Constraining the Doublet Left-Right Model

Luiz Vale

Université Paris-Sud & CNRS S. Descotes-Genon (LPT) and V. Bernard (IPN) Rencontre de Physique des Particules, Paris

January 15th, 2015

(4月) (4日) (4日)

The model

Framework where a symmetry relating left and right (e.g. \mathcal{P}) is broken spontaneously at high energies. Studied over the last 40 years [Pati, Salam, Mohapatra, Senjanovic '70s], mainly its triplet version.

(

$$SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L} \ \downarrow_{(\langle \chi_R
angle : \kappa_R)} \ SU(2)_L \otimes U(1)_Y \ \downarrow_{\langle \chi_L
angle : \kappa_{1,2},} \ \downarrow_{\langle \chi_L
angle : \kappa_L)} \ U(1)_{EM}$$

•
$$\kappa_R \gg {\sf EWSB} \; (\kappa_R \gtrsim {\sf TeV} \; {\sf scale})$$

•
$$\kappa \equiv \sqrt{\kappa_1^2 + \kappa_2^2 + \kappa_L^2}$$
 sets EWSB

• Then
$$\epsilon \equiv \kappa/\kappa_{\rm R} \ll 1$$

• Known Gauge Bosons: $\xi, \zeta = \mathcal{O}(\epsilon^2)$ $W^{\pm} = W_L^{\pm} + \xi^* W_R^{\pm}$ and $Z = X + \zeta X'$

• New Gauge Bosons:
$$M = \mathcal{O}(\kappa_R)$$

 $W^{'\pm} = W_R^{\pm} - \xi W_L^{\pm}$ and $Z' = X' - \zeta X$

(4回) (4回) (4回)

Other aspects

• Quarks:
$$Q_{L,R} = \begin{pmatrix} u_{L,R} \\ d_{L,R} \end{pmatrix}$$
, and leptons: $L_{L,R} = \begin{pmatrix} \nu_{L,R} \\ \ell_{L,R} \end{pmatrix}$

- Yukawa interactions: $\overline{Q}_L Y \phi Q_R + \overline{Q}_L \tilde{Y} \sigma_2 \phi^* \sigma_2 Q_R + h.c.$ Bidoublet scalar field, $\phi = \begin{pmatrix} \varphi_1^0 & \varphi_2^+ \\ \varphi_1^- & \varphi_2^0 \end{pmatrix}$, related to the SM Higgs
 - VEVs: $\langle \phi \rangle = diag(\kappa_1, \kappa_2)$
- Mixing matrices: V_L related to V^{CKM} and V_R

Higgs content in the case of triplets

Triplets: $\langle \Delta_R \rangle = (0, 0, \kappa_R)$ and $\langle \Delta_L \rangle = (0, 0, \kappa_L)$

- 1 light Higgs + 5 H^0 , 2 H^{\pm} , 2 $H^{\pm\pm}$
- See-saw mechanism for the neutrinos. However κ_R at TeV-ish and light m_{ν_L} requires large fine-tuning or new symmetries [Gunion et al. '91]
- $\rho = M_W^2/(\cos^2(\theta_W) \cdot M_Z^2) \simeq 1 \Rightarrow \kappa_L/\sqrt{\kappa_1^2 + \kappa_2^2} \ll 1$
- $K\overline{K}$ mixing: $m_{H,A} \gtrsim 2.4$ TeV, for gen. $V_R, \frac{g_L}{g_R}, s \equiv \frac{\kappa_2}{\sqrt{\kappa_1^2 + \kappa_2^2}}$ [Blanke et al. '11]

Higgs content in the case of doublets

Doublets: $\langle \chi_R \rangle = (0, \kappa_R)$ and $\langle \chi_L \rangle = (0, \kappa_L)$

- 1 light Higgs + 5 H^0 , 2 H^{\pm}
- $\rho = 1$ at tree-level: κ_L must be constrained by other means
- In this minimal picture, neutrinos are Dirac particles: no see-saw
- Other contributions to neutral meson mixing, modifying the constraint on $m_{H,A}$

イロト イヨト イヨト イヨト

Model considered and how to constraint it

Model w/ doublets, w/o additional sources of CPV (Higgs potential and VEVs), and w/o discrete symmetry ${\cal P}$ or ${\cal C}.$ The case w/ a discrete symmetry can be analyzed as a special case.

Well determined observables to constrain the model:

Class	Observables	Main parameters to constraint
EWPO	Z pole, etc.	VEVs, $M_{W'}$, $\frac{g_L}{g_R}$
K K , B B	ϵ_K , $\Delta m_{d,s}$	VEVs, $M_{W'}$, $\frac{g_L}{g_R}$, V_L , V_R ,
		m _{Higgses} , Higgs potential
tree-level	(semi-)leptonic	V_L, V_R
processes	decays	
rare decays	$b ightarrow s \gamma$	M_{W^\prime} , $m_{Higgses}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

ElectroWeak Precision Tests

 $\Gamma_{Z}, \sigma_{had}^{0}, R_{b,c}, R_{e,\mu,\tau}, \mathcal{A}_{b,c,\ell}, A_{FB}(b,c,\ell), Q_{weak}(Cs, TI), M_{W}, \Gamma_{W}$

SM

- Analytical: Freitas '14 parameterizes under $S \equiv \{M_Z, m_{top}, m_h, \alpha_s, \Delta \alpha_{QED}\}$, includes two-loop 'fermionic' EW corrections
- Semi-analytical: Zfitter, to parameterize under S (A_{LR} and A_{FB} include 2nd order ISR, APV incl. 1-loop EW, M_W incl. two-loop 'fermionic' EW, etc.)

LRM

- Corrections: $\mathcal{O}(\epsilon^2)$. Example: $M_Z^{LR} = M_Z \cdot [1 + f_{M_Z}(c_R^2, w, r) \cdot \epsilon^2]$
- Parameters: $S + \{c_R^2 \equiv f(\frac{g_L}{g_R}), \epsilon \equiv \frac{\kappa}{\kappa_R}, r \equiv \frac{\kappa_2}{\kappa_1}, w \equiv \frac{\kappa_L}{\kappa_1}\}$

Global fit of EWPO

- CKMfitter
- $\chi^2_{\min,SM} =$ 22.24, $\chi^2_{\min,LR} =$ 22.19
- $g^2_{R,B-L} < 4\pi$ implies $0.1 \lesssim |c_R| < 1$
- Direct searches for W'

	SM pull	LRM pull
m _{top}	0.08	0.11
m_h, α_s, M_Z	0.	0.
Γ _Z	-0.12*	-0.22*
σ_{had}^0	-1.49*	-1.32*
R _b	-0.80	-0.81
R _c	0.05	0.06
R _e	-1.19	-1.24
R_{μ}	-1.23	-1.30
$\dot{R_{\tau}}$	0.61*	0.56*
$A_{FB}(b)$	2.77	2.81
$A_{FB}(c)$	0.97	0.97
$A_{FB}(e)$	0.76	0.76
$A_{FB}(\mu)$	-0.39	-0.38
$A_{FB}(\tau)$	-1.42	-1.41
Ab	0.58	0.58
Ac	-0.07	-0.07
A ^{SLD}	-1.81	-1.76
$A_e(P_{\tau})$	-0.41	-0.39
A^{SLD}_{μ}	0.39	0.39
ASLD	0.79	0.79
$A_{\tau}(P_{\tau})$	0.91	0.93
M _W	-0.77*	-0.83*
Γ _W	0.16	0.15
$Q_W(Cs)$	0.69*	0.74*
$Q_W(TI)$	-0.02	-0.01

∰ ▶ € ▶

- ∢ ≣ ▶

Effect of $w \equiv \frac{\kappa_L}{\kappa_1}$

Fixed $M_{W'} = 1.5 \text{ TeV}$

w	ϵ^2	CR	ВL	<i>g</i> _R	gх	$M_{Z'}$ [TeV]	χ^2_{min}
0	0.88	0.11	0.65	0.36	3.57	13.1	26.12
1	1.04	0.40	0.65	0.39	0.90	3.8	25.14
2	1.43	0.63	0.65	0.46	0.56	2.4	24.06

- $w \neq 0$ preferred
- Moreover, $g_X^2 < 4\pi \Rightarrow g_X < 3.54$, what disfavors w = 0
- The chi-squared does not change a lot: need to include other processes to eliminate flat directions of the fit

回 と く ヨ と く ヨ と

Meson oscillations: SM

EFT

$$\begin{aligned} \mathcal{H}^{|\Delta F|=2} &= \sum_{i} C_{i}^{q_{1}q_{2}}(\mu) \eta_{i}^{q_{1}q_{2}} \langle O_{i}(\mu) \rangle, \\ & (\eta = 1 \text{ w/o QCD}) \\ \mu: \text{ renormalization scale} \end{aligned}$$

Alternative method

[Vysotskii '80], [Ecker, Grimus '85]

$\mathcal{C}(\mu)$ (Wilson coefficients) and η

- Short distance QCD
- Perturbative calculation
- NLO ([Herrlich, Nierste]) and NNLO ([Gorbahn and Brod])

$|O(\mu)\rangle$

- Long distance QCD
- No expansion on α_s : Lattice QCD

[ETMC]: SM operators (and LR as well)

SM: <i>KK</i> , LO	η_{tt}	η_{cc}	η_{ct}
EFT [Buras et al. '96]	0.612	1.12	0.35
Vysostskii's method	0.60	0.92	0.34
< □ >	< ⊡ > <∃	► < Ξ >	E na

Short distance corrections to LRM, preliminary results

Calculations employing EFT are only partially available for the LR operators. We then employ $_{\rm [Vysotskii '80], \, [Ecker, \, Grimus '85]}$

LRM: LO	$\overline{\eta}_{tt}^{K\overline{K}}$	$\overline{\eta}_{cc}^{K\overline{K}}$	$\overline{\eta}_{ct}^{K\overline{K}}$	$\overline{\eta}_{tt}^{B\overline{B}}$
$W^{\pm}W'^{\pm}, W^{\pm}H^{\pm}$	2.89	0.78	1.50	2.19
$G^{\pm}W'^{\pm}$	2.89	0.92	1.50	2.19
$G^{\pm}H^{\pm}$	2.89	0.31	0.41	2.18
tree-level FCNC	2.15	0.58	1.12	1.63

 N_f thresholds included, $\mu_{had}^{K\overline{K}} = 2$ GeV, $\mu_{had}^{B\overline{B}} = 4$ GeV

Context

- Model studied mainly in its triplet version, where FCNC puts rather strong constraints in its Higgs sector
- A different Higgs content implying different couplings may lead to less stringent constraints

Summary

- EWPO: $w \equiv \kappa_L/\kappa_1 \neq 0$ is possible in principle
- Meson-mixing: short-distance corrections estimated, analysis under way (to constrain *w*, Higgs masses, *V_R*, etc.)

Next steps

- Meson-mixing: estimate short-distance corrections at NLO
- Include other constraints to verify the viability of Doublet LRM: Leptonic and semi-leptonic processes, etc. and combine them using CKMfitter
- Analyze compatibility w/ a discrete symmetry between L and R sectors (e.g. ${\cal P}$ or ${\cal C})$

소리가 소문가 소문가 소문가

Thank you for the attention

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example: Usual method for η_{cc}

 $\mu \sim m_c \ll M_W \Rightarrow$ large corrections from large logs

Matching at a scale μ_t , μ_W into O_{\pm} $\downarrow_{\Delta F=1}$, running Matching at an intermediate scale μ_c into $(\overline{d}\gamma_{\mu}P_Ls)(\overline{s}\gamma^{\mu}P_Ld)$ $\downarrow_{\Delta F=2}$, running hadronization scale (2 GeV $\rightarrow K\overline{K}$, $m_b \rightarrow B\overline{B}$): Matching at Lattice [ETMC]

イロト イポト イヨト イヨト

Alternative method [Vysotskii '80], [Ecker, Grimus '85]

- Fix k^2 , then put gluons in all possible ways
- Running: $\mu_W \to k^2 \to \mu$
- $\alpha^{\gamma}_{s}(k^{2})$, γ from anomalous dimensions [Buras et al. '00]
- Determine relevant interval of momenta for k^2 $\eta_{tt,ct}^{K\overline{K}}: k^2 \to m_t^2, \ \eta_{cc}^{K\overline{K}}: \ k^2 \to [m_c^2, M_W^2]$

マロト マヨト マヨト

Parameters

- Doublets only
- EWSB energy scale κ_1, κ_2 , and $\kappa_L \neq 0$
- High energy scale κ_R or $\epsilon \equiv \kappa_1/\kappa_R$
- For simplicity, no additional CPV (Higgs potential and VEVs: additional sources of CPV)
- Coupling constants g_R, g_L, g_{B-L}
- Mixing matrices V_L , V_R under \mathcal{P} : $V_L = S_u V_R S_d$

・ロン ・回と ・ヨン・

Example of parameterization

Define:
$$L_H \equiv \log\left(\frac{m_h}{125.7}\right)$$
, $\Delta_t \equiv \left(\frac{m_{top}}{173.2}\right)^2 - 1$, $\Delta_{\alpha_s} = \frac{\alpha_s(M_Z)}{0.1184} - 1$,
 $\Delta_{\alpha} \equiv \frac{\Delta \alpha}{0.059} - 1$, and $\Delta_Z \equiv \frac{M_Z}{91.1876} - 1$.
 $O = X_0 + c_1 \cdot L_H + c_2 \cdot \Delta_t + c_3 \cdot \Delta_{\alpha_s} + c_4 \cdot \Delta_{\alpha}^2 + c_5 \cdot \Delta_{\alpha_s} \Delta_t + c_6 \cdot \Delta_{\alpha} + c_7 \cdot \Delta_Z$

$\Gamma_Z[MeV]$	1	L _H	Δ_t	Δ_{α_s}	Δ^2_{lpha}	$\Delta_{\alpha_s} \Delta_t$	Δ_{α}	Δ_Z
Zfitter	2495.22	-2.4	20.1	63.48	-3.2	-1.8	-54.4	9225
Freitas	2494.24	-2.0	19.7	58.60	-4.0	8.0	-55.9	9267

æ

ElectroWeak Precision Tests

References for inputs

observable	reference	free in fit
m _{top}	[Tevatron, LHC]	yes
m _h	[CMS, ATLAS]	yes
α_s	[PDG] τ -decays, Lattice, DIS, e^+e^- , Z pole	yes
MZ	[LEP, SLC]	yes
$\Delta \alpha_{had}^{(5)}$	-	yes
$\Gamma_Z, \sigma_{bad}^0, R_{b,c}, R_{e,\mu,\tau}, \mathcal{A}_{b,c,\ell}, A_{FB}(b,c,\ell)$	[LEP, SLC]	-
$Q_{weak}(Cs)$	[Boulder and Paris groups]	-
$Q_{weak}(TI)$	[Oxford and Seattle groups]	-
M _W	[Tevatron]	-
Γ _W	[LEP, SLC, Tevatron]	-
M	[CMS, ATLAS]	-

イロン イヨン イヨン イヨン

Э

Extra plot

・ロン ・回 と ・ ヨン ・ ヨン

æ

Direct $M_{W'} \simeq g_R \kappa_R/2$

Under the assumptions $g_L = g_R$ and manifest V_R , $M_{W'} \gtrsim 2$ TeV [CMS and ATLAS] Obs: r, w and c_R are not much constrained by the fit < ≣ > æ

∰ ▶ € ▶

Effect of discrete symmetry

Left: [Mohapatra et al. '07]; yellow corresponds to nEDM, while red $m_{Higgs} = \infty$, blue $m_{Higgs} = 75$ TeV and green $m_{Higgs} = 20$ TeV correspond to indirect CP violation in Kaon decay. Right: [Maiezza et al. '14]. Both references show strong constraints on m_{Higgs} under the case of a discrete symmetry.

▶ < 문 ▶ < 문 ▶</p>