

Dark matter EFT at present and future colliders

RPP 2015 Paris, France

Based on work in collaboration with A. Arbey, M. Battaglia, G. Bélanger, F. Mahmoudi, S. Pukhov (to appear)

> Andreas Goudelis HEPHY - Vienna

Outline

- Why a dark matter EFT ?
- What does the EFT mean ?
- Dark matter EFT at the LHC and a FCC
- Conclusions

Why a dark matter EFT ?

thermal freeze-out (early Univ.) indirect detection (now)

Based on the the thermal freeze-out picture as well as the Z_2 idea for DM stability, a standard complementarity picture emerged.

 \rightarrow An exciting dark matter search programme!

direct detection

Why a dark matter EFT ?

Based on the the thermal freeze-out picture as well as the Z_2 idea for DM stability, a standard complementarity picture emerged.

 \rightarrow An exciting dark matter search programme!

But :

- We haven't observed any MET or DD signals so far.
- We haven't observed and BSM behaviour of the known particles. \rightarrow Not SM mediators
- We haven't observed any BSM particle at the LHC.

 \rightarrow It seems likely that DM might interact (if at all) very weakly with the SM, e.g. through a very heavy mediator.

direct detection

 \rightarrow Not BSM mediators

 \rightarrow Not DM itself

What does a DM EFT look like ?

So, assume that indeed DM couples with SM particles through heavy enough mediators that allow one to write down an EFT

$$\mathcal{L}_f = G_{\chi} \times (\bar{\chi} \Gamma_{\chi} \chi) \times \left[(\bar{q} \Gamma_q q) \text{ or } (G^{\mu\nu} G_{\mu\nu}) \text{ or } (G^{\mu\nu} \tilde{G}_{\mu\nu}) \right]$$
$$\mathcal{L}_s = G_{\phi} \times (\phi^{\dagger} \Gamma_{\phi} \phi) \times \left[(\bar{q} \Gamma_q q) \text{ or } (G^{\mu\nu} G_{\mu\nu}) \text{ or } (G^{\mu\nu} \tilde{G}_{\mu\nu}) \right]$$

Name	Type	G_{χ}	Γ^{χ}	Γ^q	Name	Type	G_{χ}	Γ^{χ}	Γ^q
M1	qq	$m_{q}/2M_{*}^{3}$	1	1	D1	qq	m_q/M_*^3	1	1
M2	qq	$im_q/2M_*^3$	γ^5	1	D2	qq	im_q/M_*^3	γ^5	1
M3	qq	$im_{q}/2M_{*}^{3}$	1	γ^5	D3	qq	im_q/M_*^3	1	γ^5
M4	qq	$m_{q}/2M_{*}^{3}$	γ^5	γ^5	D4	qq	m_{q}/M_{*}^{3}	γ^5	γ^5
M5	qq	$1/2M_{*}^{2}$	$\gamma^{5}\gamma_{\mu}$	γ_{μ}	D5	qq	$1/M_{*}^{2}$	γ^{μ}	γ_{μ}
M6	qq	$1/2M_{*}^{2}$	$\gamma^5 \gamma_\mu$	$\gamma^5 \gamma^{\mu}$	D6	qq	$1/M_{*}^{2}$	$\gamma^{\mu}\gamma^{5}$	
M7	GG	$lpha_s/8M_*^3$	1	-	D7	qq	$1/M_{*}^{2}$	γ^{μ}	$\gamma_{\mu} \\ \gamma_{\mu} \gamma_{\perp}^{5}$
M8	GG	$i lpha_s / 8 M_*^3$	γ^5	-	D8	qq	$1/M_{*}^{2}$	$\gamma^{\mu}\gamma^{5}$	$\gamma_{\mu}\gamma^{5}$
M9	$G\tilde{G}$	$\alpha_s/8M_*^3$	1	-	D9	qq	$1/M_{*}^{2}$	$\sigma^{\mu u}$	$\sigma_{\mu u}$
M10	$G\tilde{G}$	$i \alpha_s / 8 M_*^3$	γ^5	-	D10	qq	i/M_*^2	$\sigma^{\mu u}\gamma^5$	$\sigma_{\mu u}$
					D11	$G\tilde{G}$	$\alpha_s/4M_*^3$	1	_
					D12	$G\tilde{G}$	$i\alpha_s/4M_*^3$	γ_5	-
					D13	$G\tilde{G}$	$i\alpha_s/4M_*^3$	1	-
					D14	$G\tilde{G}$	$\alpha_s/4M_*^3$	γ_5	-
Name	Type	G_{χ}	Γ^{ϕ}	Γ^q	Name	Type	G_{χ}	Γ^{ϕ}	Γ^q
R1	qq	$m_q/2M_{*}^{2}$	1	1	C1	qq	m_q / M_*^2	1	1
R2	qq	$im_q/2M_*^2$	1	γ^5	C2	qq	im_q/M_*^2	1	γ^5
R3	GG	$\alpha_s/8M_*^2$	1	-	C3	qq	i/M_*^2	∂^{μ}	γ_{μ}
R4	$G\tilde{G}$	$i \alpha_s / 8 M_*^2$	1	_	C4	qq	$1/M_{*}^{2}$	∂^{μ}	$\gamma_{\mu}\gamma^{5}$
					C5	GG	$\alpha_s/4M_*^2$	1	
					C6	$G\tilde{G}$	$\alpha_s/4M_*^2$	1	-

Only two parameters are relevant:

• the DM mass M

But what does **M**_{*} mean ?

- Beltran, Hooper, Kolb, Krusberg (2008)

- Cao, Chen, Li, Zhang (2011)
- Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu (2010, 2011)
- 4

Interpreting an EFT and limits of validity

EFT is an incredibly powerful tool but must be used bearing some things in mind:

- Non-renormalisable field theories are perfectly acceptable: input the scale and you get an answer.
- But there *is* a scale, which somehow cries out for a physical explanation!
- The explanation could be very simple, or very complicated. Computing something in the EFT and finding a "UV-completion" are two very different tasks!

One way to think of the EFT scale, is in terms of some "s-channel UV-completion"

$$\frac{g_{\rm DM}g_{\rm SM}}{Q_{\rm tr}^2 - M_{\rm med}^2} = -\frac{g_{\rm DM}g_{\rm SM}}{M_{\rm med}^2} \left(1 + \frac{Q_{\rm tr}^2}{M_{\rm med}^2} + \cdots\right) \equiv -\frac{1}{M_*^2} \left(1 + \frac{Q_{\rm tr}^2}{M_{\rm med}^2} + \cdots\right)$$

Perturbativity of the couplings imposes, in any case, $M_* > M_{_{DM}}/(2\pi)$, but a more refined requirement would be to impose that "most" events satisfy

$$Q_{\rm tr}^2 \le 16\pi^2 M_*^2$$

which can be checked at the MC level.

Busoni, De Simone, Gramling, Morgante, Riotto (2013, 2014) + Similarly for t-channel

Some (preliminary) results: R3 @ LHC14

Let's put everything together for R3, a gluonic operator.

- In principle the LHC14 has something to add especially @ high luminosity.
- Situation pretty similar for qq operators that aren't mass-suppressed.
- Frozen-out WIMPs with masses up to ~480 GeV seem accessible.

 \rightarrow Try to interpret in terms of UV theory ?

Some (preliminary) results: R3 @ LHC14

Assume some s-channel "UV-completion"

• Impose $Q_{tr}^{2} < M_{tr}^{2}$ event-by-event (corresponds to couplings of O(1)).

Some (preliminary) results: R3 @ LHC14

Assume some s-channel "UV-completion"

• Impose $Q_{tr}^2 < M_{tr}^2$ event-by-event (corresponds to couplings of O(1)).

- Pretty unacceptable level of "good" events to "probe" thermal FO.
- However, by taking $g \sim 4\pi$ essentially the entire Planck region is OK!

\rightarrow The EFT is mostly probing a regime of heavy, strongly-ish coupled mediators

Some (preliminary) results: R3 @ FCC

Let's play the same game for a more futuristic FCC

- Situation much better, can probe DM masses up to 2 TeV :)
- But quite hard to find DM-motivated UV completions :(
- A strong coupling assumption doesn't allow going far beyond the LHC...

 \rightarrow At the FCC, the EFT approach probably will have to be abandoned \rightarrow But in any case, long before, DD will have covered the relevant PS

What to keep from this story

• A dark matter EFT is the most economical way of presenting the results of LHC searches for DM-like particles.

• Once the EFT is taken seriously, one must be extremely careful: the mediators can be (and often are) produced on shell.

•The shift towards simplified models is interesting, but shouldn't replace the EFT results. ...but let's discuss this!

- If at the LHC some DM EFT is useful, at the FCC it's much less so.
- It would be useful if experimentalists showed on their plots a few scenarios for UVcompletions : gives an idea of how the EFT is performing.

• Interesting extension of this work: extract limits taking into account the limits in the EFT validity.

...although: under which interpretation?

• Looking forward to the next mono-stuff search results!

...and personally, some ILC-like project!

Thank you!