
Software in HEP:
Parallelism strikes back

Sébastien Binet

LAL/IN2P3

2014-11-20

S. Binet (LAL) HEP sw 2014-11-20 1 / 72

Parallelism: why?

S. Binet (LAL) HEP sw 2014-11-20 2 / 72

A bit of history: 1950-2000

1954: computers were valve-based
1956: first magnetic disk system sold (IBM RAMAC)
∼ 1956: FORTRAN under development
1959: IBM-1401 shipped. Transistorised. Punched card input.
1960: PDP-1 launched (18-bit words)
1964: PDP-8 launched (12-bit words)
1964: System/360 launched (4*8-bit byte words, 8-64-256 kB of RAM)

S. Binet (LAL) HEP sw 2014-11-20 3 / 72

A bit of history: 1950-2000 (at CERN)

1963: IBM-7090 (×4 CERN total computing capacity at the time)
1965: CDC-6600 (1MFLOPs, ×15 CERN’s capacity)
1972-1984: CDC-7600, IBM-370/168
1982: VAX 750s,780s,8600s
1988-1993: Cray
1996: mainframe rundown completed. (mainframes replaced by UNIX and PC
servers.)

S. Binet (LAL) HEP sw 2014-11-20 4 / 72

S. Binet (LAL) HEP sw 2014-11-20 5 / 72

A bit of history: 1950-2000 in (offline) software

60’s-00’s: FORTRAN is king

1964: CERN Programme Library

REAP (paper tape measurements), THRESH (geometry reconstruction), GRIND
(kinematic analysis), SUMX, HBOOK (statistical analysis chain),

PATCHY (source code management),

ZEBRA (memory management, I/O, . . .),

GEANT3, PAW

mid-90’s-. . . : C++ takes roots in HEP

Object Oriented programming is the cool kid on the block

Geant4, ROOT, POOL, LHC++, AIDA

00’s-. . . : Python becomes the de facto scripting language in HEP

framework data cards
analysis glue, analyses in python

I PyROOT, rootpy,
I numpy, scipy, IPython, matplotlib

S. Binet (LAL) HEP sw 2014-11-20 6 / 72

Current software in a nutshell (e.g.: ATLAS)

Generators: generation of true particles from fondamental physics first principles,
I not easy, but no software challenge either

Full Simulation: tracking of all stable particles in magnetic field through the
detector simulating interaction, recording energy deposition (CPU intensive),

Reconstruction: from real data as it comes out of the detector, or from
Monte-Carlo simulation data as above,

Fast Simulation: parametric simulation, faster, coarser,

Analysis: Daily work of physicists, running on output of reconstruction to derive
analysis specific information (I/O intensive)

everything in the same (C++) offline control framework (except analysis)

S. Binet (LAL) HEP sw 2014-11-20 7 / 72

Offline frameworks (ATLAS, LHCB)

Gaudi is:

a component object model (COM) based framework

mainly written in C++

with bits and pieces written in python for steering

(although more and more pieces in python for analysis)
most of the code written under a single thread assumption

I most of the code is not thread safe

S. Binet (LAL) HEP sw 2014-11-20 8 / 72

Offline framework architecture: components & black-boardAlgorithms and Data Flows
! The meat of the applications is

coded by physicists in terms of
Algorithms
! They transform raw input event data

into processed data
! e.g. from digits -> hits -> tracks ->

jets -> etc

! Algorithms solely interact with the
Event Data Store (“whiteboard”) to
get input data and put the results
! Agnostic to the actual “producer” and

“consumer” of the data
! Complete data-flows are programmed

by the integrator of the application
(e.g. Reconstruction, Trigger, etc.)

4

Algorithm
A

Algorithm
B

Algorithm
C

Transient Event
Data Store

Data T1

Data T2, T3

Data T2

Data T3, T4

Data T4

Data T5

Data T1 Data T1

Data T5

Real dataflow

Apparent dataflow

Thursday, November 1, 12

S. Binet (LAL) HEP sw 2014-11-20 9 / 72

Offline framework architecture: components & black-board

Figure: Directed acyclic graph of algorithms from a reconstruction job

S. Binet (LAL) HEP sw 2014-11-20 10 / 72

Software in HEP: some numbers

Reconstruction frameworks grew from ∼3M SLOC to ∼ 5M

Summing over all HEP software stack for e.g. ATLAS:
I event generators: ∼ 1.4M SLOC (C++, FORTRAN-77)
I I/O libraries ∼ 1.7M SLOC (C++)
I simulation libraries ∼ 1.2M SLOC (C++)
I reconstruction framework ∼ 5M SLOC
I reconstruction steering/configuration (∼ 1M SLOC python)

GCC: 7M SLOC

Linux kernel 3.6: 15.9M SLOC

S. Binet (LAL) HEP sw 2014-11-20 11 / 72

Software development cycle

VCS (CVS, then SVN. GIT: not yet, at least not for LHC experiments)
Nightlies (Jenkins or homegrown solution)

I need a sizeable cluster of build machines (distcc, ccache, ...)
I builds the framework stack in ∼8h
I produces ∼ 2000 shared libraries
I installs them on AFS (also creates RPMs and tarballs)

Devs can then test and develop off the nightly via AFS

Every 6 months or so a new production release is cut, validated (then patched) and
deployed on the World Wide LHC Computing Grid (WLCG).

Release size: ∼ 5Gb

binaries, libraries (externals+framework stack)

extra data (SQLite files, physics processes’ modelisation data, . . .)

S. Binet (LAL) HEP sw 2014-11-20 12 / 72

Software runtime ?

Big science, big data, big software, big numbers

∼ 1min to initialize the application

loading >500 shared libraries

connecting to databases (detector description, geometry, ...)

instantiating ∼2000 C++ components

2Gb/4Gb memory footprint per process

(obligatory xkcd reference)

S. Binet (LAL) HEP sw 2014-11-20 13 / 72

Software in HEP: sustainable development ?

People committing code to VCS per month
I Wide variety of skill level
I Large amount of churn
I Once the physics data is pouring, people go and do physics instead of software

S. Binet (LAL) HEP sw 2014-11-20 14 / 72

Moore’s law

S. Binet (LAL) HEP sw 2014-11-20 15 / 72

Moore’s law

S. Binet (LAL) HEP sw 2014-11-20 16 / 72

3 Walls: the free lunch is over

Moore’s law still observed at the hardware level

However the “effective” perceived computing power is mitigated

Confronted with 3 walls:

power wall

memory wall

instruction level parallelism (ILP) wall

S. Binet (LAL) HEP sw 2014-11-20 17 / 72

Power wall

“Easy life” during the last 20-30 years:

Moore’s law translated into doubling compute capacity every ' 18 months (clock
frequency)

But issues with power dissipation

Moore’s law still observed at the hardware level:

↑ transitors⇒ ↑ number of cores

keep clock frequency constant to limit energy
consumption

Concurrency & Parallelism are necessary to efficiently
harness the compute power of our new multi-cores CPUs

architectures.

S. Binet (LAL) HEP sw 2014-11-20 18 / 72

Memory wall

clock frequency increases faster than memory

bigger and faster caches somewhat mitigated
impact (for now)

memory access latency: bottleneck
introduce multi-level (hierarchical) memory caches

I for Intel Ivy Bridge (@3.4 GHz)
I L1: ∼ 4cycles
I L2: ∼ 12cycles
I L3: ∼ 30cycles
I RAM: ∼ 30cycles+ ∼ 50ns

S. Binet (LAL) HEP sw 2014-11-20 19 / 72

Architecture wall

pipelines deep and large
various techniques to improve Instruction Level
Parallelism (ILP):

I hardware branch prediction,
I hardware speculative execution,
I instruction re-ordering,
I Just-In-Time (JIT) compilation,
I hardware threading, . . .

in practice: inter-dependence issues between
instructions limit application of ILP

S. Binet (LAL) HEP sw 2014-11-20 20 / 72

3 walls: the free lunch is over

S. Binet (LAL) HEP sw 2014-11-20 21 / 72

Pentium days

2 dimensions:
I pipeline frequency
I number of nodes

semiconductor vendors were
increasing frequency

users were buying adequate number
of nodes

Sverre Jarp - CERN 18

In the days of the Pentium

Life was really simple:

Basically two dimensions

The frequency (of the pipeline)
The number of boxes

1. The semiconductor industry

increased the frequency

2. We acquired the right number
of (single-socket) boxes

Superscalar

Pipelining

Nodes

Sockets

S. Binet (LAL) HEP sw 2014-11-20 22 / 72

Now: 7 dimensions

first 3 dimensions:
I vector units/SIMD (Single Instruction,

Multiple Data)
I pipeline
I superscalar

“pseudo” dimension:
I hardware multithreading

last 3 dimensions:
I multi-cores
I multi-sockets
I multi-nodes

Sverre Jarp - CERN 19

Now: Seven dimensions of performance

First three dimensions:
Hardware vectors/SIMD
Pipelining
Superscalar

Next dimension is a “pseudo”
dimension:

Hardware multithreading

Last three dimensions:
Multiple cores
Multiple sockets
Multiple compute nodes

Vector width

Superscalar

Pipelining

SIMD = Single Instruction Multiple Data

Nodes

Multicore

Sockets

Multithreading

S. Binet (LAL) HEP sw 2014-11-20 23 / 72

Now: 7 multiplicative dimensions

3 first dimensions:
I vector units/SIMD
I pipeline
I superscalar

“pseudo” dimension:
I multithreading hardware

3 last dimensions:
I multi-cores
I multi-sockets
I multi-nodes

Data-parallel
vectors/matrices

Task-parallel
events

tracks

Tasks/process-parallel

S. Binet (LAL) HEP sw 2014-11-20 24 / 72

Where are we now ?!"#$#%&$#%'#%()'*%

!"#$%&'()*+,-(.(!"(/0#,1&(*"(*22.13&.43&52(6*70/18"9(

!"#$% "%&% '()*'+,-$!% ./+,!% !/.0,*!%

#-1% :(:(;<=>(?(:(
*2&".-%% @<>(;<:=(;<@>(?(@(
',&% ;(A<?A(;(B(@(

!"#$% "%&% '()*'+,-$!% ./+,!% !/.0,*!%

#-1% :(;B(@;<B(;C@<?(BD;<@(
*2&".-%% @<>(=<>C(:<:B(=><C;(C;<:=(
',&% ;(A<?A(A<?A(:<?A(D<BA(

A. Nowak (CERN/OpenLab)

S. Binet (LAL) HEP sw 2014-11-20 25 / 72

Where do we go ? (dunno!)
We do not Know Where we Go

6

!"#$%&'(')*+++,' -".#'!/0')*+12,'

345'6!7'89:".#';5'<=++')*+12,'
++'

Friday, March 8, 13

S. Binet (LAL) HEP sw 2014-11-20 26 / 72

Impact on HEP software

CPU⇒ multi-cores

each CPU may hold multiple (2→∼ 64) cores

each core is individually slower than the “old” CPUs

available memory per core decreases

↑ number of CPU cores⇒ ↑ concurrency + parallelism

analysis & reconstruction applications:
I parallelism at event level
I embarassingly parallel

parallelism at algorithm level
I potentially more scalable
I more difficult too (code redesign/rewrite)

Amdahl’s law: Rspeedup = 1
(1−S)+ S

NCPU
harness parallelism via:

multi-processing (eg: AthenaMP, GaudiMP, CMSSW, ...)

multi-threading (eg: AthenaMT, GaudiHive, Geant4-MT, CMSSW, ...)

S. Binet (LAL) HEP sw 2014-11-20 27 / 72

Multi-processing: naive implementation

Launch n instances of an application on a node with n cores

re-use pre-existing code

a priori no required modification of pre-existing code

satisfactory scalability with the number of cores

Problem(s)
resources requirements increase with the number of processes

↑ memory footprint

other OS (limited) resources: file descriptors, network sockets, . . .

share resources (+optimisation) - eg on DAQ clusters
I manage number of running applications
I nbr of network connections towards readout system
I transfer exact same configuration data n times to same node
I recompute n times exact same configuration data
I CPU optimisation: interleave CPU for event data handling and I/O-wait

S. Binet (LAL) HEP sw 2014-11-20 28 / 72

Multiprocessing and memory sharing: fork+COW

Principles
launch many similar jobs, sharing as much memory as possible
minimize code modifications

I let the OS perform most of the work for us

use the fork() system call

fork()

fork() clones a process, including its entire address space
fork(), on modern OSes, is implemented via Copy On Write (COW)

I all the memory pages are shared until a process writes on them
I these memory pages are then copied and become un-shared

⇒ fork() as late as possible but before disk I/O
optimal and AUTOMATED sharing of the memory between sub-processes

I coupled to an OS + kernel version . . .
I isolation between sub-processes
I Chromium and Firefox use this technique (Zygote process)

S. Binet (LAL) HEP sw 2014-11-20 29 / 72

Multiprocessing and memory sharing: fork+COW

pros:
I ALL the memory that can be share will be shared
I modifications restricted to a few core framework packages
I no need for locks/mutexes

cons
I once un-shared, memory can not be re-shared

F issue for conditions data

S. Binet (LAL) HEP sw 2014-11-20 30 / 72

Example: AthenaMP (ATLAS reconstruction)

minimize impact on client/physicist code
use a python module multiprocessing for process’ management

I now re-written in C++ (AthenaMP-2)

encapsulate modifications related to parallelism inside a new event loop
scheduler.

modifications of I/O-related components

S. Binet (LAL) HEP sw 2014-11-20 31 / 72

SP: n Athena in parallel (⇒ ∼ 2Gb per proc.)
MP: AthenaMP (⇒ ∼ 1.2Gb per process)

I allow to do more physics with the same h/w

S. Binet (LAL) HEP sw 2014-11-20 32 / 72

Experiences with multi-processes

limited long range impact

modifications applied to control framework and I/O-related components
easier to develop with

I no implicit sharing
I no lock, races, . . .

Problems
random numbers, seeds and reproducibility
I/O

I need to chase people directly open()ing files, by-passing framework hooks
I merging output files is tedious (but needed for production)

GRID
I submission of MP-jobs (overbooking computing nodes)
I vmem accounting

F most of grid resource monitoring tools will double-count the memory shared by fork()ed
subprocesses

S. Binet (LAL) HEP sw 2014-11-20 33 / 72

(first) Conclusions

It is possible to refactor an already existing FORTRAN/C/C++ application, written in a
single-threaded fashion (like Gaudi) with minimal modifications (or at least localised)

to better leverage the new multicore architectures.

Automa(g)ic scaling with the number of cores ?

unlikely if Ncores ≥ 1024 (memory resources)

unlikely at the I/O level

mapping 1 processus per core not fine-grained enough

concurrency at the event level

concurrency at the algorithm level

concurrency within the algorithms
⇒ multithreading !

S. Binet (LAL) HEP sw 2014-11-20 34 / 72

Interlude: Parallelism & Concurrency

Concurrency is about dealing with lots of things at once.

Parallelism is about doing lots of things at once.

Not the same, but related.

Concurrency is about structure, parallelism is about execution.

Concurrency provides a way to structure a solution to solve a problem that may
(but not necessarily) be parallelizable.

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

22

Definition of concurrency/parallelism

Concurrent programming:
Expression of a total algorithmic problem in logically
independent parts (independent control flows)

Parallel execution
Independent parts of a program execute simultaneously

TASK 1 TASK 2

CONCURRENCY

PARALLELISM

Concurrency plus communication
Concurrency is a way to structure a program by breaking it into pieces that can be
executed independently. Communication is the means to coordinate the independent
executions.

S. Binet (LAL) HEP sw 2014-11-20 35 / 72

Concurrency in HEP frameworks

New developments and/or adiabatic evolution of Gaudi need to:

prepare for further gains by exploiting features of today’s CPUs’ µ-architecture
I vector registers, instruction pipelining, multiple instructions per cycle (see Sverre Jarp

presentations at CHEP)
I improve data and code locality, hardware threading
I (also relevant for non-fwk code)

prepare for, or at least don’t prevent use of, off-loading large computations to
accelerators (GPGPUS, Xeon Phi)
prepare for increased exposed concurrency

I a means for better memory usage and improved throughput

S. Binet (LAL) HEP sw 2014-11-20 36 / 72

Concurrency in HEP frameworks - II

Sverre Jarp - CERN 65

Reentrant
code

Magnetic
field

Physics
processes

Global
data

Event
specific

data

Core 0

Event-
specific

data

Core 1

Event-
specific

data

Core 2

Event-
specific

data

Core 3

Achieving efficient memory footprint
As follows:

Single copy
of all data
that can be
shared

S. Binet (LAL) HEP sw 2014-11-20 37 / 72

Concurrency in HEP frameworks - III

Various levels of concurrency can be exposed in current HEP applications:

event-level concurrency
I the framework allows to properly and safely process multiple events at a given time

algorithm-level concurrency, task- and/or data- oriented concurrency
I the framework allows to partition the processing of an event into various sub-tasks

(calorimetry, tracking, RoIs, . . .)
I task/functional oriented concurrency: split according to “logical” tasks
I data oriented concurrency: partition the data domain

subalgorithm-level concurrency
I each algorithm can itself exposes concurrent sub-sub-tasks
I leverage co-processors, vector units, . . .

S. Binet (LAL) HEP sw 2014-11-20 38 / 72

Concurrency in HEP frameworks - IV

Event-level concurrency is achieved by:

modifying the event loop to hand over multiple events

put these multiple events into multiple event stores

have algorithms and sequence of algorithms work on these stores

REQUIRES that at least the core components are race-free and thread-safe

S. Binet (LAL) HEP sw 2014-11-20 39 / 72

Concurrency in HEP frameworks - V

Alg-level concurrency is achieved by:

modifying the algorithm manager to execute multiple algorithms concurrently
need new information to properly schedule these algorithms in the correct order:
data dependency graph (hopefully acyclic!)

I either extracted at runtime during a warm-up phase or explicitly at configuration-time

Algorithms and Data Flows
! The meat of the applications is

coded by physicists in terms of
Algorithms
! They transform raw input event data

into processed data
! e.g. from digits -> hits -> tracks ->

jets -> etc

! Algorithms solely interact with the
Event Data Store (“whiteboard”) to
get input data and put the results
! Agnostic to the actual “producer” and

“consumer” of the data
! Complete data-flows are programmed

by the integrator of the application
(e.g. Reconstruction, Trigger, etc.)

4

Algorithm
A

Algorithm
B

Algorithm
C

Transient Event
Data Store

Data T1

Data T2, T3

Data T2

Data T3, T4

Data T4

Data T5

Data T1 Data T1

Data T5

Real dataflow

Apparent dataflow

Thursday, November 1, 12

S. Binet (LAL) HEP sw 2014-11-20 40 / 72

Concurrency in HEP frameworks - VI

SubAlg-level concurrency is achieved by:

providing tools or libraries to expose concurrency

making the framework aware of the available resources

making the framework aware of the different tools/libraries for an efficient
scheduling

S. Binet (LAL) HEP sw 2014-11-20 41 / 72

Many concurrent events

Need to deal with the tails of sequential processing
I there is always an Algorithm taking very long producing

data needed by many others
introducing pipeling processing

I exclusive access to resources
I non-reentrant algorithms
I e.g. file writing, DB access, . . .

Current frameworks handle a single event at the time.
They need to be evolved

I design a powerful and flexible Algorithm scheduler
I need to define the concept of an event context

S. Binet (LAL) HEP sw 2014-11-20 42 / 72

Multithreading in C/C++

parallel programming in C++ is doable:
I C/C++ locks + threads (pthread, WinThreads)

F great performances
F good generality
F rather low productivity

I multithreaded applications
F hard to get right
F hard to keep right
F hard to keep efficient and optimized across releases

Parallel programming in C++ is doable,
but is no panacea

S. Binet (LAL) HEP sw 2014-11-20 43 / 72

In a C++ world. . .

in C++03, we have libraries to help with parallel programming
I boost::lambda
I boost::MPL
I boost::thread
I Threading Building Blocks (TBB)
I Concurrent Collections (CnC)
I OpenMP
I . . .

in C++11, we get:
I λ functions (and a new syntax to define them)
I std::thread,
I std::future,
I std::promise

S. Binet (LAL) HEP sw 2014-11-20 44 / 72

In a C++ world. . .!"#$"%&&%'()(*+,-./,

,

!"#$%&'()*+,-(.(!"(/0#,1&(*"(*22.13&.43&52(6*70/18"9(

S. Binet (LAL) HEP sw 2014-11-20 45 / 72

In a C++ world. . .!"#$"%&&%'()(*+,-./,

,

!"#$%&'()*+,-(.(!"(/0#,1&(*"(*22.13&.43&52(6*70/18"9(

Jury is still out on which tool is the solution. . .

S. Binet (LAL) HEP sw 2014-11-20 46 / 72

Is it (really) tractable ?

S. Binet (LAL) HEP sw 2014-11-20 47 / 72

Example: LHCb reconstruction

DAG of Brunel (214 Algorithms)
I obtained by instrumenting the existing sequential

code
I probably still missing ’hidden or indirect’

dependencies
this can give us an estimate of the potential for
concurrency

I assuming no changes in current reconstruction
algorithms

S. Binet (LAL) HEP sw 2014-11-20 48 / 72

Implementation and PoC

Testbed for these developments: GaudiHive

a LCG/LHCb/ATLAS project
toy framework evolving into a real one

I No real algorithms but CPU crunchers
I timing of real workflow reproduced

Schedule algorithm when its inputs are available

S. Binet (LAL) HEP sw 2014-11-20 49 / 72

Implementation and PoC - II

Multiple events managed simultaneously
I bigger probability to schedule an alg
I whiteboard integrated in the DataSvc
I DataSvc made thread-safe

Several copies of the same algorithms can coexist
I running on different events
I responsibility of AlgoPool

Data specific to execution stored in the execution
context

S. Binet (LAL) HEP sw 2014-11-20 50 / 72

Implementation notes

task-oriented concurrency handled via TBB
I de facto standard among experiments (ATLAS, CMS and LHCb)
I useful concurrent containers and algorithms (parallel_for,. . .)

leverage C++11 constructs and memory model
I atomics
I confortable syntax (range-based for loops, auto, tuples)

new algorithm steering to handle dependency graph
I opportunity to streamline/harmonize with trigger steering solution

thread-safe message service (TBBMessageService)

work on a thread-safe ToolSvc and ServiceMgr

auditors ? incidents ?

S. Binet (LAL) HEP sw 2014-11-20 51 / 72

Test on Brunel workflow

214 algorithms, real data
dependencies, (average) real timing

I maximum speedup depends stringly
on the workflow chosen

adding more simultaneous events
moves the maximum concurrency from
3 to 4 with single Algorithm
instances
increased parallelism when cloning
algorithms

I even with a moderate number of
events in flight

Test system with 12 physical cores
x2 hyperthreads (HT)

S. Binet (LAL) HEP sw 2014-11-20 52 / 72

Concurrent Gaudi: status

a prototype of a concurrent Gaudi (GaudiHive) has been developed as an
evolution (new branch in the Gaudi repository)

I able to schedule and run algorithms concurrently
I able to run multiple events simultaneously
I friendly with sub-event parallelism if using TBB

so far, tested with Brunel reconstruction workflow:
I important speedup already been obtained, but no ’perfect’ scaling achieved yet
I Algorithm cloning increases parallelism, keeps latency under control

test bench to exercize timings and dependencies for other applications:
I CMSSW reconstruction workflow
I ATLAS calo-reconstruction

S. Binet (LAL) HEP sw 2014-11-20 53 / 72

In a C++11 world. . .

C++11/C++14 is definitively an improvement,
but the old issues are still with us. . .

(one needs an adequate understanding of the 1300 pages of the C++ standard)

build scalability
I templates
I headers
I still no modules/packages

F maybe in the next Technical Report ? (2017?)

code distribution
I no CPAN- nor PyPI-like infrastructure (and cross-platform) for C++

S. Binet (LAL) HEP sw 2014-11-20 54 / 72

Time for a new language ?

“Successful new languages build on existing languages and where
possible, support legacy software. C++ grew our of C. java grew out of C++.
To the programmer, they are all one continuous family of C languages.”

(T. Mattson)

notable exception (which confirms the rule): python

Can we have a language:

as easy (to learn and use) as python,

as fast (or nearly as fast) as C/C++/FORTRAN,

with none of the deficiencies of C++,

and is multicore/manycore friendly ?

S. Binet (LAL) HEP sw 2014-11-20 55 / 72

Candidates

python/pypy

FORTRAN-2008

Vala

Swift

Rust

Go

Chapel

Scala

Haskell

Clojure

S. Binet (LAL) HEP sw 2014-11-20 56 / 72

Why not Go ?
golang.org

S. Binet (LAL) HEP sw 2014-11-20 57 / 72

http://golang.org

Elements of go

obligatory hello world example. . .

Éléments de go

exemple obligé du programme hello world...

package main
import "fmt"
func main() {

fmt.Println("Hello, World")
}

http://golang.org
Thursday, July 22, 2010

Sébastien Binet (LAL) Life in a parallel (software)multiworld 2013-04-15 28 / 44
S. Binet (LAL) HEP sw 2014-11-20 58 / 72

Elements of go - II

founding fathers:
I Russ Cox, Robert Griesemer, Ian Lance Taylor
I Rob Pike, Ken Thompson

concurrent, compiled

garbage collected

an open-source general programming language
best of both ‘worlds’:

I feel of a dynamic language
F limited verbosity thanks to type inference system, map, slices

I safety of a static type system
I compiled down to machine language (so it is fast)

F goal is within 10% of C

object-oriented (but w/o classes), builtin reflection

first-class functions with closures

duck-typing à la python (but better) thanks to its interfaces

S. Binet (LAL) HEP sw 2014-11-20 59 / 72

Go concurrent

goroutines
a function executing concurrently as other goroutines in the same address space
starting a goroutine is done with the go keyword

I go myfct(arg1, arg2)

growable stack
I lightweight threads
I starts with a few kB, grows (and shrinks) as needed
I no stack overflow

S. Binet (LAL) HEP sw 2014-11-20 60 / 72

Go concurrent - II

channels
provide (type safe) communication and synchronization

Go concurrent - II

channels

provide (type safe) communication and synchronization

// create a channel of mytype
my_chan := make(chan mytype)
my_chan <- some_data // sending data
some_data = <- my_chan // receiving data

send and receive are atomic

"Do not communicate by sharing memory; instead,
share memory by communicating"

Sébastien Binet (LAL) Can ‘Go’ address the multicore issues of today and the manycore problems of tomorrow ?2011-09-06 12 / 27

send and receive are atomic

"Do not communicate by sharing memory; instead,
share memory by communicating"

S. Binet (LAL) HEP sw 2014-11-20 61 / 72

Non-elements of Go

no dynamic libraries (frown upon)
no dynamic loading (yet)

I but can either rely on separate processes
F IPC is made easy via the netchan package

I or rebuild executables on the fly
F compilation of Go code is fast
F even faster than FORTRAN and/or C

no templates/generics
I still open issue
I looking for the proper Go -friendly design

no operator overloading

S. Binet (LAL) HEP sw 2014-11-20 62 / 72

go-hep/fads: real world use case

translated C++ Delphes into Go

go-hep/fads: Fast Detector Simulation for HEP

installation:

S. Binet (LAL) HEP sw 2014-11-20 63 / 72

https://cp3.irmp.ucl.ac.be/projects/delphes
https://github.com/go-hep/fads

go-hep/fads component

a HepMC converter,

particle propagator,

calorimeter simulator,

energy rescaler, momentum smearer,

isolation,

b-tagging, tau-tagging,

jet-finder (reimplementation of FastJet in Go)

histogram service

Caveats:

no real persistency to speak of (JSON, ASCII, Gob)

jet clustering limited to N3 (slowest and dumbest scheme of C++-FastJet)

S. Binet (LAL) HEP sw 2014-11-20 64 / 72

Performances

good memory footprint scaling (wrt Delphes and multi-process)

good CPU scaling (wrt multi-process)

OK-ish CPU performances wrt Delphes

S. Binet (LAL) HEP sw 2014-11-20 65 / 72

Conclusions

S. Binet (LAL) HEP sw 2014-11-20 66 / 72

Conclusions

Moore’s law still observed at the hardware level
I power wall
I memory wall
I ILP wall

concurrent and parallel programming required to efficiently and fully leverage
today (and tomorrow)’s CPU architectures

I SIMD (SSE, AVX), (auto-)vectorization
I data-parallel
I task-parallel
I “think parallel”
I re-design code and algorithms in a multi-threaded context

ARM based servers on the verge of being deployed
I AMD: 2015
I Boston Viridis: now
I better (nimbler) energy consumption (wrt traditional x86)

Go ?
I tour.golang.org
I tailored for concurrent programming
I tailored for (easy) cloud deployment
I language and runtime still relatively young but already quite robust and performant

S. Binet (LAL) HEP sw 2014-11-20 67 / 72

http://tour.golang.org

Bonus

S. Binet (LAL) HEP sw 2014-11-20 68 / 72

S. Binet (LAL) HEP sw 2014-11-20 69 / 72

S. Binet (LAL) HEP sw 2014-11-20 70 / 72

S. Binet (LAL) HEP sw 2014-11-20 71 / 72

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

28

Cache Hierarchy

From CPU to
main memory
on a Haswell
processor

With
multicore,
memory
bandwidth is
shared
between
cores in the
same
processor
(socket)

c = cycle

Processor Core
(Registers)

Local memory
(large)

R: 64B/1c
11c latency

~24 B/c for all cores
> 200c latency

(R:64B + W:32B)/1c
4c latency

Shared L3
(8192 KB)

32B/1c for all cores
> 21c latency

L2
(256 KB)

L1D
(32 KB)

L1I
(32 KB)

S. Binet (LAL) HEP sw 2014-11-20 72 / 72

	Main Talk
	mysection

