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Outline 

• Path Integrals, the renormalization group, and Tensor networks 
• Topological quantum order, long range entanglement and anyon 

condensation 
 



Entanglement Entropy 
• The quantum correlations of a bipartite system can be quantified using the 

von Neumann entropy of the reduced density matrix  
 
 

 
 

– S has an operational meaning in terms of entanglement of formation / 
distillation: conversion into EPR pairs  

 
• Page’s theorem [‘93]: take a random bipartite state according to the Haar 

measure on a Hilbert space with |A|<<|B| , then with very high probability 
S(A) is close to its maximal possible value: 
 
 

 
– For a random state of a quantum many body system, this means that the 

entanglement entropy will scale as the volume of the region where it is calculated 

A 
B 



Area laws for the entanglement entropy 

• Ground states of quantum many body systems (including quantum field 
theories) have very few entanglement: area vs. volume entropy 
 
 
 
 
 
 
 
 
 
 
 

• The leading term of the entanglement corresponds to “local” entanglement, 
and this suggests that there should be an efficient real-space description of 
all such quantum many body wavefunctions 
 

Bombelli et al ‘86; 
Srednicki ’93 
Vidal, Kitaev ’03 
Cardy, Calabrese ‘04 
Hastings ’06 
… 



The illusion of  

 

Exponentially large 
Hilbert space 

Part that 
physics is 
about 



• Can we come up with a systematic way of parameterizing the (low-
entanglement) wavefunctions corresponding to ground states of strongly 
correlated systems? 

 
• This problem is especially relevant for systems with strong interactions (i.e. 

systems for which perturbations on a fiducial Slater determinant fail) 
• Authoritative examples: Hubbard model, quantum spin systems, 

strongly coupled (lattice) gauge theories, … 
• There is special interest in getting a deeper understanding of 

systems exhibiting topological order such as fractional quantum Hall 
systems and gauge theories with anyonic elementary excitations 

– new phases of matter with applications in quantum computation 
– The low energy wavefunctions in such systems exhibit long range 

quantum entanglement 



Path Integral representation of ground states 

• Let us consider an arbitrarily Hamiltonian of a quantum spin system, and a 
path integral                              representing the ground state for 

Physical 
spins 



Wilson’s RG for quantum impurities 

• Let us consider 1 column in this transfer matrix picture: 
 

• The physical spin can be understood as a Kondo like impurity 
attached to a translational invariant system (“conduction electrons”) 
 

• The crucial question that we tackle here: can we compress the 
information on the “virtual” links such as to obtain a more 
economical representation of the ground state? 

– Just like Wilson, we can indeed envision devising an RG 
transformation “compressing” the information of the conduction 
electrons  

– The dimension of the compressed Hilbert space will be related to 
the amount of quantum entanglement in the system 

Physical 
spin 



Wilson’s RG procedure 
reduces the translational 
invariant chain to a chain 
with exponentially fewer 
degrees of freedom: 
logarithmic discretization  
 
In terms of quantum 
gates, this transformation 
can be understood in 
terms of isometries 

The emanating degrees of 
freedom contain all the 
relevant information for 
describing the physics of 
the impurity; the different 
levels correspond to 
different energy scales 
 
Stopping at some level 
hence corresponds to 
introducing a cut-off, but 
for a gapped system this 
cut-off is given by the gap 
and hence does not 
introduce an extra 
approximation 

V. Zauner et al., arXiv:1408.5140 



Finitely Correlated States / Matrix Product States 
• The picture that is emerging is that any ground state of a gapped 

Hamiltonian can be presented by a FCS/MPS: 
 
 
 
 
 
 
 

 
• The entanglement entropy is related to the virtual dimension D, and is 

related to the gap through the cut-off (the smaller the gap, the higher the 
number of levels to keep) 
– Vice versa: any state satisfying an area law for the entanglement 

entropy has an efficient representation in terms of MPS 
– Also, any injective MPS is unique ground state of a gapped parent H  
– FCS/MPS allow to break exponential wall in 1D 

Affleck, Kennedy, Lieb, Tasaki ‘88 
Fannes, Nachtergaele, Werner ‘92 
White ‘92 

Virtual bond 
dimension D 



Manifold of MPS 

• Set of MPS form a low-dimensional manifold in the humongous physical 
Hilbert space: parameterization of all ground states 

• Instead of solving (linear) Schrodinger equations on the large Hilbert space, 
we project those equations onto the manifold of MPS and we get nonlinear 
differential equations for the parameters           : time dependent variational 
principle  
– Ground states can be found by evolving in imaginary time: MPS form 

perfect variational states (and basis for DMRG of White) 
– Effective Hamiltonians are obtained by tangent spaces of the respective 

ground states (hence allowing to determine gap, dispersion relations, …) 
 
 

Haegeman et al. ‘12 



1D SPT phases of matter  

• Classification of phases of matter of 1-D spin chains under adiabatic paths 
preserving a symmetry: symmetry protected topological order 
 

• Pollmann, Turner, Berg, Oshikawa ‘10; Chen, Gu, Wen ‘11; Fidkowksi, 
Kitaev ‘12; Schuch, Perez-Garcia, Cirac ‘12: all those different phases can 
be classified according to the projective representations of the global 
symmetry as manifested on the virtual level of the MPS 
 
 
 
 
 
– Vg forms a projective representation of the group representing the 

global symmetry of the state, and the corresponding 2-cocycle cannot 
change on an adiabatic path (gap has to close when interpolating 2 
states with different cocycle) 

Ug 

= Vg V-1 
g 

Pérez-García et al. ‘08 



Projected Entangled Pair States 

• 2-dimensional version of MPS: PEPS 
 
 
 
 
 
 
 
 
 
 

 
• Satisfies area law by construction; is ground state of local Hamiltonian; … 

FV, Cirac ‘04 



• The properties of PEPS are encoded in the eigenvalues and eigenvectors of 
the corresponding transfer matrices  (similar to classical statistical physics, 
although here we have a “double layer” structure and here we deal with a 
state as opposed to a Hamiltonian) 

= 

i 

α β 

γ 

δ Ai
αβγδ 



Example: Resonating Valence Bond State 

• Equal superposition of all possible singlets on a square lattice: simple PEPS 
with bond dimension 3 
 
 
 
 
 

 
 

• This state is actually much more interesting on a frustrated lattice (e.g. 
Kagome) because it is then in a topological nontrivial phase (“G-injective”) 

Anderson, Baskaran ‘87 

i 

α β 

γ 

δ Ai
αβγδ 



• Such topological phases are stable under perturbations (Hastings) and 
exhibit “long-range” entanglement (Wen) instead of having a local order 
parameter 

• elementary excitations (anyons) have nontrivial statistics and typically 
come in pairs: anyons 
– Consistency of a set of fusion rules of anyons is dictated by so-called R 

and F tensors (Pentagon equation)  
 
 
 
 
 
 
 
 



Levin-Wen models  

• Levin and Wen constructed quantum spin systems realizing any such 
topological theory (elementary excitations are anyons whose statistics is 
governed by F) 

 
 

 
 

 
• Those are all real-space RG fixed points with zero correlation length, 

but nevertheless long-range entanglement 
 

• In topological QFT : Dijkgraaf-Witten realizes this for the group case 
with unique fusion rules (quantum doubles and twisted quantum 
doubles)  

 



PEPS for Levin-Wen string nets 

• Define the tensors 
 
 
 
 
 

• The Pentagon equation in tensor network language: 

Sahinoglu et al. 
arXiv:1409.2150 



PEPS for topological ordered systems 

• Topological order is manifested locally in the PEPS as a symmetry of the tensors: 

 
 
 
 

– Global order parameter for topological ordered systems is hence manifested LOCALLY as 
a symmetry on the virtual level: the Hilbert space on the virtual level is constrained 
(subspace), and this subspace is determined by  Matrix Product Operators (MPO) 

 
 
 

• The label g labels the anyon type, and those  
     MPO’s form a representation  

• The simplest PEPS that has this symmetry is of clearly the sum of all those MPO’s (=fixed 
point tensor)+string tension: 

g 

g g 

∑g 

g 



Topological Quantum Entropy 

• Topological quantum entropy (Kitaev-Preskill / Levin-Wen ‘06): the 
entanglement entropy has a correction related to the quantum dimension 
of the anyons; indeed, the symmetry dictates that the virtual system is 
constrained on a subspace 



• In the group case (quantum doubles and twisted quantum doubles) different topological 
theories are characterized by different  3-cocycles by which the “group” is realized 
 

Chen et al. ‘12 (for SPT phases) 
Buershaper ‘14; Sahinoglu et al. ’14 (for topological phases) 
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Anyons in PEPS 
• Anyons “have a string attached to them”, and the “pulling through” 

equations guarantee that it is immaterial where these strings are (but 
topological properties cannot be changed!) 
– As string has to end, they have to come in pairs (or choice of BC) 

There are 2 types 
of excitations: 
vertex and 
plaquette ones; 
only the latter 
comes with a string 
attached on the 
virtual level 
 



Example 1: toric code (trivial) 

• Toric code: strings are product states 
 
 
 
 
 
 
 
 

• The virtual system of any block only has support on the even parity 
subspace (hence the edge modes realize a structure that cannot be 
obtained by any local Hamiltonian) 

0 = I I I I I I 

1 = Z Z Z Z Z Z 



Example 2: double semion (nontrivial cocycle H3(Z2,U(1))) 

• Double semion: 
 
 
 
 
 
 
 
 
 
 

 

0 = I I I I I I 

1 = 

X X X X X X 
= 

ϕ(g1,g2,g3)=0  

except ϕ(1,1,1)=π    

1 

1 

0 0 
= with  = 
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g1 
g2 
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Chen, Wen ‘12 



Eigenstructure of the doubled transfer matrix 

= 

* At the fixed point and in the toplological phase, the degeneracy of the     
largest eigenvalue 1 is exactly equal to the number of anyon types N + 1 
(and not (N+1)2  as could naively be expected from the symmetries)  
 
* The excitations are domain wall excitations tunneling between the 
different symmetry sectors reflecting the anyons in the true 2D theory 
 



Dispersion relations of the transfer matrix of the RVB on the Kagome lattice  



Anyon condensation 

• What happens when anyons condense? 
– Symmetry breaking phase transition at the virtual level: in Plato’s cave, 

the prisoners witness a standard Landau phase transition with a local 
order parameter 

– Depends strongly whether the vertex or plaquette anyons condense: 
• In one case, we get a unique fixed point 
• In the other case, we get (N+1)2 fixed points 
• This means that the topological phase must break a subgroup of 

the symmetry 



Example: toric code  
with string tension 

Blue: top. Trivial (no string) 
Red: top. Nontrivial (string) 
+ : equal charge in bra and ket 
o : unequal charge in bra and ket 
 
Green: string in bra + ket: confinement 
□: charge def. in bra/ket: confinement 



• Anyons are only possible if the eigenspace breaks a sub-group (e.g. Z2) 
– Anyon condensation when Z2 -> Z2xZ2  or Z2 -> 1 



Interacting SPT phases in PEPS 
• Similar story, but with 1 big difference: 
 

 
 
 
 
 
 
– Hence e.g. no corrections to the entanglement entropy, G.S. degeneracy 

 
• Nontrivial 3-cocycles indicate the presence of nonlocal edge modes that cannot 

be realized by a local Hamiltonian in 1D: hence SPT phase 
– Injective MPS cannot exhibit a symmetry related to nontrivial cocycle: 

degeneracy of edge modes 
 

• Topological theories are obtained by “gauging” the global symmetry (which hence 
becomes a constraints as opposed to a symmetry) 
 

• What about Symmetry Enhanced Topological (SET) Phases? 
– Gauge a subgroup 

Williamson et al., ‘14 

Chen, Xie, Wen ‘12 
 



Conclusion 

• Tensor networks provide a natural description of the ground state 
wavefunction for gapped phases of matter  
– except for chiral phases: status not settled 

 
• Long-range entanglement in topological quantum phases is manifested 

locally into the symmetries of the tensors 
– Eigenstructure of the 1D transfer matrix reflects the structure op the 

topological phase in 2D 
– Topological phase transitions correspond to symmetry breaking phase 

transitions 
 

• Starting point for studying anyon condensation for all string nets 



 



Conclusion 

• Tensor Networks are providing a new language for describing and 
simulating strongly correlated systems in a systematic way 
 

• Entanglement properties are the crucial ingredient characterizing exotic 
phases of matter, and the MPS/PEPS/tensor network language allows to 
explore concepts like anyon condensation 



cMPS for quantum field theories 

• It is possible to take the limit of the lattice spacing going to zero, and 
obtain a continuous version of MPS which generalized the concept of 
coherent states: 
 
 
 

• Note that Q and R are DxD matrices 
 

• TDVP equations give a non-commutative version of Gross-Pitaevskii 
equations in Q,R 

• TDVP allows to use those cMPS as variational states, and they have a 
natural cut-off build in such that they even work for relativistic theories 
(allowing to surpass no-go arguments of Feynman) 



Example: Kitaev’s toric code / Z2 gauge theory 

 
 
 
 
 
 
 
 
 

• This model represents the simplest topological phase;         adds string 
tension, and if it is large enough, the topological phase breaks down to a 
confined phase 

• The ground state as a function of         is an exact PEPS with D=2 
• The symmetry MPO is just a product of Z’s: 



• There are 2 types of excitations: vertex and plaquette ones 
• The physics of PEPS is encoded into the eigenstructure of the transfer matrix; 

the MPO symmetry dictates a degenerate fixed point (“edge modes”) 



 

Anyon excitations correspond to 
domain wall excitations in the 
transfer matrix; a topological 
quantum phase transition is 
hence reflected as a symmetry 
breaking phase transition on the 
virtual level (anyon condensation 
/ confinement) 

“Shadows of Anyons”,  
Haegeman et al. ‘14 
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