Pion couplings to the scalar B meson

Antoine Gérardin

In collaboration with B. Blossier and N. Garron

Based on [arXiv:1410.3409]

1

January 15, 2015 - Rencontre de Physique des Particules

Introduction

Determination of \widetilde{q}

Determination of *l*

Motivations

- Lattice simulations are often done at unphysical light quark masses ($\Rightarrow m_\pi > m_\pi^{
 m phys}$)
 - \rightarrow Computing the quark propagator at small pion mass is numerically difficult
 - \rightarrow solution : use different quark masses and extrapolate to the physical pion mass

Motivations

• Example: chiral extrapolation of the B mesons decay constant [ALPHA Collaboration] :

 $f_{\rm B}^{\delta}(y,a)/{
m GeV}$

- Lattice simulations are often done at unphysical light quark masses ($\Rightarrow m_\pi > m_\pi^{
 m phys})$
 - \rightarrow Computing the quark propagator at small pion mass is numerically difficult
 - \rightarrow solution : use different quark masses and extrapolate to the physical pion mass
- Heavy-light mesons:
 - \rightarrow Light quark dynamics is well described by chiral perturbation theory (χ PT)
 - ightarrow Heavy quarks are described by the Heavy Quark Effective Theory (HQET)

 $\mathsf{HM}\chi\mathsf{PT}=\mathsf{HQET}+\chi\mathsf{PT}$

- \hookrightarrow Use HM χ PT (Heavy Meson Chiral Perturbation Theory) to extrapolate lattice data
- $\hookrightarrow {\rm HM}\chi{\rm PT}$ is parametrized by three couplings $g,\,h$ and \tilde{g} at leading order

Determination of \widetilde{q}

Determination of h

Motivations

Introduction

- Lattice simulations are often done at unphysical light quark masses ($\Rightarrow m_\pi > m_\pi^{
 m phys})$
 - \rightarrow Computing the quark propagator at small pion mass is numerically difficult
 - \rightarrow solution : use different quark masses and extrapolate to the physical pion mass
- Heavy-light mesons:
 - \rightarrow Light quark dynamics is well described by chiral perturbation theory (χ PT)
 - \rightarrow Heavy quarks are described by the Heavy Quark Effective Theory (HQET)

 $\mathsf{HM}\chi\mathsf{PT}=\mathsf{HQET}+\chi\mathsf{PT}$

- \hookrightarrow Use HM χ PT (Heavy Meson Chiral Perturbation Theory) to extrapolate lattice data
- $\hookrightarrow {\rm HM}\chi{\rm PT}$ is parametrized by three couplings $g,\,h$ and \tilde{g} at leading order
- only g is actually considered in chiral extrapolations
 - $\longrightarrow \Delta = m_{B_0^*} E_{B\pi}$ is usually not $\gg m_{\pi}$ on the lattice
 - \longrightarrow the coupling h is large
 - $\longrightarrow h$ and \tilde{g} may have important contributions

Determination of \widetilde{g}

Introduction	Determination of \widetilde{g}	Determination of h	Conclusion
The soft cou	pling \tilde{g}		
	$ ilde{g}\epsilon_i = \langle B_0^*(ec{0}) \overline{\psi}_l\gamma_i\gamma_5\psi_l B_1^*(\epsilon_i,ec{0}) angle$	$ \begin{array}{c} \mathbf{MeV} \\ 500 \\ \end{array} \\ B_0^* \end{array} $	B_1^*
$ ightarrow$ Three-point c $C^{(3)}(t,t_1)=$	orrelation function: $A_{\mu} = \overline{\psi}_l(x)\gamma_{\mu}\gamma_5\psi_l(x)$ (axial curre $Z_A \frac{1}{V^3} \sum \frac{1}{3} \langle \mathcal{A}_k(\vec{z},t) A_k(\vec{y},t_1) S^{\dagger}(\vec{x},0) \rangle$	ent) $\begin{array}{c} 400 \\ 300 \\ 200 \\ 100 \\ 0 \end{array} \begin{array}{c} L = 0 \\ j_q = 1/2 \\ B \end{array} \begin{array}{c} L = 0 \\ j_q = 1 \end{array}$	1 /2
	$\mathcal{A}_{k}(x) = \overline{\psi}_{h}(x)\Gamma_{k}^{A}\psi_{l}(x) \qquad \qquad \mathcal{S}(x) = \overline{\psi}_{h}(x)\Gamma_{k}^{A}\psi_{l}(x)$	$0 \models$	

 Z_A was determined non-perturbatively by the ALPHA Collaboration [Nucl.Phys. B865 (2012) 397-429]

 \rightarrow Two-point correlation functions

$$C_{\mathcal{S}}^{(2)}(t) = \left\langle \sum_{\vec{x},\vec{y}} \mathcal{S}(\vec{x},t) \mathcal{S}^{\dagger}(\vec{y},0) \right\rangle \quad , \quad C_{\mathcal{A}}^{(2)}(t) = \left\langle \sum_{\vec{x},\vec{y}} \mathcal{A}_{k}(\vec{x},t) \mathcal{A}_{k}^{\dagger}(\vec{y},0) \right\rangle$$

 \rightarrow Finally, the following ratio converge to the coupling \tilde{g} :

$$R(t) = \frac{C^{(3)}(t,t_1)}{\sqrt{C_{\mathcal{S}}^{(2)}(t)C_{\mathcal{A}}^{(2)}(t)}} \quad \xrightarrow{t \gg 1}{t_0 = t - a} \quad \widetilde{g} + \text{ excited states}$$

Introduction	Determination of \widetilde{g}	Determination of h	Conclusion
Excited states · "s	ummed'' GEV/P		

- Use N = 3 interpolating operators with different overlaps with excited states \rightarrow matrix of correlators
- Solve the Generalized Eigenvalue Problem (GEVP): [Michael, '85; Lüscher and Wolff, '90]

$$C_{\mathcal{S}}^{(2)}(t)v_n(t,t_0) = \lambda_n(t,t_0)C_{\mathcal{S}}^{(2)}(t_0)v_n(t,t_0)$$

• Eigenvectors (v_n) and eigenvalues (λ_n) can be used to construct the summed ratio $\mathcal{M}_{nn}^{sGEVP}(t,t_0)$:

$$\mathcal{M}_{nn}^{\text{sGEVP}}(t,t_0) = -\partial_t \left(\frac{(v_n(t,t_0), [K(t,t_0)/\lambda_n(t,t_0) - K(t_0,t_0)] v_n(t,t_0))}{\left(v_n(t,t_0), C_{\mathcal{S}}^{(2)}(t_0) v_n(t,t_0) \right)^{1/2} \left(v_n(t,t_0), C_{\mathcal{A}}^{(2)}(t_0) v_n(t,t_0) \right)^{1/2}} \right)$$

with : $K_{ij}(t,t_0) = \sum_{t_1} C_{ij}^{(3)}(t,t_1)$ "summed GEVP" [JHEP 1201 (2012) 140]

$$\mathcal{M}_{11}^{\text{sGEVP}}(t) \xrightarrow[t_0=t-1]{t_0=t-1} \widetilde{g} + \mathcal{O}\left(te^{-\Delta_{N+1,n}t}\right)$$

$$\longrightarrow \quad \Delta_{N+1,n} = E_{N+1} - E_n$$

(excited states contribution is reduced)

Extrapolation to the physical point

 $\label{eq:definition} \textbf{Determination of} \ h$

Lattice computation of h

• Continuum

$$g_{B_0^*B\pi} = \langle \pi(k)B(p')|B_0^*(p)\rangle = \sqrt{m_B m_{B_0^*}} \frac{m_{B_0^*}^2 - m_B^2}{m_{B_0^*} f_\pi} \times h$$
(static limit)
$$(static limit) B(p')$$

The decay rate Γ is given by:

$$\Gamma(B_0^* \to B\pi) = \frac{|\vec{k}|}{8\pi m_{B_0^*}^2} g_{B_0^*B\pi}^2$$
$$|\vec{k}| = \frac{\sqrt{\left(m_{B_0^*}^2 - (m_B + m_\pi)^2\right) \left(m_{B_0^*}^2 - (m_B - m_\pi)^2\right)}}{2m_{B_0^*}}$$

• Lattice: Fermi Golden rule [Phys.Rev. D63 (2001)] (McNeile et al.)

$$\Gamma \left(B_0^* \to B \pi \right) = \left(2 \pi \right) x^2 \rho \quad , \quad x = \langle B_0^* | B \pi \rangle$$

 ρ is the density of final states on the lattice:

$$\rho = \frac{L^3 k E_\pi}{2\pi^2}$$

$$\frac{\Gamma\left(B_{0}^{*} \to B\pi\right)}{k} = \frac{1}{\pi} \left(\frac{L}{a}\right)^{3} (aE_{\pi}) \times (ax)^{2}$$

• Conclusion: one can access to h through x, computed on the lattice

Determination of a

Lattice computation: $x = \langle B_0^* | B \pi \rangle$

• Two-point correlation function: ${m x}=\langle B_0^*|B\pi
angle$

$$C_{B_0^* - B\pi}(t) = \langle \mathcal{O}^{B\pi}(t) \mathcal{O}^{B_0^*}(0)^{\dagger} \rangle = \sum_{t_1} \underbrace{\langle 0 | \hat{\mathcal{O}}^{B_0^*} | B_0^* \rangle e^{-m_{B_0^*} t_1}}_{t_1} \times \mathbf{x} \times \underbrace{\langle B\pi | \hat{\mathcal{O}}^{B\pi} | 0 \rangle e^{-E_{B\pi}(t - t_1)}}_{t_1}$$

• Near threshold $(m_{B_0^*} \approx E_{B\pi})$

$$C_{B_0^*-B\pi}(t) \approx \langle 0|\hat{\mathcal{O}}^{B_0^*}|B_0^*\rangle \, \mathbf{x} \, \langle B\pi|\hat{\mathcal{O}}^{B\pi}|0\rangle \, t \, e^{-Et}$$

• Consider the following ratio

$$R(t) = \frac{C_{B_0^* - B\pi}^{(2)}(t)}{\left(C_{B_0^* - B_0^*}^{(2)}(t)C_{B\pi - B\pi}^{(2)}(t)\right)^{1/2}} \approx xt + \text{excited states}$$

Lattice computation: $x = \langle B_0^* | B \pi \rangle$

• Two-point correlation function: ${m x}=\langle B_0^*|B\pi
angle$

$$C_{B_0^* - B\pi}(t) = \langle \mathcal{O}^{B\pi}(t) \mathcal{O}^{B_0^*}(0)^{\dagger} \rangle = \sum_{t_1} \underbrace{\langle 0 | \hat{\mathcal{O}}^{B_0^*} | B_0^* \rangle e^{-m_{B_0^*} t_1}}_{t_1} \times \mathbf{x} \times \underbrace{\langle B\pi | \hat{\mathcal{O}}^{B\pi} | 0 \rangle e^{-E_{B\pi}(t-t_1)}}_{t_1}$$

• Near threshold $(m_{B_0^*} \approx E_{B\pi})$

$$C_{B_0^*-B\pi}(t) \approx \langle 0|\hat{\mathcal{O}}^{B_0^*}|B_0^*\rangle \, \mathbf{x} \, \langle B\pi|\hat{\mathcal{O}}^{B\pi}|0\rangle \, t \, e^{-Et}$$

• Consider the following ratio

$$R(t) = \frac{C_{B_0^* - B\pi}^{(2)}(t)}{\left(C_{B_0^* - B_0^*}^{(2)}(t)C_{B\pi - B\pi}^{(2)}(t)\right)^{1/2}} \approx xt + \text{excited states}$$

• Or the GEVP ratio to reduce the excited states contribution

$$R^{\text{GEVP}}(t,t_0) = \frac{\left(v_{B_0^*}(t,t_0), C_{B_0^*-B\pi}(t) \, v_{B\pi}(t,t_0)\right)}{\sqrt{\left(v_{B_0^*}(t,t_0), C_{B_0^*-B_0^*}(t) \, v_{B_0^*}(t,t_0)\right) \times \left(v_{B\pi}(t,t_0), C_{B\pi-B\pi}(t) \, v_{B\pi}(t,t_0)\right)}} \approx xt + \text{excited states}$$

$$x^{\text{eff}}(t) = \partial_t R^{\text{GEVP}}(t) \xrightarrow[t_0=t-a]{t_0=t-a} x$$

Introduction

Determination of \hat{g}

Determination of h

Lattice computation: $x = \langle B_0^* | B \pi \rangle$

- We have considered the corrections coming from $\Delta=m_{B_0^*}-E_{B\pi}\neq 0$
- We have considered the contribution from excited states

m_{π}	$280~{\rm MeV}$	$310~{\rm MeV}$	$340~{\rm MeV}$	$435~{\rm MeV}$
ax	-0.0156(4)	-0.0159(3)	-0.0174(6)	-0.0241(10)
h	0.86(4)	0.86(3)	0.85(4)	0.84(5)

h: chiral and continuum extrapolations

NLO HM
$$\chi$$
PT: $h = h_0 \left[1 - \frac{3}{4} \frac{3\hat{g}^2 + 3\tilde{g}^2 + 2\hat{g}\tilde{g}}{(4\pi f_\pi)^2} \left(m_\pi^2 \log(m_\pi^2) - (m_\pi^{\exp})^2 \log((m_\pi^{\exp})^2) \right) \right] + C \left(m_\pi^2 - (m_\pi^{\exp})^2 \right)$

Introduction	Determination of \widetilde{g}	Determination of h	Conclusion
Conclusion			

• We have computed the soft pion couplings h and \tilde{g} with $N_f = 2$ dynamical quarks

h = 0.84(3)(2) , $\tilde{g} = -0.122(8)(6)$

• Good control under/over systematics:

ightarrow in both case, the continuum and chiral extrapolations are performed

 \rightarrow we used the GEVP to reduce the contamination from excited states

- These couplings can be used in the chiral extrapolations of relevant heavy-light meson properties
- $h \gg \hat{g}$: B meson orbital excitations cannot be neglected in chiral loops
- [Becirevic et al. (2012)]: h = 0.66(10)(6)
 - \rightarrow They used three-point correlation functions to obtain the form factor $A_+(\Delta^2)$

 \rightarrow They compute the radial density to obtain the form factor in the correct limit $A_+(\Delta^2) \rightarrow A_+(0) \sim g_{B_0^*B\pi}$

• PDG:
$$\Gamma_{D_0^*} = 267(40)$$
 MeV, $m_{D_0^*} = 2318(29)$ MeV $\Rightarrow h = 0.74(16)$

 $\rightarrow 1/m_c$ corrections are expected to be sizable for D meson

Intro	duction
THEFT	

Lattice setup

Lattice discretization

- $N_f = 2 O(a)$ improved Wilson-Clover Fermions
- HYP1-2 discretization for the static quark action

Discretization effects

• 3 lattice spacings a :

(0.048, 0.065, 0.075) < 0.1 fm

Light quark mass chiral extrapolations

• different pion masses in the range [280 MeV, 440 MeV]

 \Rightarrow total of 4 ensembles

Correlation functions

• quark-antiquark interpolating operators

$$\mathcal{O}^B_{\Gamma,n}(t) = \frac{1}{V} \sum_{\vec{x}} \left[\overline{d}^{(n)}(x) \Gamma b(x) \right]$$

• meson-meson interpolating operators

$$\longrightarrow \sqrt{\frac{2}{3}}\pi^+(0)B^-(0) - \sqrt{\frac{1}{3}}\pi^0(0)\overline{B}^0(0)$$

$$\mathcal{O}_{\Gamma,n}^{B\pi} = \frac{1}{V^2}\sum_{\vec{x}_i}\sqrt{\frac{2}{3}}\left[\overline{d}(x_1)\Gamma u(x_1)\right] \left[\overline{u}^{(n)}(x_2)\Gamma b(x_2)\right] - \sqrt{\frac{1}{6}}\left[\overline{u}(x_1)\Gamma u(x_1) - \overline{d}(x_1)\Gamma d(x_1)\right]$$

$$\times \left[\overline{d}^{(n)}(x_2)\Gamma b(x_2)\right]$$

- local ($\Gamma = \gamma_0, \gamma_5$) and derivative ($\Gamma = \gamma_i \gamma_0 \gamma_5 \nabla_i, \gamma_i \nabla_i$) interpolating operators
- 4 levels of gaussian smearing

t

Conclusion

Systematic errors on h: corrections from $\Delta = \overline{m_{B_0^*} - E_{B\pi}} \neq 0$

Neglecting excited states, at threshold we have:

$$C_{B_0^* - B\pi}(t) = \sum_{t_1} \langle 0|\hat{\mathcal{O}}^{B_0^*}|B_0^*\rangle \, \mathbf{x} \, \langle B\pi|\hat{\mathcal{O}}^{B\pi}|0\rangle \, e^{-m_{B_0^*}t_1} \, e^{-E_{B\pi}(t-t_1)} \quad \approx \quad \langle 0|\hat{\mathcal{O}}^{B_0^*}|B_0^*\rangle \, \mathbf{x} \, \langle B\pi|\hat{\mathcal{O}}^{B\pi}|0\rangle \, t \, e^{-Et}$$

when the threshold condition is only approximately fulfilled, the linear time dependance becomes:

$$\longrightarrow \frac{2}{\Delta} \sinh\left(\frac{\Delta}{2}t\right) = t + \frac{\Delta^2 t^3}{24} + \mathcal{O}(\Delta^4)$$
$$\left(\frac{3t^2\Delta^2}{24} \ll 1 \quad \text{for} \quad t \in [0-20]\right)$$

m_{π}	$280~{\rm MeV}$	$310 { m ~MeV}$	$340~{\rm MeV}$	$435~{\rm MeV}$
$a\Delta$	0.036(4)	0.026(8)	0.010(3)	-0.012(6)
Table: $\Delta = m_{B^*_{lpha}} - E_{B\pi}$				

Pion couplings to the scalar B meson

Systematic errors on h: Excited states contribution

$$C_{B_0^* - B\pi}(t) = \langle \mathcal{O}^{B_0^*}(t) \mathcal{O}^{B\pi}(0)^{\dagger} \rangle = \sum_{t_1} \langle 0 | \hat{\mathcal{O}}^{B_0^*} | B_0^* \rangle \, x \, \langle B\pi | \hat{\mathcal{O}}^{B\pi} | 0 \rangle \, e^{-m_{B_0^*} t_1} e^{-E_{B\pi}(t - t_1)}$$

When excited states are taken into account $(X_1 = B_0^*, X_2 = B\pi)$:

$$C_{B_0^* - B\pi}(t) = \sum_{nm} \sum_{t_1} \langle 0 | \hat{\mathcal{O}}^{B_0^*} | X_n \rangle x_{nm} \langle X_m | \hat{\mathcal{O}}^{B\pi} | 0 \rangle e^{-E_n t_1} e^{-E_m (t - t_1)}$$

Assumptions:

- I consider only the contribution from the first excited state X_3 : $m_{B_0^*} \approx E_{B\pi} < E_{X_3} < E_{X_4} < \cdots$
- X_3 has a non-negligible overlap with $\mathcal{O}^{B_0^*} \to \langle 0 | \hat{\mathcal{O}}^{B_0^*} | X_3 \rangle \neq 0$ and $\langle 0 | \hat{\mathcal{O}}^{B\pi} | X_3 \rangle \approx 0$

ightarrow the symmetric case (a non-negligible overlap with ${\cal O}^{B\pi}$) is similar

$$\sum_{t_1} \langle 0|\hat{\mathcal{O}}^{B_0^*}|X_3\rangle x_{32} \langle B\pi|\hat{\mathcal{O}}^{B\pi}|0\rangle e^{-E_3t_1} e^{-E(t-t_1)} = \underbrace{t\langle 0|\hat{\mathcal{O}}^{B_0^*}|B_0^*\rangle x \langle B\pi|\hat{\mathcal{O}}^{B\pi}|0\rangle e^{-Et}}_{=\underbrace{t\langle 0|\hat{\mathcal{O}}^{B}|B_0^*\rangle x \langle B\pi|\hat{\mathcal{O}}^{B\pi}|0\rangle e^{-Et}}_{=\underbrace{t\langle 0|\hat{\mathcal{O}}^{B}|B_0^*\rangle x \langle B\pi|\hat{\mathcal{O}}^{B\pi}|0\rangle e^{-Et}}_{=\underbrace{t\langle 0|\hat{\mathcal{O}}^{B}|B_0^*\rangle x \langle B\pi|\hat{\mathcal{O}}^{B}|0\rangle x \langle B\pi|\hat{\mathcal{O}}^{B\pi}|0\rangle e^{-Et}}_{=\underbrace{t\langle 0|\hat{\mathcal{O}}^{B}|B_0^*\rangle x \langle B\pi|A_0^*\rangle x \langle B\pi|A_0^*\rangle x \langle B\pi|A_0^*\rangle x \langle B\pi|A_0^*\rangle x \langle B\pi|$$

- \rightarrow Excited states contributions are suppressed by a factor t
- \rightarrow To be compared with the usual exponential suppression

$$R^{\text{GEVP}}(t) \approx \mathbf{A} + xt$$

Cross-check: box and cross diagrams

[Phys Lett B556 (2004)] (McNeile et al.)

$$\begin{split} \widetilde{R}(t) &= \frac{(v_{B\pi}(t,t_0), C_{\text{connected}}(t) \, v_{B\pi}(t,t_0))}{(v_{B\pi}(t,t_0), C_{B\pi-B\pi}(t) \, v_{B\pi}(t,t_0))} = B + \frac{1}{2} x^2 t^2 + \mathcal{O}(t) \\ C_{\text{connected}}(t) &= -\frac{3}{2} C_{\text{box}}(t) + \frac{1}{2} C_{\text{cross}}(t) \, . \end{split}$$

 $a = 0.065 \text{ fm}, m_{\pi} = 440 \text{ MeV}$

- $\beta(t) = \partial_t \widetilde{R}$
- Previous analysis : ax = -0.0241(10)
- Box + Cross diagrams : ax = -0.0237(8)

Determination of \tilde{q}

Mass of the scalar B_0^* meson

$$a\Delta m(a, m_{\pi}) = E_{\text{stat}}^{s}(a, m_{\pi}) - E_{\text{stat}}^{ps}(a, m_{\pi}) \quad \text{with} \quad E_{n}^{\text{eff}}(t, t_{0}) = a^{-1}\log\frac{\lambda_{n}(t, t_{0})}{\lambda_{n}(t + a, t_{0})}$$

 $\Delta m_{B_0^*} = 385(21)_{\text{stat}}(30)_{\text{syst}}$

Determination of

Determination of

Local vs Derivative interpolating operator

J^P	Local	Derivative
0+	$\Gamma = \gamma_0$	$\Gamma = \gamma_i \overleftarrow{\nabla}_i$
1+	$\Gamma = \gamma_5 \gamma_i$	$\Gamma = \gamma_5 \overleftarrow{\nabla}_i$

Table: Interpolating operators

 \rightarrow Interpolating operators built from covariant derivatives are beneficial to reduce the contamination from higher excited states

