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Introduction

Quantum Gravity as Field Theory?

+ = ?
Feynman’s quantization: functional integral

Quantizing Gravity ' Randomizing Geometry

Z '
∫

Dg e
∫
S AEH (g)

But what is the measure Dg? On which underlying space-time S? Should one
also sum over topologies? How to put sources for observables? How to connect
to our classical space-time and to general relativity?
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Introduction

Main Problem

Quantizing gravity by simply adding quantum fluctuations of the space-time
metric around a background (eg flat R4 space-time) is not perturbatively
renormalizable.

Renormalization is not just about removing infinities. In the modern
(Wilsonian) point of view, the renormalization group (RG) is a flow of the
action in some theory space, and represents the way physics changes with
observation scale. Usually it can be probed quite efficiently via numerical
methods; functional renormalization group equation (FRGE), lattice Monte
Carlo...

Many other issues: background independence, Lorentz invariance, topology
change, locality/non-locality and/or extended objects (strings)...
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Introduction

Mainstream Approaches

String Theory (Green, Schwarz, Witten, many others...) Unification of all
interactions. Particles are vibrating modes of strings, and closed strings include
naturally the gravitational sector. Requires supersymmetry. Background
independence and sum over topologies might occur in M theory.

Matrix Models (David, Kazakov, Kontsevich...) Well controlled discretized
quantization of 2d quantum gravity. Sum over topologies well-understood.
Closely related to renormalizable non-commutative quantum field theory
(NCQFT) (Grosse-Wulkenhaar). Continuum version, CFT coupled to Liouville
2d gravity (Belavin, Knizhnik, Polyakov, Zamlodchikov...)
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Introduction

Many Alternative Approaches

Loop quantum gravity (LQG, Rovelli, Smolin, Thiemann...): background
independent Hamiltonian, first-quantized formalism (spin networks, spin
foams). Group field theory (GFT, Boulatov, Freidel, Oriti): second quantized
version of LQG, introduces dynamics and sums over topologies.

Causal dynamical triangulations (CDT, Ambjorn, Loll...): Gluing rules for
space-time cells. These gluing rules and the causality condition may not be
represented by a quantum field theory action. Uses mostly numerical tools. No
sum over topologies.

Asymptotic Safety (Weinberg, Reuter, Percacci, Saueressig...): searches for a
non-trivial ultraviolet fixed point in the theory space of all diffeo-invariant
functions of the metric. Uses mostly numerical tools. No background
independence (no sum over topologies).

Tensor Models (Gurau, Ben Geloun, Bonzom, R...): a recently revived proposal.
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Introduction

Renormalization Group

RG flows from ultra-violet to infra-red in some (large) theory space:

- local products of field operators at the same point, with possibly low order
derivative couplings...
- Einsteinian theory space: diffeo-invariant functions of the metric
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Introduction

Asymptotic Safety

Typical simulations with FRGE in the truncated Einsteinian theory space show
a resilient ultraviolet fixed point (Reuter, Percacci, Saueressig, Benedetti...)
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Tensor Models

The tensor track builds upon the success of matrix models.

Theory

Theory

Field

Group

Triangulations

Dynamical

Matrices

Safety

Asymptotic

Tensor

Track

RandomGravity

Quantum

Loop
String

It is an improvement of group field theory which allows for its renormalization.
It proposes a theory space different from that of asymptotic safety.
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Introduction

Tensor Track

It is a quantum field theory of space time, not on space-time, which can
incorporate

background independence

sum over topologies

renormalizability

asymptotic freedom

It relies on a new theory space, based on U(N)⊗D invariant interactions.
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Introduction

Symmetry breaking

∃! Hilbert space `2(Z). U(N) invariance can be broken.

vector models => matrix models => tensor models

Smaller symmetry means there are more invariants available for interactions

Vector Models have exactly one connected invariant interaction, of degree 2
namely the scalar product φ̄ · φ.

Matrix Models (N = N1N2, U(N1N2) broken to U(N1)⊗ U(N2)) have infinitely
many connected invariant interactions, one at every (even) degree, namely
Tr (MM†)p.

Tensor Models (N = N1N2N3 · · · , U(N1N2N3 · · · ) broken to
U(N1)⊗ U(N2)⊗ U(N3) · · · ) have even much more invariants
=> richer theory space.
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Counting Tensor Invariants

Tensor interactions = regular D-edge-colored connected bipartite graphs
can be counted for D = 1, 2, 3, 4 · · ·

Z c
1 (n) = 1, 0, 0, 0, 0, ... Φ̄ · Φ

Z c
2 (n) = 1, 1, 1, 1, 1, 1, 1... Tr(MM†)n

Z c
3 (n) = 1, 3, 7, 26, 97, 624, 4163...

Z c
4 (n) = 1, 7, 41, 604, 13753...
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can be counted for D = 1, 2, 3, 4 · · ·
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Introduction

Tensors and Quantum Gravity

The Feynman graphs of tensor models are dual to colored triangulations,
pondered according to the Einstein-Hilbert action with cosmological constant,
hence can be considered a simplification of Regge calculus (1962):

SRegge = Λ
∑
σD

vol(σD)− 1

16πG

∑
σD−2

vol(σD−2) δ(σD−2)

Discretized Einstein Hilbert action on an equilateral triangulation with QD

equilateral D-simplices and QD−2 (D − 2)-simplices is simply

AG (N) = eκ1QD−2−κ2QD

On the Feynman dual graph: QD → n, number of vertices; QD−2 → F , number
of faces, hence Regge action for equilateral simplices becomes

AG (N) = λnNF (1)

the natural amplitudes of tensor models!
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Introduction

Results on tensor models

Their 1/N expansion (Gurau) is not of topological nature (as it was in
D = 2). It leads to a new program for studying random geometry in d ≥ 3
through multiple scalings.

Single scaling at any D and double scaling at d ≤ 6 have been solved and
lead to branched polymers (Gurau et al...).

Simple tensor field theories with tensor interactions and propagators of the
inverse Laplacian type can be renormalized in many cases (up to
rank/dimension 6) (Ben Geloun, Riv...)

They can incorporate loop quantum gravity data (Carrozza, Oriti, Riv...)

Generically they are asymptotically free, as shown by one and two loop
computations (Ben Geloun, Samary, Carrozza...).

Recently asymptotic freedom has been very clearly shown using an FRGE
(Benedetti, BenGeloun and Oriti, arXiv.1411.3180).
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Introduction

Numerical Study of Tensor Track Flows

Quartic Models with single coupling and Mass term, Small N
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Introduction

Numerical Study of Tensor Track Flows

Quartic Melonic Models with single coupling and Mass term, Large N
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Introduction

The conjectured physical picture

The big bang could be emergence of (classical) space-time through a sequence
of phase transitions (geometrogenesis).

geometrogenesis

Thursday, July 12, 2012

The tensor flow could describe such transitions and ultimately connect in the
infrared to the Einsteinian ultraviolet fixed points studied by Asymptotic Safety.
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