=3: 

d=4: 

c-function of 
Casini & Huerta 

(unfortunately, holographic experiments indicate             are 

  not good C-functions for d>3  ‒ not monotonic) 

“Renormalized” Entanglement Entropy: 

• if      is physical, we should be able to use any regularization 

   which defines the continuum QFT 

• approach demands special class of regulators: “covariant” 

is result artifact of choosing “nice” regulator?? 
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• circumference always uncertain to  

R 

• consider defining       in presence of lattice regulator 

considering finer resolution, 

can not repair problem!! 
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always polluted by UV 

• circumference always uncertain to  

R 

• consider defining       in presence of lattice regulator 

considering finer resolution, 

can not repair problem!! 

R!R0 =R+®±;

S(R) =
2¼R

±
c0 ¡ 2¼a3



always polluted by UV 

• circumference always uncertain to  

R 

• consider defining       in presence of lattice regulator 

considering finer resolution, 

can not repair problem!! 

Seems we need to go beyond SEE?? 

R!R0 =R+®±;

S(R) =
2¼R

±
c0 ¡ 2¼a3



Criteria to properly establish c-theorem: 

1. C-function must be dimensionless, well-defined quantity, 

      which is independent of the regularization scheme 

computable with any regulator 

2.   C-function must be intrinsic to fixed point of interest 

independent of details of RG flows 

3.   C-function must decrease monotonically along any RG 

      flows connecting a UV fixed point to an IR fixed point 



Criteria to properly establish c-theorem: 

1. C-function must be dimensionless, well-defined quantity, 

      which is independent of the regularization scheme 

computable with any regulator 

2.   C-function must be intrinsic to fixed point of interest 

independent of details of RG flows 

3.   C-function must decrease monotonically along any RG 

      flows connecting a UV fixed point to an IR fixed point 

•   SEE seems to fail to satisfy criteria 1 & 2 

•   alternate choice? alternate measure of entanglement? 



Mutual Information: 

• another measure of entanglement between two systems 

• for non-intersecting regions A and B: 

• finite! UV divergences in S(A) and S(B) canceled by S(A U B) 

• can be defined without reference to SEE (Araki; Narnhofer) 

• bounds correlators between A and B (Wolf, Verstraete, Hastings & Cirac) 



Mutual Information: 

• another measure of entanglement between two systems 

• for non-intersecting regions A and B: 

• finite! UV divergences in S(A) and S(B) canceled by S(A U B) 

• can be defined without reference to SEE (Araki; Narnhofer) 

• bounds correlators between A and B (Wolf, Verstraete, Hastings & Cirac) 

• if c-function defined with mutual information 

                            criterion 1 will automatically be satisfied 

criterion 2 & 3 will be satisfied with further care 



C-function from Mutual Information: 

• consider following geometry: 

or 

I(A;B) = S(A) +S( ¹B)¡S(A[B)
• using                       for pure state: S(A) = S( ¹A)

two disks ~ R narrow annulus 

• consider regime:  (    and     are macro scales) 



C-function from Mutual Information: 

• consider following geometry: 

or 

• mutual information takes form: 

• consider regime:  

I(A;B) = 2¼R

µ
~c0

"
+ ~c1

¶
¡ 4¼ ~a3 +O("=R)

(    and     are macro scales) 
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C-function from Mutual Information: 

• work with renormalized QFT in continuum limit (RÀ "À ± )

• mutual information “regulates” entanglement entropy of disk 

• Strategy: 
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I(A;B) = 2¼R

µ
~c0
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I(A;B) = 2¼R
~c0

"
¡ 4¼ ~aUV3



• criterion 2? is      intrinsic to fixed point?? 

C-function from Mutual Information: 

• consider following geometry: 

or 

• mutual information takes form: 

• consider regime:  

I(A;B) = 2¼R

µ
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(    and     are macro scales) 

~a3



C-function from Mutual Information: 

• consider following geometry: 

or 

• mutual information takes form: 

• consider regime:  

I(A;B) = 2¼R

µ
~c0

"
+ ~c1

¶
¡ 4¼ ~a3 +O("=R)

• ambiguity: 

(    and     are macro scales) 

~a3
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UV independence of    : 

• can we choose     such that     is independent of higher scales? 

~a3

• consider probing at IR critical point where m, lowest mass scale 

    in RG flow::  

• correlations near boundary nonconformal 

• high energy contribution to I(A,B):  

                       local and extensive  

• can we choose     to eliminate    ?? 

• for general strip (with small curvatures): 

•     must vanish if reflection symmetry 

~a3

𝟐/𝒎 



C-function from Mutual Information: 

• consider following geometry: 

or 

• mutual information takes form: 

• in regime:  

• fixing             ensures      is intrinsic to fixed point 

criteria 1 and 2 are satisfied!! 

I(A;B) = 2¼R

µ
~c0

"
+ ~c1

¶
¡ 4¼ ~a3 +O("=R)



C-function from Mutual Information: 

• consider following geometry: 

• in regime:  

• calculate for a free scalar on 

    a square lattice: 
2
¼
~a
3

(                            , result good to 15%) 

4¼~a3 ' 0:110

(4¼a3)
scalar =

1

4

µ
log 2¡ 3³(3)

2¼2

¶

' 0:127
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1. C-function must be dimensionless, well-defined quantity, 

      which is independent of the regularization scheme 

computable with any regulator 

2.   C-function must be intrinsic to fixed point of interest 

Independent of details of RG flows 

3.   C-function must decrease monotonically along any RG 

      flows connecting a UV fixed point to an IR fixed point 

• defining      with mutual information & fixing             ensures 

    criteria 1 and 2 are satisfied; must still consider criterion 3 
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      flows connecting a UV fixed point to an IR fixed point 

• defining      with mutual information & fixing             ensures 

    criteria 1 and 2 are satisfied; must still consider criterion 3 

• monotonic flow follows as in entropic proof of F-theorem 



• hence          decreases monotonically and  

• with SSA and “continuum” limit              

(Casini & Huerta ‘12) 
Entanglement proof of F-theorem: 

• F-theorem for d=3 RG flows established using unitarity, Lorentz 

  invariance and strong subadditivity 

• geometry more complex than d=2: consider many circles  

  intersecting on null cone 

• define: 

• for d=3 CFT:  S(R) =
2¼R

±
c0 ¡ 2¼a3

• no corner contribution from intersection in null plane 



Entanglement proof of F-theorem: 

• key ingredients: 

a) unitary & Lorentz invariant regularization of EE defined on 

      regions with smooth boundaries except for “null cusps” 

b)   regulated EE satisfies strong subaddivity for sets whose 

      union and intersection only generates more “null cusps” 

c)   wiggly circles have EE which approaches that of circle with 

      same perimeter as the number of null cusps goes to ∞ 

null cusp: corner lying in null plane 

~t1 ¡~t2 = ~v with ~v ¢ ~v = 0



• mutual information approach satisfy these key ingredients? yes 

Entanglement proof of F-theorem: 

• consider region 𝐴 with smooth boundary Γ  

• expand boundary: Γ± = Γ ± 
1

2
 𝜀 𝑠  𝒏 (𝑠) 

• regulated EE: property of A; 

            independent of framing 

eg, for circle 

I0(A) = 2¼R~c1(mi)¡ 4¼ ~a3

𝐼 𝐴+, 𝐴− = 𝑐 0    
𝑑𝑠

𝜀(𝑠) 
 

Γ
+ 𝐼0 𝐴 + 𝑂(𝜀)  



• additional contributions for 

    null cusps characterized by 

    single local invariant: 

• does mutual information satisfy these key ingredients? yes 
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• additional contributions for 

    null cusps characterized by 

    single local invariant: 

• does mutual information satisfy these key ingredients? yes 

Entanglement proof of F-theorem: 

• consider region 𝐴 with smooth boundary Γ with null cusps   

• expand boundary: Γ± = Γ ± 
1

2
 𝜀 𝑠  𝒏 (𝑠) 

𝐼 𝐴+, 𝐴− = 𝑐 0    
𝑑𝑠

𝜀(𝑠) 
 

Γ
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• 𝐼0 𝐴  still satisfies SSA: 

𝐈𝟎 𝐀 + 𝐈𝟎 𝐁 ≥   𝑰𝟎 𝑨 ∪ 𝑩 + 𝑰𝟎(𝑨 ∩ 𝑩) 



Criteria to properly establish c-theorem: 

1. C-function must be dimensionless, well-defined quantity, 

      which is independent of the regularization scheme 

computable with any regulator 

2.   C-function must be intrinsic to fixed point of interest 

Independent of details of RG flows 

3.   C-function must decrease monotonically along any RG 

      flows connecting a UV fixed point to an IR fixed point 

• defining      with mutual information & fixing             ensures 

    criteria 1 and 2 are satisfied; must still consider criterion 3 

• monotonic flow follows as in entropic proof of F-theorem 

have properly established F-theorem in d=3 



Beyond d=3: 

• is there entropic proof of c-theorem in higher dimensions? 

need a new idea? 

higher dim. intersections lead 

to subleading divergences 

which trivialize SSA inequality 

● 



• with            , only contribution to 4pt amplitude with null dilatons: 

(Komargodski & Schwimmer;  

  see also: Luty, Polchinski & Rattazzi) 

d=4 a-theorem and Dilaton Effective Action 

• couple theory to “dilaton” (conformal compensator) and organize 

   effective action in terms of  

• analyze RG flow as “broken conformal symmetry” 

diffeo X Weyl invariant: 

• follow effective dilaton action to IR fixed point, eg, 

: ensures UV & IR anomalies match 

• dispersion relation plus optical theorem demand:  

(Schwimmer 

                 & Theisen) 

Beyond d=3: 

• no entanglement in sight?  



• is there entropic proof of c-theorem in higher dimensions? 

need a new idea? 

higher dim. intersections lead 

to subleading divergences 

which trivialize SSA inequality 

● 

• hybrid approach proposed (Solodukhin): still needs development 

Beyond d=3: 

• d=4 a-theorem proved with more “standard” QFT techniques 

(Komargodski & Schwimmer) 



• is there entropic proof of c-theorem in higher dimensions? 

• can c-theorems be proved for higher dimensions? eg, d=5 or 6 

(Elvang, Freedman, Hung, Kiermaier, RM & Theisen; Elvang & Olson) 

dilaton-effective-action approach requires refinement for d=6 

need a new idea? 

higher dim. intersections lead 

to subleading divergences 

which trivialize SSA inequality 

● 

• hybrid approach proposed (Solodukhin): still needs development 

again, entropic approach needs a new idea 

Beyond d=3: 

• d=4 a-theorem proved with more “standard” QFT techniques 

(Komargodski & Schwimmer) 



Conclusions and Questions: 

• entanglement lends new insights into c-theorems 

• using mutual information, properly established d=3 F-theorem 



d=3 entropic C-function not always stationary at fixed points 
(Klebanov, Nishioka, Pufu & Safdi) 

Conclusions and Questions: 

• how much of Zamolodchikov’s structure for d=2 RG flows 

  extends higher dimensions? 

same already observed for d=2; special case or generic? 

 need a better C-function? 

• entanglement lends new insights into c-theorems 

• using mutual information, properly established d=3 F-theorem 



Zamolodchikov c-theorem (1986): 

• for unitary, Lorentz-inv. QFT’s in two dimensions, there exists 

  a positive-definite real function of the coupling constants       : 

• renormalization-group (RG) flows can seen as one-parameter 

  motion 

in the space of (renormalized) coupling constants 

with beta-functions as “velocities”  

1. monotonically decreasing along flows: 

2. “stationary” at fixed points :              : 

3. at fixed points, it equals central charge of corresponding CFT 



• does scale invariance imply conformal invariance beyond d=2? 

d=3 entropic C-function not always stationary at fixed points 
(Klebanov, Nishioka, Pufu & Safdi) 

Conclusions and Questions: 

• how much of Zamolodchikov’s structure for d=2 RG flows 

  extends higher dimensions? 

• what can entanglement/quantum information really say about 

   RG flows, holography or nonperturbative QFT?  

(Luty, Polchinski & Rattazzi;  

Dymarsky, Komargodski, Schwimmer & Theisen) 

• further lessons: RG flows and entanglement          holography? 

“more or less” in d=4 

same already observed for d=2; special case or generic? 

 need a better C-function? 

• entanglement lends new insights into c-theorems 

• using mutual information, properly established d=3 F-theorem 

SSA            NEC (Bhattacharya etal; Lashkari et al; Lin etal)  


