Ab-initio calculation of the neutron-proton mass difference

Laurent Lellouch

CPT Marseille CNRS & Aix-Marseille U

Budapest-Marseille-Wuppertal collaboration (BMWc)

(arXiv:1406.4088)

Isospin symmetry and its breaking

Particles along horizontal lines have particularly similar properties

Result of near SU(2) isospin symmetry of strong interaction (Heisenberg '32), which we know today acts on

$$\left(\begin{array}{c} u \\ d \end{array}\right) \longrightarrow \exp[i\vec{\theta} \cdot \vec{\tau}] \left(\begin{array}{c} u \\ d \end{array}\right)$$

Only broken by small, often competing

$$3 \frac{m_d - m_u}{M_N} \sim 1\%$$
 and $(Q_u - Q_d)^2 \alpha \sim 1\%$

Motivation: isospin symmetry breaking

Small but hugely important ... and challenging

- $M_n M_P \gtrsim m_e + m_{\nu_e}$ \rightarrow stability of ¹H and ordinary matter \rightarrow Big Bang nucleosynthesis \rightarrow existence & properties of nuclides
- EM is limiting factor in knowledge of m_u and m_d (e.g. FLAG 13)
 - \rightarrow though very unlikely (e.g. FLAG 13), if $m_u=0$ \rightarrow solution to strong CP problem \rightarrow But: $m_u/M_p\sim 0.002$
- Important flavor observables are becoming very precisely known: e.g. $\operatorname{err}(m_{ud}), \operatorname{err}(m_s) \sim 2\%, \operatorname{err}(m_s/m_{ud}) \lesssim 1\%, \operatorname{err}(F_K) \sim 1\%, \operatorname{err}(F_K/F_\pi) \sim 0.5\%, \operatorname{err}(F_K^{K\pi}(0)) \sim 0.8\%$
 - → isospin breaking corrections required to search for new physics

Can these effects be reliably computed in the fundamental theory?

Can be computed to $O(\alpha, (m_d - m_u))$, but mix with nonperturbative QCD

- ⇒ nonperturbative QCD tool
- \Rightarrow include EM and $m_u \neq m_d$

QCD+QED challenges

Important challenges addressed:

- formulate QED in a finite box (long-range interactions)
 - → photon zero-mode subtraction (Hayakawa et al '08, BMWc '14)
- subtract large finite-volume effects ("soft" photons)
 - → determine coefficients of leading effects analytically (BMWc '14)
- consistently renormalize QCD+QED theory
 - \rightarrow renormalize α using Wilson flow (Lüscher '10, BMWc '14)
- avoid unwanted phase transitions of lattice QED
 - → use non-compact formulation (Duncan et al '96)
- fight large autocorrelations of QED field
 - → Fourier accelerated algorithm (BMWc '14)
- fight large noise/signal ratio
 - → larger than physical e (Duncan et al '96)

QCD+QED challenges

- finding asymptotic time-range for hadron mass extractions
 → method based on Kolmogorov-Smirnov test (BMWc '14)
- robust estimation of systematic errors
 - → improve Science '08 method using Akaike information criterion (BMWc '14)
- unprecedented precision required ($\times 1000$ more statistics for ΔM_N than for M_N)
 - \rightarrow O(10k) trajectories/ensemble, O(500) sources/configuration, using 2-level multigrid inverter (Frommer et al '13) and variance reduction technique (Blum et al '13)

QCD + QED à la BMWc

Borsanyi et al (BMWc), arXiv:1406.4088

First full QCD + QED calculation w/ non-degenerate u, d, s, c quarks

- 41 large statistics simulations with $m_u \neq m_d$ \rightarrow 41 m_u , m_d , m_s , m_c combinations w/ pion masses $M_{\pi} = 195 \nearrow 420 \,\text{MeV}$ (sufficient for light hadron masses cf. Science '08)
- 5 values of $e = 0 \nearrow 1.4$ (physical ~ 0.3)
- 4 lattice spacings $a = 0.06 \nearrow 0.10 \,\mathrm{fm}$
- 11 volumes w/ $L = 2.1 \nearrow 8.0 \, \text{fm}$
- New algorithm for (non-compact) QED
- Highly improved algorithms and codes
- State-of-the-art physics analysis and determination of uncertainties
- \rightarrow fully-controlled calculation of per mil, $M_n M_p$ effect w/ total error < 20%

Finite-volume QED and zero-mode problem

A $T \times L^3$ spacetime with periodic BCs has the topology of a four-torus

On four-torus **zero mode**, $\tilde{A}_{\mu}(k=0)$, of photon field is troublesome:

usual perturbative calculations are not well defined

$$\alpha \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2} \cdots \longrightarrow \frac{\alpha}{TL^3} \sum_{k} \frac{1}{k^2} \cdots$$

possible IR divergences but not in physical qties

contains a straight 1/0!

- HMC algorithm is ineffective in updating the zero mode
- ⇒ remove zero mode(s)
 - \rightarrow modification of $\tilde{A}_{\mu}(k)$ on set of measure zero
 - → does not change infinite-volume physics

Zero-mode subtractions

Extensive analytical and numerical study of:

QED_{TL}: set
$$\tilde{A}_{\mu}(k=0)=0$$
 on $T \times L^3$ four-torus (Duncan et al '96)

- Used in electroquenched studies
- Violates reflection positivity! (BMWc '14)
 - → no Hamiltonian
 - ightarrow divergences when L fixed, $T
 ightarrow \infty$ (BMWc '14)

QED_L: set
$$\tilde{A}_{\mu}(k_0, \vec{k}=0)=0$$
 on $T\times L^3$ four-torus for all $k_0=2\pi n_0/T$, $n_0\in\mathbb{Z}$

- Used here (suggested in Hayakawa & Uno '08)
- Satisfies reflection positivity (BMWc '14)
 - ightarrow Coulomb gauge, $\vec{\nabla} \cdot \vec{A} = 0$, ensures existence of Hamiltonian (BMWc '14)
 - \rightarrow well defined $T, L \rightarrow \infty$ limit (BMWc '14)
- 1/L and 1/L² corrections to masses have known coefficients fixed by Ward identities, independent of particle spin and structure (BMWc '14)
 - → leading FV effects can be removed analytically

FV effects in kaon masses

Dedicated FV study w/ L=2.4 \nearrow 8.0 fm and other parameters fixed (bare $\alpha\sim 1/10,\,M_\pi=290$ MeV, $M_{K^0}=450$ MeV, a=0.10 fm)

- M_{K^0} has no significant volume dependence
- $M_{K^0}^2 M_{K^+}^2$ well described by universal 1/L, $1/L^2$ and fitted $1/L^3$ terms

Sketch of analysis

Mass splittings on 41 ensembles modeled by

$$\Delta M_X = F_X(M_{\pi^+}, M_{K^0}, M_{D^0}, L, a) \cdot \alpha_{\text{ren}} + G_X(M_{\pi^+}, M_{K^0}, M_{D^0}, a) \cdot \Delta M_K^2$$

- \bullet F_X , G_X parametrize m_{ud} , m_s , m_c , , L and a dependences
- Results at physical point obtained by setting M_{π^+} , M_{K^0} , M_{D^0} to their physical values, $L \to \infty$ and $a \to 0$, w/ a determined by M_{Ω^-}
- Systematic error estimation
 - Carry out O(500) equally plausible analyses, differing in time-fit ranges for M_X determinations, functional forms for F_X, G_X, . . .
 - Use Akaike information criterion

$$AIC = \chi_{\min}^2 + 2k$$

Weight different analyses w/

$$\exp\left[-(AIC - AIC_{min})/2\right]$$

- central value = weighted mean,
 syst. error = (weighted variance)^{1/2}
- Final results with other weights or median and distribution width consistent
- Statistical error from variance of central values from 2000 bootstrap samples

Results for isospin mass splittings

- 5σ signal for $M_n M_p$
- $\Delta_{\rm CG} = \Delta M_N \Delta \Sigma + \Delta \Xi = O(\alpha (m_s m_{ud}),$ $\delta m(m_s - m_{ud})^2$) (Coleman-Glashow relation)
- Full calculation: all systematics are estimated

Separation of QED and $(m_d - m_u)$ contributions

(From A. Portelli, plenary talk at Lattice 2014)

Conclusions

- Have now a good theoretical understanding of QCD+QED on a finite lattice
- Powerful theorem determines coefficients of leading 1/L and 1/L² finite-volume (FV) corrections
 - ⇒ large QED FV effects can be extrapolated away reliably and precisely
- Have all of the algorithms required to reliably simulate QCD+QED
- Our QCD+QED simulations w/ u, d, s, c sea quarks and $m_u \neq m_d$
 - \rightarrow full description low-energy standard model w/ potential precision of $O(\alpha^2, 1/N_c m_b^2) \sim 10^{-3}$
 - \rightarrow increase in accuracy \sim ×10 compared to state-of-the-art $N_f=2+1$ simulations with intrinsic errors of $O(\alpha, \delta m, 1/N_c m_c^2) \sim 10^{-2}$
- Isosplittings in hadron spectrum determined accurately w/ full control over uncertainties
- Determine nucleon splitting as 5σ effect

Outlook

- Fully controlled computation of the u & d quark masses
- Isospin corrections to hadronic matrix elements (e.g. K_{ℓ_2} , K_{ℓ_3} , $K \to \pi\pi$, ...)
 - → bring indirect search for new physics to new level
- QCD+QED to compute hadronic corrections to anomalous magnetic moment of the μ , $(g_{\mu}-2)$
 - ightarrow currently $> 3\sigma$ deviation between SM and experiment w/ \sim matched errors
 - \rightarrow need to bring SM calculation to new level in view of new experiments $\gtrsim 2017$ that will reduce error by 4
- ...

Progess since 2008

