Local RG, Quantum RG, and Holographic RG

Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis

Local renormalization group

The main idea dates back to Osborn NPB 363 (1991)

See also my recent review 1302.0884

Some results I discuss today are trivial but have not appeared in literature

Local renormalization group

• Put a QFT on curved space-time with space-time dependent coupling constant

$$\int d^4x \left(L_0[\phi(x)] + gO(x) \right) \to \int d^4x \sqrt{g} \left(L_0[\phi(x)] + g(x)O(x) + \cdots \right)$$

 Natural to make (Wilsonian) cut-off space-time dependent (e.g. space-time dependent PV mass)

 $\mu \to \mu(x)$

- Study the evolution under the change $\ \delta\mu(x)$
- Vast generalization of renormalization group
- Within power-counting RG scheme as a formal power series, conventionally renormalizable theories are locally renormalizable

Schwinger functional

• Consider the renormalized Schwinger functional for $O(x), J_{\mu}(x), \tilde{J}_{\mu}(x), O_{\mu\nu}(x) = -O_{\nu\mu}(x)$

 $e^{-W[g(x),A_{\mu}(x),\tilde{A}_{\mu}(x),B_{\mu\nu}(x),g_{\mu\nu}(x)]}$

 $= \int \mathcal{D}X e^{-S_0[X] + \int d^4x \sqrt{g} \left(g(x)O(x) + A_\mu(x)J^\mu(x) + \tilde{A}_\mu(x)\tilde{J}^\mu(x) + B_{\mu\nu}(x)O^{\mu\nu}(x) + \cdots \right)}$

- Assume the operator identities $D_{\mu}J^{\mu} = O(x) \ , \ \ D_{\mu}O^{\mu\nu} = \tilde{J}^{\nu} \ , \ \ D_{\mu}\tilde{J}^{\mu} = 0 \ .$
- \tilde{J}_{μ} is a so-called topological current
- Schwinger functional has the "gauge symmetries"

$$\delta g = w , \qquad \delta A_{\mu} = \partial_{\mu} w$$
$$\delta B_{\mu\nu} = \partial_{\mu} b_{\nu} - \partial_{\nu} b_{\mu} , \quad \delta \tilde{A}_{\mu} = b_{\mu}$$

• Also it is diff invariant

Local RG invariance

Local RG operator

$$\Delta_{\sigma} = \int d^4x \sqrt{g} \left[2\sigma(x)g_{\mu\nu}\frac{\delta}{\delta g_{\mu\nu}} + \beta\sigma(x)\frac{\delta}{\delta g(x)} + \beta_{\mu}\sigma(x)\frac{\delta}{\delta A_{\mu}} + \tilde{\beta}_{\mu}\sigma(x)\frac{\delta}{\delta \tilde{A}_{\mu}} + \beta_{\mu\nu}\sigma(x)\frac{\delta}{\delta B_{\mu\nu}} \right]$$

Local renormalizability

$$\Delta_{\sigma} W[g_{\mu\nu}, g, \ldots] = A_{\sigma}[g_{\mu\nu}, g, \ldots]$$

- $A_{\sigma}[g_{\mu\nu}, g, ...]$: a local functional (trace anomaly or local renormalization of cc)
- From Schwinger action principle $T^{\mu}_{\ \mu} = \beta O + \beta_{\mu} J^{\mu} + \tilde{\beta}_{\mu} \tilde{J}^{\mu} + \beta_{\mu\nu} O^{\mu\nu} + \text{anomaly}$
- Anomaly part (many terms in principle)

$$A_{\sigma} = \int d^4x \sqrt{g}\sigma \left(a \text{Euler} - c \text{Weyl}^2 + bR^2 + \tilde{b}\Box R + \chi^a D^2 g D^2 g + \chi^g D_{\mu} g D_{\nu} g G^{\mu\nu} + \cdots \right)$$
$$+ \kappa F_{\mu\nu} F^{\mu\nu} + \tilde{\kappa} (\tilde{F}_{\mu\nu} - B_{\mu\nu}) (\tilde{F}^{\mu\nu} - B^{\mu\nu}) + \cdots \right)$$

Local RG consistency condition

Local RG operator

$$\Delta_{\sigma} = \int d^4x \sqrt{g} \left[2\sigma(x)g_{\mu\nu}\frac{\delta}{\delta g_{\mu\nu}} + \beta\sigma(x)\frac{\delta}{\delta g(x)} + \beta_{\mu}\sigma(x)\frac{\delta}{\delta A_{\mu}} + \tilde{\beta}_{\mu}\sigma(x)\frac{\delta}{\delta \tilde{A}_{\mu}} + \beta_{\mu\nu}\sigma(x)\frac{\delta}{\delta B_{\mu\nu}} \right]$$

Suppose beta functions take the form (in power-counting RG scheme)

$$\beta = \beta(g) , \quad \beta_{\mu\nu} = \gamma(B_{\mu\nu} - \tilde{F}_{\mu\nu}) + \tilde{\gamma}F_{\mu\nu}$$
$$\beta_{\mu} = \rho D_{\mu}g = \rho(\partial_{\mu}g + A_{\mu}) , \quad \tilde{\beta}_{\mu} = \tilde{\rho}D_{\mu}g$$

• Local RG transformation is abelian $[\Delta_{\sigma}, \Delta_{\sigma'}] = 0$

$$\int d^4x \sqrt{g} \left[(\sigma \partial_\mu \sigma' - \sigma' \partial_\mu \sigma) \left(\beta \rho \frac{\delta}{\delta A_\mu} + \beta \tilde{\rho} \frac{\delta}{\delta \tilde{A}_\mu} + (\tilde{\gamma} \rho - \gamma \tilde{\rho}) D_\nu g \frac{\delta}{\delta B_{\mu\nu}} \right) \right] = 0$$

- Requiring $\beta \rho = \beta \tilde{\rho} = \tilde{\gamma} \rho \gamma \tilde{\rho} = 0$
- Related to consistency of

 $T^{\mu}_{\ \mu} = \beta O + \beta_{\mu} J^{\mu} + \tilde{\beta}_{\mu} \tilde{J}^{\mu} + \beta_{\mu\nu} O^{\mu\nu} + \text{anomaly}$ under local renormalization

On anomaly terms

- Local RG group is abelian $[\Delta_{\sigma}, \Delta_{\sigma'}] = 0$
- Wess-Zumino consistency condition $\Delta_{\sigma}A_{\sigma'} = \Delta_{\sigma'}A_{\sigma}$

$$A_{\sigma} = \int d^4x \sqrt{g}\sigma \left(a \text{Euler} - c \text{Weyl}^2 + bR^2 + \tilde{b}\Box R + \chi^a D^2 g D^2 g + \chi^g D_{\mu} g D_{\nu} g G^{\mu\nu} + \cdots + \kappa F_{\mu\nu} F^{\mu\nu} + \tilde{\kappa} (\tilde{F}_{\mu\nu} - B_{\mu\nu}) (\tilde{F}^{\mu\nu} - B^{\mu\nu}) + \cdots \right)$$

Many constraints on anomalies such as

$$\beta = \chi^g \frac{\partial \bar{a}}{\partial g} \qquad b = \chi^a \beta^2$$

- In relation to (perturbative) "a-theorem"
- No constraint on $\ c \ , \ \kappa \ , \ ilde{\kappa}$ (as expected)

Relation to anomalous dimensions

• Acting local RG operators on correlation functions

$$\Delta_{\sigma} = \int d^4x \sqrt{g} \left[2\sigma(x)g_{\mu\nu}\frac{\delta}{\delta g_{\mu\nu}} + \beta\sigma(x)\frac{\delta}{\delta g(x)} + \beta_{\mu}\sigma(x)\frac{\delta}{\delta A_{\mu}} + \tilde{\beta}_{\mu}\sigma(x)\frac{\delta}{\delta \tilde{A}_{\mu}} + \beta_{\mu\nu}\sigma(x)\frac{\delta}{\delta B_{\mu\nu}} \right]$$

we have Callan-Symanzik equations

$$\left(\frac{\partial}{\partial\Lambda} + \beta \frac{\partial}{\partial g}\right) \langle O(x) \cdots J_{\mu}(y) \cdots \tilde{J}_{\mu}(z) \cdots O_{\mu\nu}(w) \rangle$$
$$= \gamma_O \langle O(x) \cdots J_{\mu}(y) \cdots \tilde{J}_{\mu}(z) \cdots O_{\mu\nu}(w) \rangle + \cdots$$

• One can read anomalous dimensions (in flat space limit)

$$\frac{d}{d\log\mu}O = (\partial_g\beta + \rho)O , \qquad \frac{d}{d\log\mu}O_{\mu\nu} = \gamma O_{\mu\nu}$$
$$\frac{d}{d\log\mu}J_\mu = \rho J_\mu + \tilde{\rho}\tilde{J}_\mu - \tilde{\gamma}\tilde{J}_\mu , \quad \frac{d}{d\log\mu}\tilde{J}_\mu = \gamma\tilde{J}_\mu$$

- Recalling $\beta \rho = \beta \tilde{\rho} = \tilde{\gamma} \rho \gamma \tilde{\rho} = 0$, we mainly work on $\beta = 0$ case (Stuckerberg mechanism in holography)
- $\beta \neq 0, \rho = \tilde{\rho} = 0$ gives scale but not conformal...

Quantum renormalization group

Developed by Sung-Sik Lee. (See e.g. arXiv:1305.3908 for gravity part)

Operator identities and Higgs/Stuckerberg mechanism have not been discussed in the literature (but are not so non-trivial).

Local RG is not Holographic RG (yet)

- Both discuss the evolution of Schwinger functional (= GKP-W partition functional)
- Local RG knows something about d+1 dim gauge invariance and diff invariance (as a scheme (in)dependence of RG)
- But, Local RG equations are classical deterministic equations for any QFT (quantum gravity?)
- Related point: (even classically) bulk EOM is not first order... (boundary condition?)

Large N and "second quantization"

• We focus on matrix QFT in large N limit

Single trace coupling: $g_1(x) \mathrm{Tr}O$ Multi trace coupling: $g_n(x) (\mathrm{Tr}O)^n$

- Idea: $(TrO)^n$ is multi-particle states of (TrO) in holography
- Represent multiple-particle states out of single particle states → naturally leads to "second quantization"
- For each single trace operator $\operatorname{Tr}O(x)$, we introduce one bulk quantum field $\Phi(z,x^{\mu})$ that represents the local RG flow of single trace coupling (as well as higher trace coupling) as path integral

Quantum RG formula in Hamiltonian form

 The path integral expression of the Schwinger functional in large N matrix theory becomes (c.f. Sung-Sik's talk)

$$e^{-W} = \int \mathcal{D}\Phi(x,z)\mathcal{D}P(x,z)e^{\int dz d^4x P \partial_z \Phi + n(x,z)(\Lambda[\Phi] + \beta_1[\Phi]P + \beta_2[\Phi]P^2)}$$
$$n(z,x) = \log \mu(z,x)$$

- $\Lambda[\Phi]$:Local Renormalization of cc (c.f. trace anomaly $A_{\sigma}[g(x)]$)
- $eta_1[\Phi]$:Beta function for single trace operator
- $eta_2[\Phi]$:Beta function for double trace operator
- Working in local Wilsonian renormalization → beta functions contain derivatives:

$$\Lambda[g_1] = \Lambda_0(g_1) + (D_\mu g_1)^2 + (D_\mu g_1)^4 + \cdots$$

Quantum RG formula in Lagrangian form

$$e^{-W} = \int \mathcal{D}\Phi(x,z)\mathcal{D}P(x,z)e^{\int dz d^4x P \partial_z \Phi + n(x,z)(\Lambda[\Phi] + \beta_1[\Phi]P + \beta_2[\Phi]P^2)}$$

- One may integrate momentum P to get Lagrangian form
- To get rid of first order derivative in z direction, we need the gradient condition for single trace beta function

• Then
$$\int dz \beta_2(\Phi)^{-1} \beta_1(\Phi) \partial_z \Phi$$
$$= \int dz \frac{\delta}{\delta \Phi} S[\Phi] \partial_z \Phi = \int dz \partial_z S[\Phi] = S[\Phi]|_{z=0}$$
$$e^{-W} = \int \mathcal{D}\Phi(x, z) e^{\int dz d^4 x L_{\text{bulk}}[\Phi]}$$

 $L_{\text{bulk}}[\Phi] = n^{-1} (\partial_z \Phi)^2 + n\Lambda[\Phi] + n\beta_2^{-1}\beta_1[\Phi]^2 + \cdots$

- $S[\Phi]$ is a boundary counter-term
- First order derivative may be OK in some cases (c.f. CS action)

Our toy model again

- For now, we neglect energy-momentum tensor (gravity)
- We had single trace operators

TrO, $\text{Tr}J_{\mu}$, $\text{Tr}\tilde{J}_{\mu}$, $\text{Tr}O_{\mu\nu}$

Lowest derivative (power-counting) single trace beta functions

$$\beta = \beta(g) , \quad \beta_{\mu\nu} = \gamma(B_{\mu\nu} - F_{\mu\nu}) + \tilde{\gamma}F_{\mu\nu}$$
$$\beta_{\mu} = \rho D_{\mu}g = \rho(\partial_{\mu}g + A_{\mu}) , \quad \tilde{\beta}_{\mu} = \tilde{\rho}D_{\mu}g$$

- With local RG constraint $\ eta
 ho=eta ilde
 ho= ilde
 ho= ilde\gamma
 ho-\gamma ilde
 ho=0$, take $\ \ eta=0$
- Quantum RG prescription gives

$$\begin{split} S &= \int d^4 x dz \left(P \partial_z \Phi + n \beta_2 P^2 \right. \\ &+ P^{\mu} (\partial_z A_{\mu} + n \rho D_{\mu} \Phi) + n \beta_2^{\mu\nu} P_{\mu} P_{\nu} \\ &+ \tilde{P}^{\mu} (\partial_z \tilde{A}^{\mu} + n \tilde{\rho} D_{\mu} \Phi) + n \tilde{\beta}_2^{\mu\nu} \tilde{P}_{\mu} \tilde{P}_{\nu} \\ &+ P^{\mu\nu} (\partial_z B_{\mu\nu} + n \gamma (B_{\mu\nu} - \tilde{F}_{\mu\nu}) + n \tilde{\gamma} F_{\mu\nu}) + n \beta_2^{\mu\nu\rho\sigma} P_{\mu\nu} P_{\rho\sigma} \\ &+ n \Lambda [\Phi, F_{\mu\nu}, \tilde{F}_{\mu\nu}, B_{\mu\nu}] + \text{more derivatives} \right) \,. \end{split}$$

• We need more date (e.g. double trace beta functions) to fix the complete action

Gauge invariance in 1+4 dimension

- By local RG construction, the action is 4d gauge invariant
- We may do the gauge transformation along with the local RG (scheme choice)
- This 1+4d gauge parameter is arbitrary \rightarrow extra fields $w(z, x^{\mu}), b_{\mu}(z, x^{\mu}) \rightarrow A_z, B_{z\mu}$
- Superficially, the single trace beta function depends on the scheme (1+4 d gauge) choice, but physics should not change

$$\partial_z A_\mu \to \partial_z A_\mu - \partial_\mu A_z = F_{z\mu} , \ \partial_z \Phi \to \partial_z \Phi + A_z = D_z \Phi$$

• Everything is d + 1 dim gauge covairantized!

$$\begin{split} S &= \int d^4x dz \left(PD_z \Phi + n\beta_2 P^2 \right. \\ &+ P^{\mu}(F_{z\mu} + n\rho D_{\mu} \Phi) + n\beta_2^{\mu\nu} P_{\mu} P_{\nu} \\ &+ \tilde{P}^{\mu}(\tilde{F}_{z\mu} + n\tilde{\rho} D_{\mu} \Phi) + n\tilde{\beta}_2^{\mu\nu} \tilde{P}_{\mu} \tilde{P}_{\nu} \\ &+ P^{\mu\nu}(H_{z\mu\nu} + n\gamma (B_{\mu\nu} - \tilde{F}_{\mu\nu}) + n\tilde{\gamma} F_{\mu\nu}) + n\beta_2^{\mu\nu\rho\sigma} P_{\mu\nu} P_{\rho\sigma} \\ &+ n\Lambda[\Phi, F_{\mu\nu}, \tilde{F}_{\mu\nu}, B_{\mu\nu}] + \text{more derivatives} \right) \,. \end{split}$$

• We still need more date (e.g. double trace beta functions)

CC terms and Lagrangian form

• Certain terms in local renormalization of cc $\Lambda[\Phi, F_{\mu\nu}, \cdots]$ is fixed by trace anomaly

$$\Lambda[\Phi, F_{\mu\nu}, \cdots] = \cdots + \chi^a D^2 \Phi D^2 \Phi + \chi^g D_\mu \Phi D_\nu \Phi G^{\mu\nu} + \cdots + \kappa F^2_{\mu\nu} + \tilde{\kappa} (\tilde{F}_{\mu\nu} - B_{\mu\nu}) (\tilde{F}^{\mu\nu} - B^{\mu\nu}) + \cdots$$

- While power-counting RG doesn't say anything, it is reasonable to assume double trace beta functions have derivative expansions $\beta_2 = \chi_0^{-1} + \cdots$, $\tilde{\beta}_2^{\mu\nu\rho\sigma} = K^{-1}g^{\mu\nu}g^{\rho\sigma} + \cdots$ $\beta_2^{\mu\nu} = \kappa_0^{-1}g^{\mu\nu} + \cdots$, $\tilde{\beta}_2^{\mu\nu} = \tilde{\kappa}_0^{-1}g^{\mu\nu} + \cdots$
- Integrating out P, we get Lagrangian form (with gradientness)

$$S = \int d^4x dz n \left(\kappa_0 (D_z \Phi)^2 + \kappa (D_\mu \Phi)^2 + \kappa F_{\mu\nu}^2 + \kappa_0 F_{z\mu}^2 + \rho^2 (D_\mu \Phi)^2 + \kappa F_{\mu\nu}^2 + \tilde{\kappa}_0 \tilde{F}_{z\mu}^2 + \tilde{\rho}^2 (D_\mu \Phi)^2 + \tilde{\kappa} \tilde{F}_{\mu\nu}^2 + K_0 H_{z\mu\nu}^2 + H_{\mu\nu\rho}^2 + (\gamma (B_{\mu\nu} - \tilde{F}_{\mu\nu}) + \tilde{\gamma} F_{\mu\nu})^2 + \text{more derivatives} \right)$$

• Higher derivative terms are not suppressed

"Strongly coupled assumption"

- From quantum RG viewpoint alone, there is no reason why higher derivative terms are suppressed
- Gradient condition e.g. must give $\beta_g = \beta(g) + \bar{\chi}^a D^2 g + \cdots$
- But we do expect that higher derivative terms are gone in "strongly coupled CFTs"
- Some terms are further constraint from 1+4 d diffeormorphism, but we need more non-trivial cancellation mechanism (discuss later) $\Lambda[\Phi] = \dots + \chi^a D^2 \Phi D^2 \Phi + \chi^g D_\mu \Phi D_\nu \Phi G^{\mu\nu} + \chi^c (D_\mu \Phi)^4 + \dots$

must cancel against other terms (quite non-trivial)

• Assuming they all contrive to happen, we should get

$$S = \int d^4x dz \sqrt{g} \left(\chi (D_M \Phi)^2 + \kappa F_{MN}^2 + \tilde{\kappa} F_{MN}^2 \right)$$

$$+H_{MNL}^2 + (\gamma (B_{MN} - \tilde{F}_{MN}) + \tilde{\gamma} F_{MN})^2 \Big)$$

- Stuckerberg action with massive vector/two-forms $D_M \Phi = \partial_M \Phi + A_M$
- Anomalous dimension and current central charges are naturally obtained

Holographic renormalization group Mainly from my paper <u>arXiv:1401.5257</u>

CFT with only EM tensor

 R^{μ}

Apply the recipe to CFT with only single trace Energy-momentum tensor (and its multi- trace)

• Schwinger functional is 4 dim diff invariant

$$e^{-W[g_{\mu\nu}]} = \int \mathcal{D}X e^{-S_0 + h_{\mu\nu}T^{\mu\nu}}$$
$$\delta g_{\nu\nu} = D_\mu \xi_\nu + D_\nu \xi_\mu$$

 The local renormalization group functions such as double trace beta function are model dependent, but the form is more or less fixed:

$$\delta S = \Lambda + \bar{\beta}^{\mu\nu} T_{\mu\nu} + \bar{\beta}^{\mu\nu;\rho\sigma} T_{\mu\nu} T_{\rho\sigma} + \cdots$$
$$\Lambda = \Lambda_0 + R + \cdots$$
$$\bar{\beta}^{\mu\nu;\rho\sigma} = a q^{\mu\nu} q^{\rho\sigma} + b q^{\mu\rho} q^{\nu\sigma} + \cdots$$

CFT with only EM tensor 2

• One thing to note is that we can simultaneously change the coordinate along the local RG

$$g_{\mu\nu} \to g_{\mu\nu} + dz (D^{\mu}N^{\nu} + D^{\nu}N^{\mu})$$

- The effect is add $\bar{P}_{\mu\nu}(D_{\mu}N_{\nu})$.
- We will regard N^{μ} as shift vector
- A freedom in local renormalization factor $\,n(x,z)$ is regarded as Lapse function

$$ds^{2} = n^{2}dz^{2} + g_{\mu\nu}(dx^{\mu} + N^{\mu}dz)(dx^{\nu} + N^{\nu}dz)$$

• The resulting theory is nothing but Hamiltonian form of 1+4 dimensional (Einstein) gravity (if everything works fine...)

$$S = \int dz d^4x \left(\bar{P}^{\mu\nu} \partial_z g_{\mu\nu} - N^{\mu} D^{\nu} \bar{P}_{\mu\nu} - nH \right)$$
$$H = \sqrt{g} (\Lambda_0 + R + \cdots) - \bar{\beta}^{\mu\nu} \bar{P}_{\mu\nu} - \bar{\beta}^{\mu\nu;\rho\sigma} \bar{P}_{\mu\nu} \bar{P}_{\rho\sigma}$$

- Some claims are based on "optimism" (e.g. gradientness, consistency of constraint, cancellations of higher derivatives).
- Better to check if possible.

• Does it reproduce what we know in AdS/CFT?

a = c test of quantum local RG \rightarrow AdS/CFT

- Consider d = 4 CFT with a = c
- Dimensionless local renormalization functions are universally determined by trace anomaly

 $\Lambda[g_{\mu\nu}] = \Lambda_0 + R + a\text{Euler} - c\text{Weyl}^2 + bR^2$

$$= \Lambda_0 + R + \left(\frac{c}{3} - a + b\right) R^2 + (-2c + a) R_{\mu\nu}^2 + (c - a) R_{\mu\nu\rho\sigma}^2 .$$

$$\bar{\beta}_{\mu\nu} = 2q_{\mu\nu} + \bar{\beta}_1 R q_{\mu\nu} + \bar{\beta}_2 R_{\mu\nu}$$

$$\bar{\beta}_{\mu\nu;\rho\sigma} = g_{\mu\rho}g_{\nu\sigma} - \lambda g_{\mu\nu}g_{\rho\sigma}$$

• Consistency of Hamiltonian requires b = 0 $\lambda = \frac{1}{3}$

- Suppose we'd like to construct the gravity dual with Einstein-Hilbert action (with no higher derivative). Then, we need to cancel $R_{\mu\nu}^2 - \frac{1}{3}R^2$ terms in $\Lambda[g_{\mu\nu}]$ with $\bar{\beta}_{\mu\nu}\mathcal{G}^{\mu\nu;\rho\sigma}\bar{\beta}_{\rho\sigma}$. $\bar{\beta}_{\mu\nu} = 2g_{\mu\nu} + \sqrt{a}\left(R_{\mu\nu} - \frac{R}{6}g_{\mu\nu}\right)$ This appearance of Schouten tensor was computed by Verlinde et al, Kiritsis-Li-Nitti in AdS/CFT
- On the other hand, the metric beta function must be gradient

$$\bar{\beta}_{\mu\nu} = \bar{\beta}_{\mu\nu;\rho\sigma} \frac{\delta S_{\rm EH}}{\delta g_{\rho\sigma}} \qquad S = \int dz d^d x \left(\bar{P}^{\mu\nu} \partial_z g_{\mu\nu} - N^\mu D^\nu \bar{P}_{\mu\nu} - NH \right) \\ H = \sqrt{g} (\Lambda_0 + R + \cdots) - \bar{\beta}^{\mu\nu} \bar{P}_{\mu\nu} - \bar{\beta}^{\mu\nu;\rho\sigma} \bar{P}_{\mu\nu} \bar{P}_{\rho\sigma}$$

 $\mathcal{G}^{\mu\nu;\rho\sigma} = \bar{\beta}^{-1}_{\mu\nu;\rho\sigma}$

a - c test of quantum local RG \rightarrow AdS/CFT

- Consider d = 4 CFT with ~a
 eq c
- Dimensionless local renormalization functions are universally determined by trace anomaly

$$\begin{split} \Lambda[g_{\mu\nu}] &= \Lambda_0 + R + a \text{Euler} - c \text{Weyl}^2 + bR^2 \\ &= \Lambda_0 + R + \left(\frac{c}{3} - a + b\right) R^2 + (-2c + a) R_{\mu\nu}^2 + (c - a) R_{\mu\nu\rho\sigma}^2 \ . \\ \bar{\beta}_{\mu\nu} &= 2g_{\mu\nu} + \bar{\beta}_1 R g_{\mu\nu} + \bar{\beta}_2 R_{\mu\nu} \qquad S = \int dz d^d x \left(\bar{P}^{\mu\nu} \partial_z g_{\mu\nu} - N^{\mu} D^{\nu} \bar{P}_{\mu\nu} - NH\right) \\ \bar{\beta}_{\mu\nu;\rho\sigma} &= g_{\mu\rho} g_{\nu\sigma} - \lambda g_{\mu\nu} g_{\rho\sigma} \qquad H = \sqrt{g} (\Lambda_0 + R + \dots) - \bar{\beta}^{\mu\nu} \bar{P}_{\mu\nu} - \bar{\beta}^{\mu\nu;\rho\sigma} \bar{P}_{\mu\nu} \bar{P}_{\rho\sigma} \end{split}$$

- Within $O(R^2)$, $R^2_{\mu\nu\rho\sigma}$ cannot be cancelled from $\bar{\beta}_{\mu\nu}\mathcal{G}^{\mu\nu;\rho\sigma}\bar{\beta}_{\rho\sigma}$. This is the only origin of $\int d^4x dz \sqrt{g_5} R^2_{IJKL}$ term in d=1+4 from quantum local RG construction
- On the other hand, holographic Weyl anomaly computation says that the source of a-c only comes from $\int d^4x dz \sqrt{g_5} R_{IJKL}^2$ term
- "Derivation" is consistent at $O(R^2)$
- If we wish to retain bR^2 anomaly at the lowest derivative, we may change λ , but we had work harder to get consistency

... and Holographic SFT?

I wish the content would be published somewhere soon...

- Going back to local RG consistency condition we discussed, $\beta\rho=0$

allows the other possibility

$$ho = 0 \ , eta
eq 0 \ {
m Tr} D^{\mu} J_{\mu} = {
m Tr} O$$

- It means $T^{\mu}_{\ \mu} = \beta O = \beta D^{\mu} J_{\mu}$
- When trace of EM tensor is a divergence of virial current, it is scale invariant but not conformal

$$\delta S = \int d^4x \sqrt{g} \sigma(x) T^{\mu}_{\ \mu} = \int d^4x \sqrt{g} \sigma(x) \beta D^{\mu} J_{\mu}$$

Quantum RG construction

- We focus on $\,{
 m Tr}O\,$ and $\,{
 m Tr}J_{\mu}\,$ sector (and multi-trace)
- Single trace beta function

$$\delta S_{\text{single}} = \int d^4 x \beta n(x) ((1-s) \text{Tr}O + s \text{Tr}D^{\mu} J_{\mu})$$

This is ambiguous because of the operator identity

$$\mathrm{Tr}D^{\mu}J_{\mu} = \mathrm{Tr}O$$

(with original 4 dimensional gauge invariance of the Schwinger functional) $S = \int d^4x \sqrt{g} \left(L_0 + g(x) \operatorname{Tr} O(x) + A^{\mu}(x) \operatorname{Tr} J_{\mu} \right)$ $g(x) \to g(x) + w(x)$ $A_{\mu}(x) \to A_{\mu} + \partial_{\mu} w(x)$

• This gives 1+4 dimensional gauge symmetry of the bulk action

Bulk effective action

$$\delta S_{\text{single}} = \int d^4 x \beta n(x) ((1-s) \text{Tr}O + s \text{Tr}D^{\mu} J_{\mu})$$

- Following the recipe, we get the following bulk matter action $\beta ns \rightarrow A_z$

$$S = \int d^4x dz \left(P(\partial_z \Phi + \beta n - A_z) + n\beta_2 P^2 \right.$$
$$\left. + P^{\mu}(\partial_z A_{\mu} - \partial_{\mu} A_z) + n\beta_2^{\mu\nu} P_{\mu} P_{\nu} \right.$$
$$\left. + n(\Lambda_0 + (\partial_{\mu} \Phi + A_{\mu})^2 + F_{\mu\nu}^2 + \cdots) \right]$$

- We have introduced the RG scale dependent gauge transformation \rightarrow (1+4) dim Stuckelberg symmetry
- Freedom of beta function is given by gauge symmetry on A_z

Various gauge fixing

$$S = \int d^4x dz \left(P(\partial_z \Phi + \beta n - A_z) + n\beta_2 P^2 \right.$$
$$\left. + P^{\mu}(\partial_z A_{\mu} - \partial_{\mu} A_z) + n\beta_2^{\mu\nu} P_{\mu} P_{\nu} \right.$$
$$\left. + n(\Lambda_0 + (\partial_{\mu} \Phi + A_{\mu})^2 + F_{\mu\nu}^2 + \cdots) \right.$$

- In unitary gauge $\Phi = 0$, a configuration $A_z dz = \beta n dz \sim \beta \frac{az}{z}$ would be a natural solution (AdS breaking vector VEV but scale inv)
- In axial gauge $A_z = 0$, we instead obtain $\Phi \sim \beta \log z$ ("cyclic RG" that cannot be cancelled) c.f. $T^{\mu}_{\ \mu} = \beta O = \beta D^{\mu} J_{\mu}$
- In "aether gauge" $A_z = \beta n$ we get "healthy extension of Horava gravity" (Foliation preserving diff gravity with $(n^{-1}\partial_\mu n)^2$ terms)
- We did not ask for unitarity. Consistency of Hamiltonian constraint, energy-condition etc. To be checked.

Conclusion

- Local RG → Quantum RG → Holographic RG seem consistent and constraints are beautifully realized
- Need better to understand "strongly coupled assumption" in CFT that assures the bulk locality
- Need better to understand "Wilsonian" local RG constraint beyond power-counting
- Need better understand the bulk role of "unitarity" and "causality" of the boundary QFT (e.g. energy condition)
- Local/Qunatum/Holographic renormalization of non-local operators (Wilson loop, defects) and entanglement entropy

Derivation of quantum RG

1st step: Remove multi trace operator

Start with multi-trace Schwinger functional

$$e^{-W[g_0(x),g_n(x)]} = \int \mathcal{D}X \exp\left(-S_0 + \int g_0(x) \operatorname{Tr}O + \int g_n(x) (\operatorname{Tr}O)^n\right)$$

• Introduce two fields $P_0 \ \Phi_0$ to get rid of multi-trace terms

$$e^{-W} = \int \mathcal{D}X \mathcal{D}\Phi_0 \mathcal{D}P_0 e^{\int P_0(g_0 - \Phi_0) + \int g_n P_0^n} e^{-S_0 + \int \Phi_0 \operatorname{Tr}O}$$

• Single trace action. The price to pay is that coupling constant is dynamical and quantum mechanical.

2nd step: Local renormalization

- Change (local) renormalization scale with dzn(x,z)
- Action is renormalized. Generation of double (or higher) trace operators.

$$\delta S_0 = dz \int d^d x n(x, z) \left(\Lambda[g_0] + \beta_0[g_0] \operatorname{Tr} O + \beta_2[g_0] (\operatorname{Tr} O)^2 + \cdots \right)$$

• Local renormalization means beta functions can contain derivative terms:

$$\Lambda[g_0] = \Lambda_0(g_0) + (D_\mu g_0)^2 + \cdots$$

3rd step: Get rid of RG generated double trace term

• With the same trick, we get rid of RG generated double trace term with two new fields $\Phi_1 P_1$ $\delta S_0 = dz \int d^d x n(x, z) \left(\Lambda[g_0] + \beta_0[g_0] \text{Tr}O + \beta_2[g_0] (\text{Tr}O)^2 + \cdots \right)$

$$e^{-W_{\text{eff}}} = \int \mathcal{D}\Phi_1 \mathcal{D}P_1 e^{\int P_1(\Phi_0 - \Phi_1) + dz \int n(x,z)\Lambda[\Phi_0] + \beta_0[\Phi_0]P_1 + \beta_2[\Phi_0]P_1^2} e^{-S_0 + \int \Phi_1 \text{Tr}O}$$

- At each step in RG, we can get rid of the generated multi-trace operator with two new dynamical fields
- This is what is called quantum RG (Sung-Sik Lee).

4th step: Repeat RG and removal of double trace ops

 Now, along the finite local RG transformation, coupling constant becomes d+1 dimensional dynamical field

$$e^{-W} = \int \mathcal{D}\Phi(x,z)\mathcal{D}P(x,z)e^{\int dz d^d x P \partial_z \Phi + n(x,z)(\Lambda[\Phi] + \beta_0[\Phi] P + \beta_2[\Phi] P^2)}$$

 This is "Hamiltonian form" of path integral. One may integrate out P to get "Lagrangian" form

$$e^{-W} = \int \mathcal{D}\Phi(x,z) e^{\int dz d^d x L_{\text{bulk}}[\Phi]}$$
$$= n [\Phi] - n^{-1} (\partial_{\mu} \Phi)^2 + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi]^2 + n \Lambda [\Phi] + n \beta_{-}^{-1} \beta_0 [\Phi] + n \beta_{-}^{-1$$

- $L_{\text{bulk}}[\Phi] = n^{-1} (\partial_z \Phi)^2 + n\Lambda[\Phi] + n\beta_2^{-1}\beta_0[\Phi]^2 + \cdots$
- When single trace beta function is a gradient flow, it looks like d+1 dimensional 2nd order action for field $\Phi(z, x)$ Recall $\Lambda[g_0] = \Lambda_0(g_0) + (D_\mu g)^2 + \cdots$