Magnetic Wilson loops in the classical field of highenergy heavy-ion collisions

Elena Petreska
CPHT - Ecole Polytechnique

Collaboration with Adrian Dumitru and Yasushi Nara

$$
\text { RPP } 2015
$$

Henri Poincaré Institute, Jan 15-16

Initial conditions

Before the collision

After the collision

Talk by Bin Wu
Target
Projectile

McLerran - Venugopalan model

L. D. McLerran and R. Venugopalan, (1994)

- Large nucleon number

$$
A^{1 / 3} \rightarrow \infty
$$

- Small Bjorken -x
- Sources at large-x, ρ
- High occupation number $=>$ Classical treatment of the fields; $\hbar=\frac{1}{k}$
-Weak coupling
Color charge squared per unit transverse area $\mu^{2}=\frac{g^{2} A}{\pi R^{2}} \sim A^{1 / 3}$

$$
\mu^{2} \gg \Lambda_{Q C D}^{2} \quad \alpha_{s} \equiv \alpha_{s}\left(\mu^{2}\right) \ll 1
$$

Saturation scale $Q_{s} \sim g^{2} \mu \sim A^{1 / 3}$

Field of a single nucleus

Solve classical Yang-Mills equations of motion
$\left[D_{\mu}, F^{\mu \nu}\right]=J^{\nu}$

$$
\begin{aligned}
& J^{\nu}=\delta^{\nu+} J^{+} \\
& J^{+}\left(x^{+}=x_{0}^{+}\right)=g \rho\left(x^{-}, x_{\perp}\right) \sim g \rho\left(x_{\perp}\right) \delta\left(x^{-}\right)
\end{aligned}
$$

The solution in light-cone gauge is a pure gauge

$$
\alpha_{m}^{i}=\frac{i}{g} U_{m} \partial^{i} U_{m}^{\dagger} \quad, \quad \partial^{i} \alpha_{m}^{i}=g \rho_{m}
$$

Classical filed after the collision

Kovner, McLerran, Weigert (1995)

Solution at proper time $\tau=\sqrt{t^{2}-z^{2}}=0$

Longitudinal chromo-electric and chromo-magnetic fields at

$$
\tau=\sqrt{t^{2}-z^{2}}=0
$$

Kharzeev, Krasnitz, Venugopalan, 2002
R. Fries, J. Kapusta, Y. Li, 2006

Lappi, McLerran, 2006

$$
\begin{aligned}
E_{z} & =i g\left[\alpha_{1}^{i}, \alpha_{2}^{i}\right] \\
B_{z} & =i g \epsilon^{i j}\left[\alpha_{1}^{i}, \alpha_{2}^{j}\right] \quad, \quad(i, j=1,2)
\end{aligned}
$$

Non-Abelian Wilson loop in the classical field of a collision

$$
M(R)=\mathcal{P} \exp \left(i g \oint d x^{i} A^{i}\right)=\mathcal{P} \exp \left[i g \oint d x^{i}\left(\alpha_{1}^{i}+\alpha_{2}^{i}\right)\right]
$$

Calculate loop's expectation value:

$$
W_{M}(R)=\frac{1}{N_{c}}\langle\operatorname{tr} M(R)\rangle
$$

Gaussian distribution of sources:

$$
W[\rho]=\exp \left[-\int d^{2} x_{\perp} \frac{\delta^{a b} \rho^{a}\left(x_{\perp}\right) \rho^{b}\left(x_{\perp}\right)}{2 \mu^{2}}\right]
$$

Abelian case, Wilson loop measures magnetic flux:

$$
\oint d \vec{l} \vec{A}=\int d \vec{a} \vec{B} \equiv \Phi
$$

$$
\exp [i g \oint d \vec{l} \vec{A} \mid=\exp [i g \Phi]
$$

Single valued A field, flux quantization:

$$
g \oint d \vec{l} \vec{A}=2 \pi n
$$

Non-Abelian case, gauge fields transform as a representation of $S U(N) / Z_{N}$

$$
\begin{aligned}
& Z_{N}=\left\{e^{2 \pi i n / N} \mathbb{1}, n=0 \ldots N-1\right\} \\
& \mathcal{P} \exp [i g \oint d \vec{l} \vec{A}]=e^{2 \pi i n / N} \mathbb{1} \quad e^{2 \pi i\left(n_{1}+n_{2}+n_{3}\right) / N_{1}} \mathbb{1}
\end{aligned}
$$

For completely uncorrelated magnetic vortices => area law behavior.

$$
\langle W\rangle \sim \exp [- \text { Area }]
$$

Numerical results for W_{M}
A. Dumitru, Y. Nara, E. P., 2013

Area law behavior: $W_{M}(R) \sim \exp \left(-\sigma_{M} A\right) \quad \sigma_{M} \simeq 0.12 Q_{s}^{2}$
\Rightarrow Uncorrelated magnetic flux vortices with radius:

$$
R_{\mathrm{vtx}} \sim 1 / Q_{s}
$$

Area law be
Q_{s}^{2}
\Rightarrow Uncorrelated magnetic flux vortices with radius:

$$
R_{\mathrm{vtx}} \sim 1 / Q_{s}
$$

Perturbative calculation

Single nucleus: $M(R)=\mathcal{P} \exp \left(i g \oint d x^{i} \alpha_{m}^{i}\right)=\mathbb{1}$
In a collision: $M(R)=\mathcal{P} \exp \left[i g \oint d x^{i}\left(\alpha_{1}^{i}+\alpha_{2}^{i}\right)\right]=\mathcal{P} \exp \left[X_{1}+X_{2}\right]$

$$
X_{m}=i g \oint d x^{i} \alpha_{m}^{a i} t^{a}
$$

$\exp X \exp Y=\exp \left\{X+Y+\frac{1}{2}[X, Y]+\ldots\right\}$

$$
W_{M}(R) \simeq \frac{1}{N_{c}}\left\langle\operatorname{tr} \exp \left(-\frac{1}{2}\left[X_{1}, X_{2}\right]\right)\right\rangle \simeq 1-\frac{1}{2 N_{c}}\left\langle g^{2} h^{2}\right\rangle
$$

$$
g^{2} h^{2}=\frac{1}{16} f^{a b c} f^{\bar{a} \bar{b} c} X_{1}^{a} X_{1}^{\bar{a}} X_{2}^{b} X_{2}^{\bar{b}}
$$

Perturbative calculation

Diagram representation of:

$$
\left.l x^{i} \alpha_{m}^{i}\right)=\mathbb{1}
$$

$$
h^{2}=\frac{1}{16 g^{2}} f^{a b c} f^{\bar{a} \bar{b} c} X_{1}^{a} X_{1}^{\bar{a}} X_{2}^{b} X_{2}^{\bar{b}}
$$

$\exp X \exp Y=\exp \left\{X+Y+\frac{1}{2}[z\right.$

$$
W_{M}(R) \simeq \frac{1}{N_{c}}\left\langle\operatorname { t r } \operatorname { e x p } \left(-\frac{1}{2}\left[X_{1}\right.\right.\right.
$$

$$
g^{2} h^{2}=\frac{1}{16} f^{a b c} f^{\bar{a} \bar{b} c} X_{1}^{a} X_{1}^{\bar{a}} X_{2}^{b} X_{2}^{\bar{b}}
$$

Perturbative result for the expectation value of the magnetic Wilson loop:

$$
W_{M}(R) \simeq 1-\frac{\pi^{2} N_{c}^{6}}{64\left(N_{c}^{2}-1\right)^{3}} \frac{Q_{s 1}^{4} Q_{s 2}^{4}}{\Lambda^{4}} A^{2}
$$

Lattice calculations for small loops

$$
e^{-3.5}<A Q_{s}^{2}<e^{-0.5}
$$

A. Dumitru, T. Lappi, Y. Nara, (2014)

$$
W(A)=\exp \left[-(\sigma A)^{\gamma}\right]
$$

A term proportional to the area of the loop: $\sim A Q_{s 1} Q_{s 2}$
Gaussian contractions can give only powers of $Q_{s 1}^{2}, Q_{s 2}^{2}$

$$
\left\langle\rho_{m}^{a}(\mathbf{x}) \rho_{m}^{b}(\mathbf{y})\right\rangle=\mu_{m}^{2} \delta^{a b} \delta(\mathbf{x}-\mathbf{y}) \sim Q_{s_{m}}^{2}
$$

Magnetic field correlator
A. Dumitru, T. Lappi, Y. Nara, 2014

$$
C_{B} \equiv 2 g^{2} \operatorname{Tr}\left\langle B_{z}\left(x_{\perp}\right) U_{x_{\perp} \rightarrow y_{\perp}} B_{z}\left(y_{\perp}\right) U_{x_{\perp} \rightarrow y_{\perp}}^{\dagger}\right\rangle
$$

Thank you

Back up

Initial conditions

Before the collision

Target

Energy evolution

Linear BFKL equation ----> Fast growth of the gluon densities with decreasing x :

Balitsky, Fadin, Kuraev, Lipatov 1975-1978

$$
\phi\left(x, k_{\perp}^{2}\right) \sim\left(\frac{1}{x}\right)^{\lambda} \quad \lambda=\frac{4 \alpha_{s} N_{c}}{\pi} \ln 2
$$

Violates Froissart bound

Small-x limit

$Q_{s}(x)$

Saturation of parton distributions

$Q_{s}^{2} \sim A^{\frac{1}{3}}\left(\frac{1}{x}\right)^{\lambda} \quad$ Saturation scale

Gribov, Levin, Ryskin (1983)

The Wilson loop measures magnetic flux:

$$
\int d \vec{l} \vec{A}=\int d \vec{a} \vec{B} \equiv \Phi
$$

Area law indicates uncorrelated domains.

$$
\begin{aligned}
& \text { For } N_{c}=2 \quad W_{M}^{Z(2)}(R)=\langle\operatorname{sgn} \operatorname{tr} M(R)\rangle \\
& M(R)=\exp \left[\frac{2 \pi i n}{N_{c}}\right] \mathbb{1}
\end{aligned}
$$

$$
R_{\mathrm{vtx}} \sim 0.8 / Q_{s}
$$

Uncorrelated magnetic flux vortices with radius:

Gaussian distribution of sources

Calculation of observables $\quad\langle O[\rho]\rangle \equiv \frac{\int \mathcal{D} \rho W[\rho] O[\rho]}{\int \mathcal{D} \rho W[\rho]}$

$$
W[\rho]=\exp \left[-\int d^{2} x_{\perp} \frac{\delta^{a b} \rho^{a}\left(x_{\perp}\right) \rho^{b}\left(x_{\perp}\right)}{2 \mu^{2}}\right]
$$

$\mu^{2}=\frac{g^{2} A}{\pi R^{2}}$
Color charge squared per unit transverse area

Valid for a large nucleus: $A^{1 / 3} \rightarrow \infty$

Diagram representation:

$$
\alpha_{m}^{i}=-\partial^{i} \Phi_{m}+\frac{i g}{2}\left(\delta^{i j}-\partial^{i} \frac{1}{\nabla_{\perp}^{2}} \partial^{j}\right)\left[\Phi_{m}, \partial^{j} \Phi_{m}\right]+\mathcal{O}\left(\Phi_{m}^{3}\right)
$$

$\alpha_{m}^{i}=-\partial^{i} \Phi_{m}+\frac{i g}{2}\left(\delta^{i j}-\partial^{i} \frac{1}{\nabla_{\perp}^{2}} \partial^{j}\right)\left[\Phi_{m}, \partial^{j} \Phi_{m}\right]+\mathcal{O}\left(\Phi_{m}^{3}\right)$
Find X_{m}

$$
X_{m}=i g \oint d x^{i} \alpha_{m}^{a i} t^{a}
$$

The lowest order does not contribute. Use the term $\stackrel{\sim}{\sim} \Phi^{2}$

$$
X_{m}^{a}=-\frac{g^{2}}{2} f^{a d e} \oint d x^{i} \Phi_{m}^{d} \partial^{i} \Phi_{m}^{e}
$$

Diagram representation of:

$$
h^{2}=\frac{1}{16 g^{2}} f^{a b c} f^{\bar{a} \bar{b} c} X_{1}^{a} X_{1}^{\bar{a}} X_{2}^{b} X_{2}^{\bar{b}}
$$

$$
X_{m}^{a}=-\frac{i g^{2}}{2} f^{a d e} \oint d x^{i} \Phi_{m}^{d} \partial^{i} \Phi_{m}^{e}
$$

Correction diagram

$$
\begin{gathered}
\text { Calculate }\left\langle\Phi_{m}^{d}(\mathbf{k}) \Phi_{m}^{e}(\mathbf{p}-\mathbf{k}) \Phi_{m}^{\bar{d}}(\overline{\mathbf{k}}) \Phi_{m}^{\bar{e}}(\overline{\mathbf{p}}-\overline{\mathbf{k}})\right\rangle_{\rho_{m}} \\
\Phi^{a}(\mathbf{k})=-\frac{g}{k^{2}} \rho^{a}(\mathbf{k}) \quad\left\langle\rho^{a}(\mathbf{k}) \rho^{b}(\mathbf{p})\right\rangle=\mu^{2} \delta^{a b}(2 \pi)^{2} \delta(\mathbf{k}+\mathbf{p})
\end{gathered}
$$

Extended action:
$S[\rho(x)] \simeq \int d^{2} x\left[\frac{\delta^{a b} \rho^{a} \rho^{b}}{2 \mu^{2}}-\frac{d^{a b c} \rho^{a} \rho^{b} \rho^{c}}{\kappa_{3}}+\frac{\delta^{a b} \delta^{c d}+\delta^{a c} \delta^{b d}+\delta^{a d} \delta^{b c}}{\kappa_{4}} \rho^{a} \rho^{b} \rho^{c} \rho^{d}\right]$

Cubic term does not contribute.
Quartic term correction to the four-point function:
$f^{a d e} f^{\bar{a} \bar{d} \bar{e}}\left(\delta^{d e} \delta^{\bar{d} \bar{e}}+\delta^{d \bar{d}} \delta^{e \bar{e}}+\delta^{d \bar{e}} \delta^{e \bar{d}}\right)=0$

Time evolution

$$
\begin{aligned}
& \left\langle g^{2} h^{2}\right\rangle=\frac{1}{16} f^{a b c} f^{\bar{a} \bar{b} c}\left\langle X_{1}^{a} X_{1}^{\bar{a}}\right\rangle_{\rho_{1}}\left\langle X_{2}^{b} X_{2}^{\bar{b}}\right\rangle_{\rho_{2}} \\
& X_{m}^{a}=-\frac{i g^{2}}{2} f^{a d e} \oint d x^{i} \Phi_{m}^{d} \partial^{i} \Phi_{m}^{e} \\
& X_{m}^{a}=-\frac{i g^{2}}{2(2 \pi)^{3}} f^{a d e} R \int d^{2} \mathbf{k} d^{2} \mathbf{p}|\mathbf{k}| J_{1}(R|\mathbf{p}|) \sin (\alpha-\theta) \Phi_{m}^{d}(\mathbf{k}) \Phi_{m}^{e}(\mathbf{p}-\mathbf{k}) \\
& \left\langle X_{m}^{a} X_{m}^{\bar{a}}\right\rangle_{\rho_{m}}=-\frac{g^{4}}{4(2 \pi)^{6}} f^{a d e} f^{\bar{a} \bar{d} \bar{e}} R^{2} \times \\
& \quad \int d^{2} \mathbf{k} d^{2} \mathbf{p} d^{2} \overline{\mathbf{k}} d^{2} \overline{\mathbf{p}}|\mathbf{k}||\overline{\mathbf{k}}| J_{1}(R|\mathbf{p}|) J_{1}(R|\overline{\mathbf{p}}|) \times \\
& \quad \sin (\alpha-\theta) \sin (\bar{\alpha}-\bar{\theta})\left\langle\Phi_{m}^{d}(\mathbf{k}) \Phi_{m}^{e}(\mathbf{p}-\mathbf{k}) \Phi_{m}^{\bar{d}}(\overline{\mathbf{k}}) \Phi_{m}^{\bar{e}}(\overline{\mathbf{p}}-\overline{\mathbf{k}})\right\rangle_{\rho_{m}}
\end{aligned}
$$

With Gaussian action:

$$
\begin{aligned}
\left\langle X_{m}^{a} X_{m}^{\bar{a}}\right\rangle_{\rho_{m}}= & -\frac{g^{8} \mu_{m}^{4}}{16 \pi^{2}} f^{a d e} f^{\bar{a} d e} R^{2} \times \\
& \int d^{2} \mathbf{k} d^{2} \mathbf{p} d^{2} \overline{\mathbf{k}} d^{2} \overline{\mathbf{p}} \frac{J_{1}(R|\mathbf{p}|) J_{1}(R|\overline{\mathbf{p}}|)}{|\mathbf{k}||\overline{\mathbf{k}}|(\mathbf{p}-\mathbf{k})^{2}(\overline{\mathbf{p}}-\overline{\mathbf{k}})^{2}} \times \\
& \sin (\alpha-\theta) \sin (\bar{\alpha}-\bar{\theta}) \times
\end{aligned}
$$

$$
[\delta(\mathbf{k}+\overline{\mathbf{k}}) \delta(\mathbf{p}-\mathbf{k}+\overline{\mathbf{p}}-\overline{\mathbf{k}})-\delta(\mathbf{k}+\overline{\mathbf{p}}-\overline{\mathbf{k}}) \delta(\mathbf{p}-\mathbf{k}+\overline{\mathbf{k}})]
$$

$$
\begin{aligned}
& \left\langle X_{m}^{a} X_{m}^{\bar{a}}\right\rangle_{\rho_{m}}=\frac{g^{8} \mu_{m}^{4}}{8} N_{c} \delta^{a \bar{a}} R^{2} \int \frac{d k}{k^{3}} \int d p \frac{J_{1}^{2}(R|\mathbf{p}|)}{|\mathbf{p}|} \\
& \int_{\Lambda}^{\infty} \frac{d k}{k^{3}}=\frac{1}{2 \Lambda^{2}} \\
& \left\langle X_{m}^{a} X_{m}^{\bar{a}}\right\rangle_{\rho_{m}}=\frac{g^{8} \mu_{m}^{4}}{32 \Lambda^{2}} N_{c} \delta^{a \bar{a}} R^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\infty} d s \int \mathcal{D} x^{\mu}\left\langle\exp i \int_{0}^{s} d \tau\left(m \dot{x}^{2}+g A_{\mu} \dot{x}^{\mu}\right)\right\rangle \sim \\
& \int_{0}^{\infty} d s \int \mathcal{D} x^{\mu} \exp \left(i \int_{i}^{s} d \tau m \dot{x}^{2}\right) \exp \left(-\sigma_{M} A\right) \\
& p^{2}+i \sigma_{M} \frac{m}{p_{T}}
\end{aligned}
$$

Area law is due to screening of magnetic fields.
$G(\mathbf{x})=g U(\mathbf{0} \rightarrow \mathbf{x}) F_{x y}(\mathbf{x}) U(\mathbf{x} \rightarrow \mathbf{0})$
$C^{(2)}(r)=\langle\operatorname{tr} G(\mathbf{0}) G(\mathbf{x})\rangle$

"Naive" perturbation theory cannot capture the presence of screening corrections.

