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Motivations

Lattice simulations are often done at unphysical light quark masses (⇒ mπ > mphys
π )

→ Computing the quark propagator at small pion mass is numerically difficult

→ solution : use different quark masses and extrapolate to the physical pion mass
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Motivations

Example: chiral extrapolation of the B mesons decay constant [ALPHA Collaboration] :
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Motivations

Lattice simulations are often done at unphysical light quark masses (⇒ mπ > mphys
π )

→ Computing the quark propagator at small pion mass is numerically difficult

→ solution : use different quark masses and extrapolate to the physical pion mass

Heavy-light mesons:

→ Light quark dynamics is well described by chiral perturbation theory (χPT)

→ Heavy quarks are described by the Heavy Quark Effective Theory (HQET)

}
HMχPT = HQET + χPT

↪→ Use HMχPT (Heavy Meson Chiral Perturbation Theory) to extrapolate lattice data

↪→ HMχPT is parametrized by three couplings g, h and g̃ at leading order
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Motivations

LHMχPT =
f2
π

8
∂µΣab∂µΣ†ba︸ ︷︷ ︸

Goldstone bosons

+ ig 〈Hbγµγ5AµbaHa〉+ i 〈Hbv
µDµbaHa〉︸ ︷︷ ︸

negative parity states

+ ig̃ 〈Sbγµγ5AµbaSa〉+ i 〈SbvµDµbaSa〉︸ ︷︷ ︸
positive parity states

+ ih 〈Sbγµγ5AµbaHa〉
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Motivations

Lattice simulations are often done at unphysical light quark masses (⇒ mπ > mphys
π )

→ Computing the quark propagator at small pion mass is numerically difficult

→ solution : use different quark masses and extrapolate to the physical pion mass

Heavy-light mesons:

→ Light quark dynamics is well described by chiral perturbation theory (χPT)

→ Heavy quarks are described by the Heavy Quark Effective Theory (HQET)

}
HMχPT = HQET + χPT

↪→ Use HMχPT (Heavy Meson Chiral Perturbation Theory) to extrapolate lattice data

↪→ HMχPT is parametrized by three couplings g, h and g̃ at leading order

only g is actually considered in chiral extrapolations

−→ ∆ = mB∗
0
− EBπ is usually not � mπ on the lattice

−→ the coupling h is large

−→ h and g̃ may have important contributions
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Determination of g̃
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The soft coupling g̃

g̃ εi = 〈B∗0(~0) |ψlγiγ5ψl |B∗1(εi,~0)〉

→ Three-point correlation function: Aµ = ψl(x)γµγ5ψl(x) (axial current)

C(3)(t, t1) = ZA
1

V 3

∑

~x,~y,~z

1

3
〈 Ak(~z, t) Ak(~y, t1) S†(~x, 0) 〉

Ak(x) = ψh(x)ΓAk ψl(x) S(x) = ψh(x)ΓSψl(x)

ZA was determined non-perturbatively by the ALPHA Collaboration [Nucl.Phys. B865 (2012) 397-429]

→ Two-point correlation functions

C
(2)
S (t) =

〈 ∑

~x,~y

S(~x, t)S†(~y, 0)
〉

, C
(2)
A (t) =

〈 ∑

~x,~y

Ak(~x, t)A†k(~y, 0)
〉

→ Finally, the following ratio converge to the coupling g̃ :

R(t) =
C(3)(t, t1)√
C

(2)
S (t)C

(2)
A (t)

t�1−−−−−−−→
t0=t−a

g̃ + excited states
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Excited states : “summed” GEVP

Use N = 3 interpolating operators with different overlaps with excited states → matrix of correlators

Solve the Generalized Eigenvalue Problem (GEVP): [Michael, ’85; Lüscher and Wolff, ’90]

C
(2)
S (t)vn(t, t0) = λn(t, t0)C

(2)
S (t0)vn(t, t0)

Eigenvectors (vn) and eigenvalues (λn) can be used to construct the summed ratioMsGEVP
nn (t, t0):

MsGEVP
nn (t, t0) = −∂t


 (vn(t, t0), [K(t, t0)/λn(t, t0)−K(t0, t0)] vn(t, t0))
(
vn(t, t0), C

(2)
S (t0)vn(t, t0)

)1/2 (
vn(t, t0), C

(2)
A (t0)vn(t, t0)

)1/2




with : Kij(t, t0) =
∑

t1

C
(3)
ij (t, t1) “summed GEVP” [JHEP 1201 (2012) 140]

MsGEVP
11 (t)

t�1−−−−→
t0=t−1

g̃ + O
(
te−∆N+1,nt

)

−→ ∆N+1,n = EN+1 − En
(excited states contribution is reduced)
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Extrapolation to the physical point
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small dependence on the lattice spacing

small dependence on the pion mass

g̃ = −0.122(8)(6)

g̃ = α

[
1− 2 + 4g̃2

(4πfπ)2
m2
π log(m2

π) +
h2

(4πfπ)2

m2
π

8∆2

(
3 +

g

g̃

)
m2
π log(m2

π)

]
+ Cm2

π (HMχPT )
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Determination of h
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Lattice computation of h

Continuum

gB∗
0Bπ

= 〈π(k)B(p′)|B∗0(p)〉 =
√
mBmB∗

0

m2
B∗

0
−m2

B

mB∗
0
fπ

× h
B∗0(p) B(p′)

π(k)

(static limit)

The decay rate Γ is given by:

Γ(B∗0 → Bπ) =
|~k|

8πm2
B∗

0

g2
B∗

0Bπ |~k| =

√(
m2
B∗

0
− (mB +mπ)2

)(
m2
B∗

0
− (mB −mπ)2

)
2mB∗

0

Lattice: Fermi Golden rule [Phys.Rev. D63 (2001)] (McNeile et al.)

Γ (B∗0 → Bπ) = (2π)x2 ρ , x = 〈B∗0 |Bπ〉

ρ is the density of final states on the lattice:

ρ =
L3kEπ

2π2

Γ (B∗0 → Bπ)

k
=

1

π

(
L

a

)3

(aEπ)× (ax)2

Conclusion: one can access to h through x, computed on the lattice
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Lattice computation: x = 〈B∗0 |Bπ〉
Two-point correlation function: x = 〈B∗0 |Bπ〉

CB∗
0−Bπ(t) = 〈OBπ(t)OB∗

0 (0)†〉 =
∑

t1

〈0|ÔB∗
0 |B∗0〉e

−mB∗
0
t1

︸ ︷︷ ︸× x× 〈Bπ|ÔBπ|0〉 e−EBπ(t−t1)

︸ ︷︷ ︸

Near threshold (mB∗
0
≈ EBπ)

CB∗
0−Bπ(t) ≈ 〈0|ÔB∗

0 |B∗0〉x 〈Bπ|ÔBπ|0〉 t e−Et

Consider the following ratio

R(t) =
C

(2)
B∗

0−Bπ
(t)

(
C

(2)
B∗

0−B∗
0
(t)C

(2)
Bπ−Bπ(t)

)1/2
≈ xt + excited states

Or the GEVP ratio to reduce the excited states contribution

RGEVP(t, t0) =

(
vB∗

0
(t, t0), CB∗

0−Bπ(t) vBπ(t, t0)
)

√(
vB∗

0
(t, t0), CB∗

0−B∗
0
(t) vB∗

0
(t, t0)

)
× (vBπ(t, t0), CBπ−Bπ(t) vBπ(t, t0))

≈ xt+ excited states

xeff(t) = ∂tR
GEVP(t)

t�1−−−−−−−→
t0=t−a

x
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Lattice computation: x = 〈B∗0 |Bπ〉

We have considered the corrections coming from ∆ = mB∗
0
− EBπ 6= 0

We have considered the contribution from excited states
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a = 0.065 fm, mπ = 440 MeV a = 0.048 fm, mπ = 340 MeV
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ax −0.0156(4) −0.0159(3) −0.0174(6) −0.0241(10)

h 0.86(4) 0.86(3) 0.85(4) 0.84(5)
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h: chiral and continuum extrapolations

0.6
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h
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π

β = 5.2

β = 5.3

β = 5.5 → small dependence on the lattice spacing

→ small dependence on the quark mass

h = 0.86(4)stat(2)χ

NLO HMχPT : h = h0

[
1− 3

4

3ĝ2 + 3g̃2 + 2ĝg̃

(4πfπ)2

(
m2
π log(m2

π)− (mexp
π )2 log((mexp

π )2)
)]

+ C
(
m2
π − (mexp

π )2
)
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Conclusion

We have computed the soft pion couplings h and g̃ with Nf = 2 dynamical quarks

h = 0.84(3)(2) , g̃ = −0.122(8)(6)

Good control under/over systematics:

→ in both case, the continuum and chiral extrapolations are performed

→ we used the GEVP to reduce the contamination from excited states

These couplings can be used in the chiral extrapolations of relevant heavy-light meson properties

h� ĝ : B meson orbital excitations cannot be neglected in chiral loops

[Becirevic et al. (2012)]: h = 0.66(10)(6)

→ They used three-point correlation functions to obtain the form factor A+(∆2)

→ They compute the radial density to obtain the form factor in the correct limit A+(∆2)→ A+(0) ∼ gB∗
0Bπ

PDG: ΓD∗
0

= 267(40) MeV, mD∗
0

= 2318(29) MeV ⇒ h = 0.74(16)

→ 1/mc corrections are expected to be sizable for D meson
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Lattice setup

Lattice discretization
Nf = 2 O(a) improved Wilson-Clover Fermions
HYP1-2 discretization for the static quark action

Discretization effects
3 lattice spacings a :

(0.048, 0.065, 0.075) < 0.1 fm

Light quark mass chiral extrapolations

different pion masses in the range [280 MeV, 440 MeV]

⇒ total of 4 ensembles
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Correlation functions

quark-antiquark interpolating operators

OBΓ,n(t) =
1

V

∑

~x

[
d

(n)
(x)Γb(x)

]

meson-meson interpolating operators

−→
√

2

3
π+(0)B−(0)−

√
1

3
π0(0)B

0
(0)

OBπΓ,n =
1

V 2

∑

~xi

√
2

3

[
d(x1)Γu(x1)

] [
u(n)(x2)Γb(x2)

]
−
√

1

6

[
u(x1)Γu(x1)− d(x1)Γd(x1)

]

×
[
d

(n)
(x2)Γb(x2)

]

local (Γ = γ0, γ5) and derivative (Γ = γiγ0γ5∇i, γi∇i) interpolating operators

4 levels of gaussian smearing

y,Γ2 x,Γ1

y2, γ5

y1, γ5

x,Γ2

y2 x2

x1y1

y2 x2

x1y1
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Systematic errors on h: corrections from ∆ = mB∗0 − EBπ 6= 0

Neglecting excited states, at threshold we have:

CB∗
0−Bπ(t) =

∑

t1

〈0|ÔB∗
0 |B∗0〉x 〈Bπ|ÔBπ|0〉 e

−mB∗
0
t1 e−EBπ(t−t1) ≈ 〈0|ÔB∗

0 |B∗0〉x 〈Bπ|ÔBπ|0〉 t e−Et

when the threshold condition is only approximately fulfilled, the linear time dependance becomes:

t −→ 2

∆
sinh

(
∆

2
t

)
= t+

∆2 t3

24
+O(∆4)

(
3t2∆2

24
� 1 for t ∈ [0− 20]

)
mπ 280 MeV 310 MeV 340 MeV 435 MeV

a∆ 0.036(4) 0.026(8) 0.010(3) −0.012(6)

Table: ∆ = mB∗
0
− EBπ
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Systematic errors on h: Excited states contribution

CB∗
0−Bπ(t) = 〈OB∗

0 (t)OBπ(0)†〉 =
∑

t1

〈0|ÔB∗
0 |B∗0〉x 〈Bπ|ÔBπ|0〉 e

−mB∗
0
t1e−EBπ(t−t1)

When excited states are taken into account (X1 = B∗0 , X2 = Bπ) :

xnm = 〈Xn|Xm〉

CB∗
0−Bπ(t) =

∑

nm

∑

t1

〈0|ÔB∗
0 |Xn〉xnm〈Xm|ÔBπ|0〉e−Ent1e−Em(t−t1)

Assumptions:

I consider only the contribution from the first excited state X3 : mB∗
0
≈ EBπ < EX3 < EX4 < · · ·

X3 has a non-negligible overlap with OB∗
0 → 〈0|ÔB∗

0 |X3〉 6= 0 and 〈0|ÔBπ|X3〉 ≈ 0

→ the symmetric case (a non-negligible overlap with OBπ) is similar

∑

t1

〈0|ÔB∗
0 |X3〉x32〈Bπ|ÔBπ|0〉e−E3t1e−E(t−t1)

= t〈0|ÔB∗
0 |B∗0〉x〈Bπ|ÔBπ|0〉 e−Et

︸ ︷︷ ︸
ground state contribution

× 1

t

〈0|ÔB∗
0 |X3〉

〈0|ÔB∗
0 |B∗0〉

x32

x

∑

t1

e(E3−E)t1

→ Excited states contributions are suppressed by a factor t
→ To be compared with the usual exponential suppression

RGEVP(t) ≈ A+ xt
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Cross-check: box and cross diagrams

[Phys Lett B556 (2004)] (McNeile et al.)

R̃(t) =
(vBπ(t, t0), Cconnected(t) vBπ(t, t0))

(vBπ(t, t0), CBπ−Bπ(t) vBπ(t, t0))
= B +

1

2
x2t2 +O(t)

Cconnected(t) = −3

2
Cbox(t) +

1

2
Ccross(t) .

y2 x2

x1y1

y2 x2

x1y1

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 50 100 150 200 250 300 350 400

R̃

(t/a)2

a = 0.065 fm, mπ = 440 MeV

β(t) = ∂tR̃

Previous analysis : ax = −0.0241(10)

Box + Cross diagrams : ax = −0.0237(8)

↪→ Perfect agreement!
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Mass of the scalar B∗0 meson

a∆m(a,mπ) = Esstat(a,mπ)− Epsstat(a,mπ) with Eeff
n (t, t0) = a−1 log

λn(t, t0)

λn(t+ a, t0)
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y

∆mB(z,mπ
,a)
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y
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,a)

∆mB∗
0

= 385(21)stat(30)syst
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Local vs Derivative interpolating operator

JP Local Derivative

0+ Γ = γ0 Γ = γi
←−∇ i

1+ Γ = γ5γi Γ = γ5
←−∇ i

Table: Interpolating operators

→ Interpolating operators built from covariant derivatives
are beneficial to reduce the contamination from higher ex-
cited states
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F6 : a = 0.065 fm, mπ = 310 MeV
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