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A bit of history: 1950-2000

1954: computers were valve-based

1956: first magnetic disk system sold (IBM RAMAC)

~ 1956: FORTRAN under development

1959: IBM-1401 shipped. Transistorised. Punched card input.

1960: PDP-1 launched (18-bit words)

1964: PDP-8 launched (12-bit words)

1964: System/360 launched (4*8-bit byte words, 8-64-256 kB of RAM)
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A bit of history: 1950-2000 (at CERN)

1963: IBM-7090 (x4 CERN total computing capacity at the time)

1965: CDC-6600 (1MFLOPs, x15 CERN'’s capacity)

1972-1984: CDC-7600, IBM-370/168

1982: VAX 750s,780s,8600s

1988-1993: Cray

1996: mainframe rundown completed. (mainframes replaced by un1x and PC
servers.)
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A bit of history: 1950-2000 in (offline) software

@ 60's-00’s: FORTRAN is king
@ 1964: CERN Programme Library

@ REAP (paper tape measurements), THRESH (geometry reconstruction), GRIND
(kinematic analysis), SUMX, HBOOK (statistical analysis chain),

@ PATCHY (source code management),
@ ZEBRA (memory management, I/O, ...),
@ GEANT3, PAW

@ mid-90’s-...: C++ takes roots in HEP
Object Oriented programming is the cool kid on the block
@ Geant4, ROOT, POOL, LHC++, ATDA

@ 00’s-...: Python becomes the de facto scripting language in HEP
@ framework data cards

@ analysis glue, analyses in python

» PyROOT, rootpy,
» numpy, scipy, IPython, matplotlib

4
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Current software in a nutshell (e.g.: ATLAS)

@ Generators: generation of true particles from fondamental physics first principles,
» not easy, but no software challenge either

@ Full Simulation: tracking of all stable particles in magnetic field through the
detector simulating interaction, recording energy deposition (CPU intensive),

@ Reconstruction: from real data as it comes out of the detector, or from
Monte-Carlo simulation data as above,

@ Fast Simulation: parametric simulation, faster, coarser,

@ Analysis: Daily work of physicists, running on output of reconstruction to derive
analysis specific information (I /0 intensive)

@ everything in the same (c++) offline control framework (except analysis)

Fast Simulatio
(AtlFast)

HepMC )—)l Simulation I—)( G4Hits )—)I Digitization
ESD )(—l Reconstructionl(—( G4Digits )
I Analysis I(—-( AOD ) ByteStream

Analysis
Preparation
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Offline frameworks (ATLAS, LHCB)

Gaudi is:
@ a component object model (coM) based framework
@ mainly written in C++
@ with bits and pieces written in python for steering

@ (although more and more pieces in python for analysis)
@ most of the code written under a single thread assumption
» most of the code is not thread safe )
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Offline framework architecture: components & black-board

Processing

Transient Event|

Data Store Data T4

Apparent dataflow

Real dataflow

I
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Offline framework architecture: components & black-board

Figure: Directed acyclic graph of algorithms from a reconstruction job
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Software in HEP: some numbers

@ Reconstruction frameworks grew from ~3M sLoc to ~ 5M
@ Summing over all HEP software stack for e.g. ATLAS:

event generators: ~ 1.4M SLOC (C++, FORTRAN-77)

1/0 libraries ~ 1.7M sLOC (C++)

simulation libraries ~ 1.2M SL.OC (C++)

reconstruction framework ~ 5M sL.ocC

reconstruction steering/configuration (~ 1M SLOC python)

vyvyYyVvYy

@ GCC:7M sLocC
@ Linux kernel 3.6: 15.9M s1.0C
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Software development cycle

@ VCS (CVS, then SVN. GIT: not yet, at least not for LHC experiments)
@ Nightlies (Jenkins or homegrown solution)

» need a sizeable cluster of build machines (distcc, ccache, ...)
builds the framework stack in ~8h

produces ~ 2000 shared libraries
installs them on AF's (also creates RPMs and tarballs)

vyvyy

@ Devs can then test and develop off the nightly via AF's

Every 6 months or so a new production release is cut, validated (then patched) and
deployed on the World Wide LHC Computing Grid (WLCG).

@ Release size: ~ 5Gb
@ binaries, libraries (externals+framework stack)
@ extra data (sQLite files, physics processes’ modelisation data, . . .)
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Software runtime ?

Big science, big data, big software, big numbers
@ ~ 1min to initialize the application
loading >500 shared libraries
connecting to databases (detector description, geometry, ...)
instantiating ~2000 c++ components
2Gb/4Gb memory footprint per process

THE #I PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

HEY! GET BACK
TOUGRK!
ail

=

(OH. CARRY ON.

(obligatory xkcd reference)
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Software in HEP: sustainable development ?

@ People committing code to VCS per month
» Wide variety of skill level
» Large amount of churn
» Once the physics data is pouring, people go and do physics instead of software

300 -

250 N développeurs —— Deb 2010:démarrage LHC ————————

Fin 2012:arrét LHC

afewrewdpaliy 07 9o

50 Number of unique developers committing
to CMSSW each month

Total over all time - 963

e‘bo e% eq)) e% eq?s e% eo/] e% e% 2,

year
See also "The Life Cycle of HEP Offline Software",
P.Elmer, L. Sexton-Kennedy, C.Jones, CHEP 2007
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Moore’s law
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Moore’s law

10,000,000
Dual-Core Itanium 2 n /
1,000,000 -
Intel CPU Trends A
(sources: Intel, Wikipedia, K. Olukotun) Y
100,000
10,000

= %1 Fréquence!

o rem

a
LY

-

|

@ Transisters (©00) —
@ Clock Speed (MN2)
aPower (W)

@ Pert Klock (P)

Jd 3] 21AN039p dHH

o
1970 1975 1980 1985 1990 1995 2000 2005 2010

S. Binet (LAL) HEP sw 2014-11-20 16/72



3 Walls: the free lunch is over

@ Moore’s law still observed at the hardware level
@ However the “effective” perceived computing power is mitigated J

&=

Transistors used to increase raw-power  Increase global power
10,000,000

[

Confronted with 3 walls: . /_;(:"

190,000

@ power wall Moore’s law i

10,000

@ memory wall aiian

@ instruction level parallelism (ILP) wall ase
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“Easy life” during the last 20-30 years:

@ Moore’s law translated into doubling compute capacity every ~ 18 months (clock
frequency)

But issues with power dissipation
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Memory wall

@ clock frequency increases faster than memory

@ bigger and faster caches somewhat mitigated
impact (for now)

@ memory access latency: bottleneck

@ introduce multi-level (hierarchical) memory caches

Cache Late ey
> for Intel vy Bridge (@3.4 GHz) .w —
> L1: ~ 4cycles o ——
> L2 ~ 12cycles i ——
> L3: ~ 30cycles Main memory:
> RAM: ~ 30cycles+ ~ 50ns e R 200-300 cycles

T .h”.l' e o
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Architecture wall

@ pipelines deep and large
@ various techniques to improve Instruction Level
Parallelism (ILP):
» hardware branch prediction,
hardware speculative execution,
instruction re-ordering,
Just-In-Time (JIT) compilation,
hardware threading, . ..

@ in practice: inter-dependence issues between
instructions limit application of ILP

vvyvyy
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3 walls: the free lunch is over
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Pentium days

@ 2 dimensions:

> pipeline frequency

» number of nodes

@ semiconductor vendors were
increasing frequency

@ users were buying adequate number
of nodes
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Now: 7 dimensions

1

@ first 3 dimensions: =» | Pipelining

» vector units/STMD (Single Instruction,
Multiple Data)
> pipeline

> superscalar Vector width
@ “pseudo” dimension: PP
. . ultr 1
» hardware multithreading 9

@ last 3 dimensions:

» multi-cores
> multi-sockets
» multi-nodes

S. Binet (LAL) HEP sw 2014-11-20 23/72



Now: 7 multiplicative dimensions

. . . Data-parallel
@ 3 first dimensions: P

» vector units/SIMD vectors/matrices

> pipeline

> superscalar

p por L Task-parallel

@ “pseudo” dimension:

> multithreading hardware @ events
@ 3 last dimensions: @ tracks

» multi-cores

» multi-sockets
» multi-nodes Tasks/process-parallel
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Where are we now ?

SIMD ILP HW THREADS

CORES

SOCKETS

MAX 4 4 1.35
1.43 1.25
0.80 1

TYPICAL | 2.5
HEP 1

SIMD ILP HW THREADS

CORES

SOCKETS

MAX 4 16

21.6
4.46
0.80

TYPICAL | 2.5 3.57

0.80

HEP 1

172.8
35.71
4.80

691.2
71.43
9.60

A. Nowak (CERN/OpenLab)
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re do we go ? (dunno!)

Pentium 4 (2000) Xeon Phi (2013)

2020
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Impact on HEP software

CPU = multi-cores
@ each CPU may hold multiple (2 —~ 64) cores
@ each core is individually slower than the “old” CPUs
@ available memory per core decreases

1 number of CPU cores = 1 concurrency + parallelism

@ analysis & reconstruction applications:

> parallelism at event level
> embarassingly parallel

@ parallelism at algorithm level

» potentially more scalable
» more difficult too (code redesign/rewrite)

1

Amdahl’s law: Rspeeaup = ey
CPU

harness parallelism via:
@ multi-processing (eg: AthenaMP, GaudiMP, CMSSW, ...)
@ multi-threading (eg: AthenaMT, GaudiHive, Geant4-MT, CMSSW, ...)

v
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Multi-processing: naive implementation

Launch ninstances of an application on a node with n cores
@ re-use pre-existing code
@ a priori no required modification of pre-existing code
@ satisfactory scalability with the number of cores

Problem(s)

@ resources requirements increase with the number of processes

@ 1 memory footprint

@ other OS (limited) resources: file descriptors, network sockets, . ..
@ share resources (+optimisation) - eg on DAQ clusters

» manage number of running applications

nbr of network connections towards readout system

transfer exact same configuration data n times to same node
recompute ntimes exact same configuration data

CPU optimisation: interleave CPU for event data handling and //O-wait

vyvyYyy
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Multiprocessing and memory sharing: fork+COwW

@ launch many similar jobs, sharing as much memory as possible
@ minimize code modifications
> let the OS perform most of the work for us

@ use the fork () system call

fork ()

@ fork () clones a process, including its entire address space
@ fork (), on modern OSes, is implemented via Copy On Write (COW)
» all the memory pages are shared until a process writes on them
» these memory pages are then copied and become un-shared
@ = fork () as late as possible but before disk 1/0
@ optimal and AUTOMATED sharing of the memory between sub-processes

» coupled to an OS + kernel version ...
> isolation between sub-processes
» Chromium and Firefox use this technique (Zygote process)
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Multiprocessing and memory sharing: fork+COwW

@ pros:
» ALL the memory that can be share will be shared
» modifications restricted to a few core framework packages
» no need for locks/mutexes

@ cons
> once un-shared, memory can not be re-shared
* issue for conditions data
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Example: AthenaMP (ATLAS reconstruction)

@ minimize impact on client/physicist code

@ use a python module multiprocessing for process’ management
> now re-written in C++ (AthenaMP-2)

@ encapsulate modifications related to parallelism inside a new event loop

scheduler.

@ modifications of I/0-related components

bootstrap
initialize fork bootstrap
bootstrap
bootstrap
« - - - =
subprocess
S. Binet (LAL) HEP sw
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Mem(MB)
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@ SP: nAthena in parallel (= ~ 2Gb per proc.)
@ MP: AthenaMP (= ~ 1.2Gb per process)
» allow to do more physics with the same h/w

HEP sw 2014-11-20 32/72



Experiences with multi-processes

@ limited long range impact

@ modifications applied to control framework and 1/O-related components
@ easier to develop with

> no implicit sharing

» no lock, races, ...

v

@ random numbers, seeds and reproducibility

e I/O
> need to chase people directly open () ing files, by-passing framework hooks
» merging output files is tedious (but needed for production)

@ GRID

» submission of MP-jobs (overbooking computing nodes)
> vmem accounting
* most of grid resource monitoring tools will double-count the memory shared by fork () ed
subprocesses
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(first) Conclusions

It is possible to refactor an already existing FORTRAN/C/C++ application, written in a
single-threaded fashion (like Gaudi) with minimal modifications (or at least localised)
to better leverage the new multicore architectures.

Automa(g)ic scaling with the number of cores ?
@ unlikely if Noores > 1024 (memory resources)

@ unlikely at the 1/0 level
@ mapping 1 processus per core not fine-grained enough

@ concurrency at the event level
@ concurrency at the algorithm level

@ concurrency within the algorithms
= multithreading !
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Interlude: Parallelism & Concurrency

@ Concurrency is about dealing with lots of things at once.

@ Parallelism is about doing lots of things at once.

@ Not the same, but related.

@ Concurrency is about structure, parallelism is about execution.

@ Concurrency provides a way to structure a solution to solve a problem that may
(but not necessarily) be parallelizable.

‘ TASK 1 ‘ ‘ TASK 2 ‘

CONCURRENCY

— 1 T H —

PARALLELISM

Concurrency plus communication

Concurrency is a way to structure a program by breaking it into pieces that can be
executed independently. Communication is the means to coordinate the independent
executions.
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Concurrency in HEP frameworks

New developments and/or adiabatic evolution of Gaudi need to:

@ prepare for further gains by exploiting features of today’s CPUs’ u-architecture
» vector registers, instruction pipelining, multiple instructions per cycle (see Sverre Jarp
presentations at CHEP)
» improve data and code locality, hardware threading
> (also relevant for non-fwk code)
@ prepare for, or at least don’t prevent use of, off-loading large computations to
accelerators (GPGPUS, Xeon Phi)
@ prepare for increased exposed concurrency
» a means for better memory usage and improved throughput
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Concurrency in HEP frameworks - |l

Event Event- Event- Event-
specific specific specific specific
data data data data
Global
data
Physics
processes Single copy

of all data
that can be
shared

2014-11-20
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Concurrency in HEP frameworks - Il

Various levels of concurrency can be exposed in current HEP applications:

@ event-level concurrency

» the framework allows to properly and safely process multiple events at a given time
@ algorithm-level concurrency, task- and/or data- oriented concurrency

» the framework allows to partition the processing of an event into various sub-tasks

(calorimetry, tracking, Rols, ...)

» task/functional oriented concurrency: split according to “logical” tasks

» data oriented concurrency: partition the data domain
@ subalgorithm-level concurrency

» each algorithm can itself exposes concurrent sub-sub-tasks
> leverage co-processors, vector units, ...
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Concurrency in HEP frameworks - [V

Event-level concurrency is achieved by:

@ modifying the event loop to hand over multiple events
@ put these multiple events into multiple event stores
@ have algorithms and sequence of algorithms work on these stores

REQUIRES that at least the core components are race-free and thread-safe
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Concurrency in HEP frameworks - V

Alg-level concurrency is achieved by:

@ modifying the algorithm manager to execute multiple algorithms concurrently

@ need new information to properly schedule these algorithms in the correct order:
data dependency graph (hopefully acyclic!)

» either extracted at runtime during a warm-up phase or explicitly at configuration-time

Data T1
A

Transient Event| Processing Output

Input
Pt
TiME ey
Apparent dataflow
<
\ 4 Real dataflow
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Concurrency in HEP frameworks - VI

SubAlg-level concurrency is achieved by:
@ providing tools or libraries to expose concurrency
@ making the framework aware of the available resources

@ making the framework aware of the different tools/libraries for an efficient
scheduling

S. Binet (LAL) HEP sw 2014-11-20 41/72



Many concurrent events

@ Need to deal with the tails of sequential processing

> there is always an Algorithm taking very long producing
data needed by many others

@ introducing pipeling processing
» exclusive access to resources i
> non-reentrant algorithms ! !
» e.g. file writing, DB access, ... i
@ Current frameworks handle a single event at the time. ’

They need to be evolved

» design a powerful and flexible A1gorithm scheduler
» need to define the concept of an event context

TG
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Multithreading in C/C++

@ parallel programming in C++ is doable:

» C/C++ locks + threads (pthread, WinThreads)
* great performances
* good generality
* rather low productivity

» multithreaded applications
* hard to get right
* hard to keep right
* hard to keep efficient and optimized across releases

Parallel programming in c++ is doable,
but is no panacea J
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In a c++ world. ..

@ in C++03, we have libraries to help with parallel programming
> boost::lambda

boost::MPL

boost::thread

Threading Building Blocks (TBB)

Concurrent Collections (CnC)

OpenMP

vVvyYyVvYyYYyYy

@ inC++11, we get:
» X functions (and a new syntax to define them)
» std::thread
> std::future
» std::promise

S. Binet (LAL) HEP sw 2014-11-20 44/72



In a c++ world. ..

Summing vector elements in C using OpenMP - openmp.org Sumin Fortran, using co-array faature
#pragma omp parallel for reduction(+: s) !

for (int i = 03 i < n; it4) { intel.com/software/products
s += x(il; REAL SUM[*]
} CALL SYNC_ALL( WAIT=1 )
DO IMG= 2,NUM_IMAGES()
IF (IMG==THIS_IMARGE()) THEN
SUM = SUM + SUM{IMG=1)

Lo . > - ENDIF
Per element multiply in C++ using Intel” Array Building Blocks - CALL SYNC_ALL( WAIT=IMG )

intel.com/go/arbb ENDDO

void products{ const arbb::dense<arbb::f32>& a,
const arbb::dense<arbb::£32>& b,
arbb::dense<arbb::£32>s ¢) {

c=a* b Parallel function invacation in C using Intel® Cilk™ Plus - cilk.org

} eilk_for (int i=0; i<n; ++i) {
Foota[il);
}

Dot product in Fortran using OpenMP - openmp.org
1$omp parallel do reduction { + : adotb ) Parallel function invacation in C++ using Intel® Threading

de j =1, n ) . Building Blocks - threadingbuildingblocks.org

Enzdszh = adotb + a(j) * b} parallel for (0, n,

[=](int i) { Foo(a[i]); }

l5omp end parallel do )
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In a c++ world. ..

Per element multiply in C using OpenCL -
intel.com/go/opencl
kernel void

dotprod( global const float *a,

MPI code in C for clusters - intel.com/go/mpi
for (d=1; d<ntasks; d++) {
rows = (d <= extra) ? avrow+l : avrow;
printf(* sending %d rows to task %d\n*, rows, dest):

MPI_Send(soffset, 1, MPI_INT, d, mtype, MPI COMM WORLD); global const float *b,
MPI_Send(irows, 1, MPI_INT, d, mtype, MPI_COMM WORLD); A _glﬂbﬂl float *c) _{
MPI_Send(ka[ofset][0], Tows*NCA, MPI_DOUBLE, d, mtype, MPI_COMM_WORLD); int myid = get_global id(0);
MPI_Send(sb, NCA*NCB, MPI_DOUBLE, d, mtype, MPI_COMM_WORLD); clmyid) = amyid] * blmyid];
offset = offset + rows; }

}

Matrix Multiply in Fortran using Intel® Math Kernel Library - intel.com/software/products
call DGEMM(transa,transb,m,n,k,alpha,a,lda,b,1db,beta,c,ldc)

Jury is still out on which tool is the solution. . . )
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Is it (really) tractable ?

Cumulative fraction of event loop CPU

1.0

0.8

0.6

Event loop CPU contributions in JetTau

0.4}
@
@
@
N . .
oaf However, ?t hlgl} pile up and
before optimisation a handful of
[
algorithms dominate
0-0g 50 100 150 200
Number of algorithms
S. Binet (LAL)
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Example: LHCb reconstruction

@ DAG of Brunel (214 Algorithms) I
» obtained by instrumenting the existing sequential | | /N
code T -
» probably still missing ’hidden or indirect’
dependencies
@ this can give us an estimate of the potential for —
concurrency T
> assuming no changes in current reconstruction )
algorithms —
v
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Implementation and PoC

Testbed for these developments: GaudiHive

EventLoopMgr

LCG/LHCb/ATLAS proj
@ a prOjeCt Scheduler
@ toy framework evolving into a real one Algoritm Pool

> No real algorithms but CPU crunchers
» timing of real workflow reproduced

q A~ R . ‘ Algorlthm
@ Schedule algorithm when its inputs are available \ Whmboard

]:\ ent N
Cun( xt
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Implementation and PoC - Il

EventLoopMgr

@ Multiple events managed simultaneously
> bigger probability to schedule an alg 5
Scheduler

» whiteboard integrated in the DataSvc
> DataSvc made thread-safe Algorithm Pool

@ Several copies of the same algorithms can coexist :
» running on different events ‘ S

» responsibility of AlgoPool .| Algorithm

Whiteboard
@ Data specific to execution stored in the execution [ \

Execution | Event N
context ) =) \—';'—J
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Implementation notes

task-oriented concurrency handled via TBB

> de facto standard among experiments (ATLAS, CMS and LHCb)
» useful concurrent containers and algorithms (parallel_for,...)

leverage C++11 constructs and memory model

> atomics
» confortable syntax (range-based for loops, auto, tuples)

new algorithm steering to handle dependency graph
» opportunity to streamline/harmonize with trigger steering solution

thread-safe message service (TBBMessageService)

work on a thread-safe ToolSvc and ServiceMgr
auditors ? incidents ?
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Test on Brunel workflow

GaudiHive Speedup (Brunel, 100 evts)

N
a

#Simultaneous Evts:
20 (clone)
—— 20
5 (clone)
5
s 3 (clone)
3

@ 214 algorithms, real data
dependencies, (average) real timing
» maximum speedup depends stringly
on the workflow chosen

N
S

st 2 (clone)
—— 2
w@ 1 (clone)
——

Speedup wrt Serial Case
&

@ adding more simultaneous events
moves the maximum concurrency from
3 to 4 with single A1gorithm
instances

@ increased parallelism when cloning A , T
algorithms Thread Pool Size

» even with a moderate number of
events in flight

Test system with 12 physical cores
x2 hyperthreads (HT) J
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Concurrent Gaudi: status

@ a prototype of a concurrent Gaudi (GaudiHive) has been developed as an
evolution (new branch in the Gaudi repository)

» able to schedule and run algorithms concurrently
» able to run multiple events simultaneously
» friendly with sub-event parallelism if using TBB
@ so far, tested with Brunel reconstruction workflow:
» important speedup already been obtained, but no ‘perfect’ scaling achieved yet
» Algorithm cloning increases parallelism, keeps latency under control
@ test bench to exercize timings and dependencies for other applications:

» CMSSW reconstruction workflow
» ATLAS calo-reconstruction
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Inac++11 world...

C++11/C++14 is definitively an improvement,
but the old issues are still with us. . .
(one needs an adequate understanding of the 1300 pages of the c++ standard)

@ build scalability

» templates
» headers
» still no modules/packages

* maybe in the next Technical Report ? (20177?)

@ code distribution
> no CPAN- nor PyPI-like infrastructure (and cross-platform) for c++
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Time for a new language ?

“Successful new languages build on existing languages and where
possible, support legacy software. C++ grew our of C. java grew out of C++.
To the programmer, they are all one continuous family of C languages.”

(T. Mattson)

@ notable exception (which confirms the rule): python

Can we have a language:
@ as easy (to learn and use) as python,
@ as fast (or nearly as fast) as C/C++/FORTRAN,
@ with none of the deficiencies of c++,
@ and is multicore/manycore friendly ?
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python/pypy
FORTRAN-2008

Vala
Swift
Rust

Go
Chapel
Scala
Haskell

Clojure
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Why not Go ?
golang.org
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http://golang.org

Elements of go

@ obligatory hello world example...

package main
import "fmt"
func main() {
fmt .Println("Hello, World")
}

http://golang.org ’D
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Elements of go - I

@ founding fathers:

» Russ Cox, Robert Griesemer, lan Lance Taylor
> Rob Pike, Ken Thompson

@ concurrent, compiled
@ garbage collected
(]
o

an open-source general programming language

best of both ‘worlds’:
» feel of a dynamic language
* limited verbosity thanks to type inference system, map, slices

» safety of a static type system
» compiled down to machine language (so it is fast)

* goal is within 10% of C
@ object-oriented (but w/o classes), builtin reflection
@ first-class functions with closures
@ duck-typing a la python (but better) thanks to its interfaces
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Go concurrent

goroutines

@ a function executing concurrently as other goroutines in the same address space
@ starting a goroutine is done with the go keyword

» go myfct (argl, arg2)
@ growable stack

» lightweight threads
» starts with a few kB, grows (and shrinks) as needed
» no stack overflow
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Go concurrent - Il

@ provide (type safe) communication and synchronization

// create a channel of mytype

my_chan := make(chan mytype)

my_chan <- some_data // sending data
some_data = <- my_chan // receiving data

@ send and receive are atomic J

"Do not communicate by sharing memory; instead,
share memory by communicating”
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Non-elements of Go

@ no dynamic libraries (frown upon)
@ no dynamic loading (yet)
» but can either rely on separate processes
* IPC is made easy viathe netchan package
» or rebuild executables on the fly

* compilation of Go code is fast
* even faster than FORTRAN and/or C

@ no templates/generics

» still open issue
> looking for the proper Go -friendly design

@ no operator overloading

S. Binet (LAL) HEP sw 2014-11-20 62/72



go-hep/fads: real world use case

@ translated c++ Delphes into Go
@ go-hep/fads: Fast Detector Simulation for HEP
@ installation:

$ go get github.com/go-hep/fads/...
$ fads-app -help
Usage: fads-app [options] <hepmc-input-file>

ex:
$ fads-app -1=INFO -evtmax=-1 ./testdata/hepmc.data

options:
-cpu-prof=false: enable CPU profiling
-evtmax=-1: number of events to process
-1="INFO": log level (DEBUG|INFO|WARN|ERROR)
-nprocs=0: number of concurrent events to process

S. Binet (LAL) HEP sw 2014-11-20 63/72


https://cp3.irmp.ucl.ac.be/projects/delphes
https://github.com/go-hep/fads

go—hep/fads component

a HepMC converter,

particle propagator,

calorimeter simulator,

energy rescaler, momentum smearer,
isolation,

b-tagging, tau-tagging,

jet-finder (reimplementation of FastJet in Go)

histogram service

Caveats:
@ no real persistency to speak of (JSON, ASCII, Gob)

@ jet clustering limited to N°® (slowest and dumbest scheme of C++-FastJet)
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Performances

@ good memory footprint scaling (wrt Delphes and multi-process)
@ good cPU scaling (wrt multi-process)

@ OK-ish cpU performances wrt Delphes

CPUtime (s)

2SS (k8)

linu- CPU time (5] - 500 events

dipnés  +
fads

60000

55000

50000

45000

40000

35000

20000

25000

20000

o0s 1 15
nbr of pracs

linux- RSS (k) - 500 events

doipnes  +
fas

15000
05

05 1 15
b of procs

HEP sw

ceUtme (5)

RSS (VE)

00

800 [

600

Ganwin - CPUtime (s) - 10000 events

finear
faos -

b of procs

darwin - RSS (M) - 10000 events

Tnear  +
faos

10 2 B 40 50 0
o of procs
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Conclusions
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Conclusions

@ Moore’s law still observed at the hardware level
> power wall
> memory wall
> ILP wall

@ concurrent and parallel programming required to efficiently and fully leverage
today (and tomorrow)’s CPU architectures
» SIMD (SSE, AVX), (auto-)vectorization
> data-parallel
> task-parallel
» “think parallel”
» re-design code and algorithms in a multi-threaded context
@ ARM based servers on the verge of being deployed
» AMD: 2015
» Boston Viridis: now
> better (nimbler) energy consumption (wrt traditional x86)
@ Go ?
tour.golang.org
tailored for concurrent programming
tailored for (easy) cloud deployment
language and runtime still relatively young but already quite robust and performant

vvyyvyy
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http://tour.golang.org

Bonus }
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Note on data orgamsatlon

Array of objects Struct of arrays

N

More suitable for vectorisation

SDE>60T

S

Ex: un objet=une trace avec des variables,
des pointeurs vers des informations
géométriques, une liste (de longueur
variable) de points

Data organisation often need to be completely revisited
prior to algorithm vectorisation

(may improve performance even without vectorisation due
to better locality (less cache misses))
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HEP sw foundatlon
e~ B S S Vi

Motivation
Pour exploiter efficacement les nouveaux matériels, et garder le contact avec les autres
communautés scientifiques, notre patrimoine logiciel vieillissant a besoin d‘une refonte
profonde (C++11, parallélisme sous toute ses formes).

I.’;!!’

Proposition
Créer une collaboration formelle mondiale, afin d’apporter plus de reconnaissance aux
contributeurs, de solliciter des fonds auprés de H2020 et NSF/DOE, d'etre plus attractif
aupres de I'industrie.

Work Packages
Etudes R&D courtes sur les alternatives matérielles et logicielles.
Remaniement des bibliothéques et boites a outils existantes, maintenance a long terme

Développement de nouveaux composants logiciels d’intéret général.

Constitution d’une infrastructure d'essai matérielle (Xeon/Phi, AMD, NVidia, ARM, ...) et
logicielle (compilateurs, déboggeurs, profileurs,...).

Déploiement d’outils et processus communs (dépcts, systéme d'intégration continue, ...). o
Expertise, consultance et accompagnement aupres des expériences.

Réunion de lancement au CERN 3-4 avril 2014

Collecte de « white papers » en mai
Accord violent, d’'ol une organisation légére devrait émerger
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Exemple : reco traces

Option 1: chaque
trace reconstruite
indépendamment
=>OK mais points
partagés?
Option 2: chaque
secteur reconstruit
indépendamment
= 0K mais traitement
des bords ?

Note : niveau xigec ﬁ/a//te des resultats vs rapidité différent suivant
le contexte. On peut &tre moins précis mais plus rapide au niveau du
déclenchement qu’hors-ligne an
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Cache Hierarchy

28

From CPU to

main memory

on a Haswell

processor

= With

multicore,
memory
bandwidth is
shared
between
cores in the
same
processor
(socket)

c =cycle

S. Binet (LAL)

Processor Core
(Registers)

|

Computer Architecture and Performance Tuning \ »

.“--
. o

CERN

openlak

(R:64B + W:32B)/1c

ET L1D 4c latency
(32 KB) (32 KB)
i i R: 64B/1c
L2 11c latency
(256 KB)
32B/1c for all cores
> 21c latency
Shared L3
(8192 KB)
~24 B/c for all cores
> 200c latency

Sverre Jarp - CERN
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